表面等离子体和表面增强光学效应的理论与应用系列讲座(I)
表面等离子体共振效应对光学器件增强光子信号的作用

表面等离子体共振效应对光学器件增强光子信号的作用摘要:表面等离子体共振效应(Surface Plasmon Resonance,SPR)是一种在金属表面上发生的光电响应现象,它在光学器件中扮演着重要的角色。
本文将讨论SPR的物理原理、对光学器件增强光子信号的作用,以及其在光学传感和光子学领域的应用。
一、简介光学器件在现代科学研究和工程应用中发挥着重要作用,但是由于光在介质界面上的反射和折射,其在界面处的能量传输有限。
为了提高光的传输效率,科学家们研究了表面等离子体共振效应。
二、表面等离子体共振的物理原理表面等离子体共振是一种光与金属表面的电子能级相互耦合的现象。
当入射光的频率与金属表面的等离子体频率匹配时,电磁波能量可以通过电势耦合到金属表面电子,从而在表面形成表面等离子体波。
这种耦合现象能够有效地将光的能量局域化在金属表面附近,并且具有强烈的吸收和散射效应。
三、表面等离子体共振对光学器件的增强作用1. 增强光的局域电磁场表面等离子体共振可以引起金属表面附近的电磁场增强。
当表面等离子体波与光波匹配时,电磁场的强度会集中在金属表面附近,从而增强了光的局域电磁场。
这种强烈的局域电磁场可以被应用于光学传感、显微成像等领域,提高了信号的检测灵敏度和空间分辨率。
2. 增强光的穿透深度表面等离子体共振还可以增强光的穿透深度。
通常情况下,光在金属中的衰减很快,只有很小的穿透深度。
然而,在表面等离子体共振条件下,光与表面等离子体波相互作用,这种相互作用可以抵消光的衰减,使光在金属中的穿透深度显著增加。
这个特性在激光捕获显微术、纳米光学研究等领域有广泛应用。
四、表面等离子体共振在光学传感和光子学领域的应用1. 传感器表面等离子体共振可以通过改变金属表面的折射率来实现生物分子的检测。
将特定的生物分子与金属表面的功能化修饰层相互作用,通过监测共振角移动或吸收光强的变化,可以实现有效的分子检测。
这种基于SPR的传感器在生物医学、环境监测等领域有广泛应用。
表面等离子体共振的共振波长-概述说明以及解释

表面等离子体共振的共振波长-概述说明以及解释1.引言1.1 概述表面等离子体共振是一种在纳米尺度上发生的现象,它在光学和电磁学领域具有重要意义。
表面等离子体共振可以简单地理解为,当光波与金属或半导体等材料界面上的自由电子相互作用时,会引起电子在表面上的集体振荡。
这种振荡在特定波长下达到最大,即共振波长,这是表面等离子体共振的现象。
表面等离子体共振现象由于其特殊的光学性质,在各个领域均有重要的应用。
在生物传感器中,表面等离子体共振可以用来检测微生物的存在并进行分析。
在纳米光子学领域,表面等离子体共振可以用来增强光与物质的相互作用,从而提高光学器件的性能。
在太阳能电池中,表面等离子体共振可以提高光吸收效率,从而增加光电转化效率。
此外,表面等离子体共振还可以用于光子集成电路、图像传感和信息存储等领域。
本文将重点介绍表面等离子体共振的共振波长及其产生机制。
通过深入了解共振波长的特性和调节机制,我们可以更好地应用表面等离子体共振现象,并在各个领域中取得更大的突破和进展。
综上所述,本文旨在全面介绍表面等离子体共振的共振波长,通过对其概念和产生机制的研究,探讨其在各个领域中的应用前景。
最后,我们将总结表面等离子体共振的重要特性,并展望其在未来的发展趋势。
文章结构的目的是为了帮助读者更好地理解和组织文章的内容。
通过清晰的结构,读者可以更容易地跟随文章的思路和逻辑。
本文的文章结构如下:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 表面等离子体共振的概念2.2 表面等离子体共振的产生机制3. 结论3.1 表面等离子体共振的应用前景3.2 总结文章结构部分主要起到向读者介绍整篇文章的组织框架和目的的作用。
通过明确列出各个章节的标题和内容大致涵盖的内容,读者可以更好地了解接下来的文章会包含哪些方面的知识,并有助于从整体上把握文章的思路和结构。
文章结构的呈现方式可以采用类似上述的列表形式,清晰明了地展示出不同章节的层次关系。
表面等离子体共振原理及其化学应用

表面等离子体共振原理及其应用李智豪1.表面等离子体共振的物理学原理人们对金属介质中等离子体激元的研究, 已经有50多年的历史。
1957年Ritchie发现, 高能电子束穿透金属介质时, 能够激发出金属自由电子在正离子背景中的量子化振荡运动, 这就是等离子体激元。
后来,人们发现金属薄膜在入射光波照射下, 当满足特定的条件时, 能够激发出表面等离子体激元, 这是一种光和自由电子紧密结合的局域化表面态电磁运动模式。
由于金属材料的吸收性质,光波沿金属表面传播时将不断被吸收而逐渐衰减, 入射光波的能量大部分都损耗掉了, 造成反射光的能量为最小值, 这样就把反射光谱的极小值与金属薄膜的表面等离子体共振联系了起来。
1.1 基本原理[1]光与金属物质的相互作用主要是来自于光波随时间与空间作周期性变化的电场与磁场对金属物质中的电荷所产生的影响,导致电荷密度在空间分布中的变化以及能级跃迁与极化等效应,这些效应所产生的电磁场与外来光波的电磁场耦合在一起后,表达出各种不同光学现象。
等离子体是描述由熔融状态的带电离子所构成的系统,由于金属的自由电子可当作高密度的电子流体被限制于金属块材的体积范围之内,因此亦可类似地将金属视为一种等离子体系统。
当电磁波在金属中传播时,自由电子会随着电场的驱动而振荡,在适当条件下,金属中传播之电磁波其电场振荡可分成两种彼此独立的模态,其中包含电场或电子振荡方向凡垂直于电磁波相速度方向的横波模态,以及电场或电子振荡方向凡平行波的传播方向纵波模态。
对于纵波模态,自由电子将会沿着电场方向产生纵向振荡的集体运动,造成自由电子密度的空间分布会随时间之变化形成一种纵波形式之振荡,这种集体运动即为金属中自由电子之体积等离子体振荡。
金属复介电常数的实部相对其虚部来说,往往是一个较大的负数,金属的这种光学性质,使金属和介质的界面处可传输表面等离子波,使夹于两介质中间的金属薄膜可传输长程表面等离子波。
这两类表面波具有不同于光导波的独特性质,例如,有效折射率的存在范围大、具有场的增强效应等。
表面等离子体共振技术的原理和应用

表面等离子体共振技术的原理和应用表面等离子体共振技术(Surface Plasmon Resonance,简称SPR)是一种现代分析技术,主要用于检测生物分子相互作用。
该技术基于表面等离子体共振现象,通过测量试样与金属表面的相互作用,从而推断出与试样相互作用的生物分子的性质和相互作用力的强度。
表面等离子体共振现象是指当有一束光线斜入垂直于金属表面时,会与金属表面上的自由电子相互作用产生共振,这种共振就是表面等离子体共振。
而当试样溶液在金属表面形成一层薄膜时,这层薄膜的折射率会影响共振的位置和强度,因此可以检测到试样与金属表面的相互作用。
SPR技术的检测原理是通过将金属薄膜与含有生物分子(例如蛋白质)的溶液相接触,从而使生物分子吸附在金属薄膜表面,进而测量吸附和解离过程中的表面等离子体共振信号变化。
通常情况下,自发结合和亲和力大的生物分子会在金属表面上呈现强信号,在SPR曲线上表现为峰;而不结合或结合较弱的生物分子,其曲线相对平坦,表现出较小的信号。
SPR技术的应用SPR技术具有广泛的应用,特别在生物医学、生物化学和生命科学领域具有重要意义。
以下是一些SPR技术的应用:1. 生物分子相互作用研究SPR技术可以用于生物分子之间相互作用的研究,例如酶和配体、抗体和抗原、蛋白质和DNA/RNA等。
通过检测生物分子之间的相互作用,可以揭示生物分子相互作用的动力学和热力学参数,包括关联常数、解离常数、亲和力和熵变等。
2. 药物筛选SPR技术也可以应用于药物筛选。
在药物开发过程中,药物分子需要与靶分子相互作用,以达到治疗作用。
利用SPR技术可以对候选化合物进行筛选,通过检测不同药物候选物与目标分子之间的相互作用,从而选择最有效的药物分子。
3. 诊断应用SPR技术还可以应用于诊断,例如慢性阻塞性肺病(COPD)的检测。
据研究,COPD患者的血清中含有一特定蛋白胆固醇酯转移酶,而正常人的血清中不含。
利用SPR技术,可以检测出胆固醇酯转移酶的存在,从而诊断COPD。
表面等离子共振实验讲义

图5
准星示意图
当激光光斑一直过准星时,中心调节完毕。移去准星,放入敏感部件(34) ,为接下来 读数方便,将游标盘与度盘调整至图五所示位置,调整敏感部件使光 0°入射,拧紧游标盘 止动螺钉(25) ,转动度盘使度盘 0°对准游标盘 0°。拧紧转座与度盘止动螺钉(16) ,松 开游标盘止动螺钉(25) ,从此刻开始度盘始终保持不动。转动游标盘 90°观察光是否 90 °入射敏感部件,继续转动游标盘 180°观察光是否仍 90°入射敏感部件,如果是,此时则 说明敏感部件已调整完毕。将游标盘转回至度盘所示 65°位置处锁定,测量前准备调节完 毕。
表面等离子共振实验
1902 年,Wood 采用连续光谱的偏振光照射金属光栅时,在反射光谱上观测到一种反常 衍射现象,即“伍德异常衍射现象(Wood Anomalies)” 。1941 年,Fano 在 Sommerfeld 理论 的基础上运用金属-空气界面的表面电磁波激发模型解释了这一异常衍射现象。1957 年, Ritchie 在实验中观测到高能电子穿过金属薄片时出现了能量吸收峰,而为了解释这一现象, 他提出了用于描述金属内部电子密度纵向波动的“金属等离子体”的概念。而后,Powell 和 swan 在 1959 年通过实验证实了 Ritchie 提出的这种理论。 一年后,Stern 和 Farrell 对金属 表面电磁波模式的共振条件进行了深入的研究, 并提出了 “表面等离体共振(Surface plasmon resonance,SPR)”的概念。到了 1968 年,德国物理学家 Otto 和 Kretschmann 各自采用衰减 全反射(Attenuated Total Reflection,ATR)的方法在实验中实现了光频波段的表面等离子体的 激发。至此,一个较为完整的表面等离子体激化理论就建立起来了,从而对上述现象的理论 解释进行了统一。之后,对于表面等离子的研究则主要集中在传感应用方面,而基于表面等 离子体共振效应的传感技术也得到迅速的发展,并被广泛应用于化工和生命科学等领域。 【预备问题】 1. 产生全反射的条件是什么? 2. 如何理解金属内部及表面的等离子体振动? 3. 产生金属表面等离子体共振有哪些方法? 4. 产生金属表面等离子体共振须满足什么条件? 5. 表面等离子体共振技术目前主要应用在哪些方面? 【实验原理】 1. 倏逝波 当光线从折射率为 n1 的光密介质射向折射率为 n2 的光疏介质时,在两种介质的界面处 将同时发生折射和反射, 当入射角θ大于临界角θc 时, 将发生全反射, 在全内反射条件下, 入射光的能量没有损失, 但光的电场强度在界面处并不立即减小为零, 而会渗入光疏介质中 产生倏逝波,如图 1 所示。
因纳米结构而产生的光学性质与应用

因纳米结构而产生的光学性质与应用随着纳米科技的快速发展,人们对纳米结构的研究越来越深入。
纳米结构的尺度范围从纳米到亚微米,具有较高的比表面积、量子大小效应和表面等离子体等独特的物理和化学性质。
其中,纳米结构对光的相互作用是一项极为重要的性质,其研究已经成为现代光学领域的热点之一。
本文将介绍因纳米结构而产生的光学性质及其在生物医学、能源、信息等方面的应用。
一、表面等离子体共振表面等离子体共振(Surface Plasmon Resonance,SPR)是一种非常重要的光学现象,它是由在金属表面的界面极化产生的一种电磁波。
这种电磁波可以被外部电磁辐射或散射光谱所引起,产生表面等离子体共振吸收峰。
由于SPR能够对物质的吸附、生物识别和分子浓度等参数进行高灵敏度的检测,因此已被广泛地应用于生物化学、生物传感器、药物筛选和环境监测等领域。
SPR现象的产生与纳米结构的尺度有很大关系。
在纳米尺度下,金属和介质之间的交界面呈现了那些表面等离子体波。
受到外界电磁波的作用,表面等离子体的振动会在界面上造成很大的电场增强,从而使得该区域的吸收和散射光增强。
通过测量吸收和散射光的变化,可以监测到物质之间的相互作用。
因此,在生物医学、食品安全、化学材料、环境监测等领域,SPR技术逐渐成为了检测和监测目标物质的重要手段。
二、光子晶体光子晶体是将空间中的周期性结构应用于光学领域的一种新型材料。
它是由高折射率的物质和低折射率的物质交替排列而成,形成一种对某些波长的光波进行反射或者折射的自然光学结构。
光子晶体的周期性结构具有尺度与光波波长同级的特性,因此它们可以产生强烈的光学效应,如全反射、衍射和光子禁带等现象。
光子晶体的应用领域非常广泛,如光子晶体纳米微球在药物传输和生物成像方面的应用、光子晶体温度传感器、光子晶体稳定颜料等。
以光子晶体的生物应用为例,可以利用光子晶体的镜像反射、偏振性、共振散射等性质实现药物的部位定位和治疗效果的预测。
表面增强拉曼光谱分析原理及应用

拉曼散射的两种能量差
A、ΔE=h(v0– Δv)
产生stokes线:强;基态分子多
B、ΔE=h(v0+ Δv)
产生反stokes线:弱
Stokes与反Stokes线的频率与入射光频率之差Δv 称为Raman位移。同一种物质分子,随着入 射光频率的改变,Raman线的频率也改变, 但位移Δv始终保持不变,故Raman位移与 入射光频率无关。
1、水的拉曼散射强度很微弱,因此拉曼光谱是研究水 溶液中的生物样品和化学化合物的理想工具。
2、拉曼一次可以同时覆盖很广波数的区间,可对有机 物及无机物等多种物质进行分析。相反,若让红外光 谱覆盖如此广阔的区域则必须改变各种器件的参数, 相比较而言程序复杂不具有通用性。
3、拉曼光谱的谱峰清晰尖锐,适合定量研究以及运用 差异分析进行定性研究。在化学结构分析中,独立的 拉曼区间的强度和功能集团的数量相关。
A、表面电磁场模型
表面电磁增强模型又可称为表面等离 子体共振模型。该模型认为,在光电场作 用下,金属表面附近的电子会产生疏密振 动。因此当粗糙化的衬底材料表面受到光 照射时,衬底材料表面的等离子体能被激 发到高的能级,而与光波的电场耦合,并 发生共振,使金属表面的电场增强,从而 产生增强的拉曼散射。
Rayleigh Stokes
AntiStokes
Resonance Fluorescence Raman
拉曼光谱研究分子振动和转动模式的机 理与红外光谱的异同点?
相同点:同属于分子光谱。两者都是研究分子振 动的重要手段。
不同点:一些同核原子对称结构的官能团(如:C=C-、-N=N-、-S-S-等)在红外光谱仪较难检测的 信息,在拉曼光谱仪上却有较强的反映;而在红外 光谱中有很强吸收峰的不均衡对称的官能团,在拉 曼光谱却表现很弱。
表面等离子体共振技术在光催化和光子学中的应用指南

表面等离子体共振技术在光催化和光子学中的应用指南引言:近年来,随着纳米科技的快速发展,表面等离子体共振技术成为了光催化和光子学领域中备受关注的研究方向。
表面等离子体共振技术通过操纵光与物质的相互作用,能够实现更高效的能量传递和光信号调控,为光催化和光子学的应用带来了新的突破。
本文将重点探讨表面等离子体共振技术在这两个领域的应用,以及未来可能的发展方向。
1. 表面等离子体共振技术的基本原理表面等离子体共振是指当光与表面上的金属纳米结构相互作用时,产生共振现象。
这种现象可以通过光的吸收和发射来实现表面等离子体的激发和激发的耗尽。
表面等离子体共振技术在光催化和光子学中的应用主要基于以下几个原理:增强光场强度、改变光的传播速度、增加光与物质的相互作用距离。
2. 表面等离子体共振技术在光催化领域的应用2.1 表面等离子体共振增强光催化活性表面等离子体共振技术可以通过调控金属纳米结构的形状和尺寸,实现光场的增强,从而增强光催化剂的活性。
例如,通过控制金纳米颗粒的粒径、形状和空间间距,可以调控其表面等离子体谐振频率,从而实现对光催化活性的增强。
此外,通过引入表面等离子体共振材料的纳米结构,还可以实现阳光下可见光催化反应的高效转化。
这些研究为光催化反应的实际应用提供了新的思路和方法。
2.2 表面等离子体共振调控光催化反应动力学表面等离子体共振技术还可以通过调控金属纳米结构的等离子体共振频率和强度,实现对光催化反应动力学的调控。
例如,在可见光催化反应中,通过调控表面等离子体谐振频率和强度,可以实现可见光催化活性氧种类的选择性调控,从而优化光催化反应的速率和选择性。
这种调控方式可以通过纳米结构的设计和金属纳米材料的选择来实现。
3. 表面等离子体共振技术在光子学领域的应用3.1 表面等离子体共振激发光子模式表面等离子体共振技术可以实现对金属纳米结构中的光子模式的精确操控。
通过调控金属纳米结构的形状、尺寸和空间间距,可以实现对表面等离子体共振光子模式的激发和调控。