秋九年级数学下册292三视图第2课时由三视图确定几何体练习新版新人教版含答案

合集下载

人教版九年级数学下册第29章投影与视图 2三视图习题2

人教版九年级数学下册第29章投影与视图 2三视图习题2

三视图一、单选题1.右图是一个由4个相同的正方体组成的立体图形,它的三视图是()2.如图是几何体的三视图,该几何体是()A.圆锥B.圆柱C.正三棱柱D.正三棱锥3.如图是由5个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的主视图是()4.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适,以下裁剪示意图中,正确的是()A.B.C.D.5.下图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π6.用6个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为D.A .B.C .7.如图是由六个棱长为1的正方体组成的几何体,其俯视图的面积是A.3 B.4 C.5 D.68.如图是一个几何体的三视图,已知正视图和左视图都是边长为2的等边三角形,则这个几何体的全面积为A. B. C. D.二、填空题9.若干桶方便面摆放在桌子上,如图是它的三视图,则这一堆方便面共有 _____ 桶.10.桌上放着一个长方体和一个圆柱体,说出下面三幅图分别是从哪个方向看到的? 11.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.12.下图是由几个相同的小立方块组成的几何体的三视图,小立方块的个数是.13.如图是一个正方体纸盒的展开图,其中的四个正方形内标有数字1,2,3和-3.要在其余正方形内分别填上一个数,使得折成正方形后,相对面上的两数均为互为相反数,则A处应填.14.如图是一个包装盒的三视图,则这个包装盒的体积是15.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是.三、解答题16.如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?17.某一空间图形的三视图如右图所示,其中主视图:半径为1的半圆以及高为1的矩形;左视图:半径为1的14圆以及高为1的矩形;俯视图:半径为1的圆.求此图形的体积.18.如图,是由5个正方体组成的图案,请在方格纸中分别画出它的主视图、左视图、俯视图.19.如图是一些小正方块所搭几何体的俯视图,小正方块中的数字表示该位置的小方块的个数,请画出这个几何体的主视图和左视图:20.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积21.已知一个几何体的三视图为一个直角三角形,和两个长方形,有关的尺寸如图所示,描述该几何体的形状,并根据图中数据计算它的表面积.22.在平整的地面上,有若干个完全相同的棱长为10cm的小正方体堆成一个几何体,如图所示。

人教版九年级下册数学第二十九章第2节《三视图》训练题 (33)(含答案解析)

人教版九年级下册数学第二十九章第2节《三视图》训练题 (33)(含答案解析)

九年级下册数学第二十九章第2节《三视图》训练题 (33)一、单选题1.如图,是按照比例尺为1︰10绘制的一个几何体的三视图(单位:cm),则该几何体的侧面积是( )A.4900cm2B.7000cm2C.8400cm2D.10500cm22.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.下图分别是某校体育运动会的颁奖台和它的主视图,则其左视图是().A.B.C.D.4.如图是一个几何体的三视图,则这个几何体的表面积为()A.50πB.100πC.150πD.175π5.如图,是由完全相同的5个小立方体组成的4个立体图形,主视图和左视图完全相同的()A.B.C.D.6.如图所示的几何体的主视图是()A.B.C.D.7.由若干块形状相同的小正方块搭成的立体模型的主视图与左视图如图,则搭成这个立体模型所使用的小正方块的最少块数是()A.3 B.4 C.5 D.68.如图所示的几何体的左视图是()A.B.C.D.9.如图是一个空心圆柱体,它的主视图是( )A .B .C .D .10.下列给出的几何体中,主视图和俯视图都是圆的是( )A .球B .正方体C .圆锥D .圆柱11.一透明的敞口正方体容器ABCD A B C D ''''-装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α(CBE α∠=,如图1所示).如图1,液面刚好过棱CD ,并与棱BB '交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.则此时BQ 的长为( )A .5dmB .4dmC .1dmD .3dm12.如图所示,几何体是由一些大小相同的小正方体组成,其三视图中面积最小的是( )A .主视图B .左视图C .俯视图D .都一样13.如图是由三个正方体组成的几何体,它的主视图是( )A.B.C.D.14.一个几何体的主视图、左视图、俯视图都是圆形,这个几何体可能是()A.圆柱B.圆锥C.球D.半球15.下列几何体中,主视图不是矩形的几何体是()A.B.C.D.16.如下图是一个几何体的三视图,则这个几何体是()A.B.C.D.17.如图,是由四个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.18.如图所示的几何体,它的左视图是()A.B.C.D.19.图中所示的几何体的左视图为()A.B.C.D.20.用一些完全一样的小正方体搭成一个几何体,它的主视图、俯视图与左视图都是如图所示的图形,则小正方体的个数可能是()A.9 B.8 C.5 D.421.如图所示为某一物体的主视图,下面是这个物体的是()A.B.C.D.22.如图,下列水平放置的几何体中,左视图不是矩形的是()A.B.C.D.23.在下面的四个几何体中,它们各自的左视图与主视图不相同的是()A.B.C.D.24.如图是一根空心方管,它的俯视图是()A.B.C.D.25.如图是手提水果篮抽象的几何体,它的三视图中既是轴对称图形又是中心对称图形的是()A.B.C.D.26.如图所示的物体组合,它的左视图是()A.B.C.D.27.如图,由4个大小相同的正方体组成的几何体的主视图是()A.B.C.D.二、解答题28.一作图题:下列物体是由六个小正方体搭成的,请在下列网格中分别画出从正面、左面、上面看到的立体图形的形状.三、填空题29.如图是一个由圆柱与圆锥组合而成的几何体的三视图,根据图中所示数据计算这个几何体的侧面积是_____.30.一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的形状是________,面积cm.等于_________2【答案与解析】1.C【解析】根据三视图可知,该几何体是三棱柱,高为7,两个底面三边长分别为3、4、5,三棱柱的侧面积是三个长方形,用底面周长⨯高即可得出答案.由三视图可知,该几何体是三棱柱,侧面积为:2(345)784cm ++⨯=,∵是按照比例尺为1︰10绘制的一个几何体的三视图,∴原几何体的侧面积2841008400cm =⨯=,故选:C .本题考查了三视图还原几何体,棱柱侧面积的计算等知识,能通过三视图还原成三棱柱以及清楚每边长是解决本题的关键.2.A【解析】根据主视图就是从正面看到的图形即可解答.解:从正面看第一层是三个小正方形,第二层右边一个小正方形,第三层右边一个小正方形, 故答案为A .本题考查了简单组合体的三视图,掌握主视图、俯视图、左视图的概念是解答本题的关键. 3.D【解析】根据左视图是从左边看到的图形解答即可.解:颁奖台从左边看是一个矩形被分为3部分,上面分线是实线,下面的分线是虚线. 故选:D本题考查了由几何体判断三视图,从左边看到的图形是左视图,注意能看到的线用实线画,看不到的线用虚线画.4.C【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,判断出几何体的形状,再根据三视图的数据,求出几何体的表面积即可.解:根据三视图可得这个几何体是圆柱,底面积=π×52=25π,侧面积为=10π•10=100π,则这个几何体的表面积=25π×2+100π=150π;故选:C.此题考查了由三视图判断几何体,用到的知识点是三视图,几何体的表面积的求法,准确判断几何体的形状是解题的关键.5.C【解析】根据几何体的主视图和左视图即可求解.解:A、主视图有3列,从左往右正方形的个数是2,1,1;左视图有2列,从左往右正方形的个数是1,2;不符合题意;B、主视图有2列,从左往右正方形的个数是2,1;左视图有3列,从左往右正方形的个数是1,2,1;不符合题意;C、主视图有2列,从左往右正方形的个数是2,1;左视图有2列,从左往右正方形的个数是2,1;符合题意;D、主视图有2列,从左往右正方形的个数是2,1;左视图有2列,从左往右正方形的个数是1,2;不符合题意.故选:C.考查简单几何体的三视图,主视图、左视图、俯视图实际上就是从正面、左面、上面对该几何体正投影所得到的图形.画三视图时还要注意“长对正、宽相等、高平齐”.6.A【解析】找到从前面看所得到的图形即可.解:从前面看可得到左边下方有1个正方形,右边有2个正方形,故选A.本题考查了三视图的知识,主视图是指从前面看所得到的图形.7.A【解析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底层最少有2个小正方体,上面这层只有一个小正方体.根据这个思路可判断出该几何体有多少个小立方块.解:左视图与主视图相同,可判断出底层最少有2个小正方体,而第二层则只有1个小正方体.摆放方法是田字格的左上格有两个,右下格有一个小正方体,则这个几何体的小立方块最少为3个.故选:A.本题的难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.8.D【解析】根据左视图是从左边看得到的图形,可得答案.从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.本题考查了几何体的三视图,从左边看得到的是左视图.9.C【解析】找到从前面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:C.本题考查了三视图的知识,主视图是从物体的正面看得到的视图;注意看得到的棱画实线,看不到的棱画虚线.10.A【解析】主视图是从正面看,俯视图是从上往下看,分别进行判断即可.A.球的主视图和俯视图都是圆,故选项A正确;B.正方体主视图和俯视图都是正方形,故选项B错误;C.圆锥的主视图是三角形,俯视图是圆,故选项C错误;D.圆柱的主视图是长方形,俯视图是圆,故选项D错误;故选:A.本题考查了几何体的三视图,解题关键是明确主视图、俯视图、左视图分别是从物体的正面、上面、左面看所得到的图形.【解析】根据水面与水平面平行可以得到CQ与BE平行,利用勾股定理即可求得BQ的长;解:根据题意,得CQ与BE的位置关系是:CQ∥BE,CQ=5,BC=AB=4,在Rt△BCQ中,(dm).本题考查了四边形的体积计算以及三视图的认识,正确理解棱柱的体积的计算是关键.12.A【解析】根据几何体的三视图进行判断即可.解:如图,该几何体主视图是由4个小正方形组成,左视图是由5个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是主视图,故选:A.本题考查了三视图,正确识别几何体的三视图是解题关键.13.A【解析】根据主视图的定义,观察图形即可得出结论.解:主视图是从正面看得到图形,由几何体以及正面方向可知,主视图为:故选A.此题考查的是几何体主视图的判断,掌握主视图的定义是解决此题的关键.14.C【解析】在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.由此可判断出正确选项.因为几何体的主视图、左视图、俯视图是圆形,所以该几何体可能是球.故答案为:C.本题主要考查物体的三视图,能根据三视图确定几何体的形状是解题的关键.【解析】根据各几何体从正面看到的图形判断即可.解:A、圆柱的主视图是矩形,故此选项不合题意;B、圆锥的主视图是等腰三角形,故此选项符合题意;C、长方体的主视图是矩形,故此选项不合题意;D、三棱柱的主视图是矩形,故此选项不合题意;故选:B.本题考查了简单几何体的三视图,掌握三视图的知识点是解题关键.16.D【解析】根据三视图的定义逐项分析即可.A.主视图是一个矩形,左视图是一个矩形,俯视图是一个画有圆心的圆,故不符合题意;B.主视图是两个矩形,左视图是一个矩形,俯视图是一个矩形,故不符合题意;C.主视图是两个三角形,左视图是一个三角形,俯视图是一个三角形,且内部有一个点,故不符合题意;D.主视图是两个矩形,左视图是一个矩形,俯视图是一个三角形,故符合题意;故选D.本题考查由物体的三种视图推出原来几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.17.A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看易得第一层有2个正方形,第二层左上有1个正方形.故选:A.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.18.D【解析】根据左视图的定义“平面内,从左往右观察所得到的视图”即可得.依据“长对正、高平齐、宽相等”画如图所示的几何体的三视图如下:故选:D.本题考查了左视图的定义,掌握左视图的定义是解题关键.三视图的另两个概念是:主视图和俯视图.19.B【解析】找到从左面看所得到的图形即可.解:如图,几何体的左视图是:.故选:B.本题考查了几何体的三视图,掌握定义是关键.主视图、左视图、俯视图分别是从物体正面、左面和上面看,所得到的图形.20.B【解析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.结合主视图、俯视图可知,上层有4个,下层一定有4个,∴组成这个几何体的小正方体的个数可能是8个,故选:B.本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.21.D【解析】从该组合体的主视图看从左至右共有三列,从左到右第一列有两个正方体,第二列有三个正方体,第三列有一个,据此找到答案即可.解:从该组合体的主视图看从左至右共有三列,从左到右第一列有两个正方体,第二列有三个正方体,第三列有一个,可得只有选项D符合题意.故选:D.此题主要考查了画三视图的知识;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.22.B【解析】根据左视图的定义,逐一作出分析即可.解:A、C、D的左视图都是长方形,而B的主视图是等腰三角形,故选B.本题考查了三视图的知识,做视图是从物体的左面看得到的视图.23.B【解析】根据主视图、左视图的定义,可得答案.A、左视图与主视图都是正方形,故A不符合题意;B、主视图是两个矩形,两个矩形的邻边是虚线,左视图是一个矩形,故B符合题意;C、左视图与主视图都是矩形,故C不符合题意;D、左视图与主视图都是等腰三角形.故D不符合题意.故选:B.本题考查了简单几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图.24.B【解析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示.如图所示:俯视图应该是故选:B.本题考查了作图−三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示.25.B【解析】根据从上边看得到的图形是俯视图,再依据轴对称图形与中心对称图形的定义可得答案.解:因为该几何体的俯视图是B,主视图是C,左视图是D,所以既是轴对称图形,又是中心对称图形的是B,故选B.本题考查的是简单几何体的三视图,轴对称图形及中心对称图形,掌握以上知识点是解题的关键.26.D【解析】通过对简单组合体的观察,从左边看圆柱是一个长方形,从左边看正方体是一个正方形,但是两个立体图形是并排放置的,正方体的左视图被圆柱的左视图挡住了,只能看到长方形,邻边用虚线画出即可.从左边看圆柱的左视图是一个长方形,从左边看正方体的左视图是一个正方形,从左边看圆柱与正方体组合体的左视图是一个长方形,两图形的邻边用虚线画出,则如图所示的物体组合的左视图如D选项所示,故选:D.本题考查了简单组合体的三视图.解答此题要注意进行观察和思考,既要丰富的数学知识,又要有一定的生活经验和空间想象力.27.C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.从正面看易得有2列小正方形,左边第一列有1个正方形且在下面,第二列有2个小正方形,故选项C正确.故选:C.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.28.答案见解析【解析】根据主视图,左视图,俯视图定义,首先运用形体分析法把组合体分解为若干个形体,确定它们的组合形式,判断形体间邻接表面是否处于共面、相切和相交的特殊位置;然后逐个画出形体的三视图.本题考查了三视图的作图,三视图是主视图、俯视图、左视图的统称,从物体的前面向后面投射所得的视图称主视图,从物体的上面向下面投射所得的视图称俯视图,从物体的左面向右面投射所得的视图称左视图.29.185π cm2【解析】由三视图得圆锥的地面直径为10cm,圆锥的高为12cm,在轴截面中根据勾股定理求出圆锥母线长,进而求出圆锥侧面积;根据三视图确定圆锥底面直径为10cm,高为12cm,求出圆柱侧面积;相加即可求出几何体侧面积.解:由三视图可知,圆锥的底面直径为10cm,高为12cm,圆柱地面直径为10cm,高为12cm.则OA=5cm,在Rt△POA中,13PA cm=,圆的周长为10πcm,∴几何体的侧面积为110131012=65120=1852πππππ⨯⨯+⨯+cm2.故答案为:185π cm2本题考查了三视图,圆锥的侧面积,圆柱的侧面积等知识点,解题的关键是根据三视图确定圆锥,圆锥的相关数据,牢记圆锥,圆锥的侧面积公式.30.矩形 6【解析】根据主视图和左视图可推断出长方体的俯视图是长为3cm,宽为2cm的矩形,从而可得出答案.根据主视图和左视图可推出长方体的俯视图如下:∴它的俯视图是一个长为3cm,宽为2cm的矩形,∴S=2×3=6cm2,故答案为:矩形;6cm2.本题考查了由三视图判断几何体的知识,解决本题的关键是根据所给视图得到俯视图的矩形的边长.。

(含答案)九年级数学人教版下册课时练第29章《29.2 三视图》(2)

(含答案)九年级数学人教版下册课时练第29章《29.2 三视图》(2)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第29章投影和视图29.2三视图一、选择题:1、如图所示的几何体的主视图是()A.B.C.D.2、今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A.B.C.D.3、下列立体图形中,主视图是三角形的是()A.B.C.D.4、如图所示的几何体的主视图是()A.B.C.D.5、如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.6、下列图形中,主视图为①的是()A.B.C.D.7、如图所示的几何体的左视图为()A.B.C.D.8、如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图9、如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.10、把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为()A.B.C.D.二、填空题:11、如图是一个几何体的主视图和俯视图,则这个几何体是.12、一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最多是.13、已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.14、如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为cm2.15、如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为_________三、解答题:16、长方体的主视图与俯视图如图所示,求这个长方体的体积17、一个长方体的三视图如图所示,若其俯视图为正方形,求这个长方体的底面边长18、如图,5个完全相同的小正方体组成了一个几何体,画出这个几何体的主视图:19、台阶如图所示,请画出它的三视图:20、如图是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积参考答案一、选择题:1、C2、C3、B4、B5、B6、B7、D8、C9、C10、D二、填空题:11、三棱柱12、513、20π14、16π15、8π三、解答题:16、2417、218、略19、略20、24cm3。

人教版九年级下册数学第二十九章第2节《三视图》训练题 (3)(含答案解析)

人教版九年级下册数学第二十九章第2节《三视图》训练题 (3)(含答案解析)

九年级下册数学第二十九章第2节《三视图》训练题 (3)一、单选题1.如图所示的几何体的左视图是()A.A B.B C.C D.D2.如图所示,从上面看该几何体的形状图为()A.B.C.D.3.如图试一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥C.球D.三棱锥4.如图是一个立体图形从左面和上面看到的形状图,这个立体图形是由相同的小正方体构成,这些相同的小正方体的个数最少是()5.如图,正方形ABCD 的边长为3cm ,以直线AB 为轴,将正方形旋转一周,所得几何体的主视图的面积是( )A .29cmB .29πcmC .218πcmD .218cm6.下列立体图形中,左视图与主视图不同的是( )A .正方体B .圆柱C .圆锥D .球7.一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .8.如图是一个立方体的三视图,这个立方体由一些相同大小的小正方体组成,这些相同的小正方体的个数是( )A .4B .5C .6D .79.如图所示的几何体的左视图为( )A.B.C.D.10.如图所示的立体图形是一个圆柱被截去四分之一后得到的几何体,它的左视图是()A.B.C.D.11.由若干个相同的小正方体搭建而成的几何体的三视图如图所示,则这个几何体共有小正方体()A.4个B.5个C.6个D.7个12.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同二、解答题13.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.14.下图的几何题是由8个相同的立方块搭成的,请画出它从正面、左面、上面看到的形状图.15.下图是由几个棱长为1的小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请画出这个几何体的主视图和左视图;并计算出该几何体的表面积16.如图,这是一个小正方体所搭建的几何体的俯视图,正方形中的数字表示在该位置小正方体的个数,请你画出从正面看和从侧面看的图形.17.如图所示,这是由小立方体搭成的几何体,请画出主视图、左视图、俯视图.18.下面图是几个小方块所搭几何体俯视图,小正方形中的数字表示在该位置的小立方块的个数.请画出这个几何体的主视图、左视图.19.由12个完全相同的棱长为1cm的小正方体搭成的几何体,如图所示.(1)请画出这个几何体的三视图.(2)请计算它的表面积.20.画出如图所示的几何体的主视图、左视图、俯视图:从正面看主视图_____左视图_____俯视图______21.如图是某几何体从正面、左面、上面看到的形状图.(1)这个几何体的名称是.(2)若从正面看到的长方形的宽为4cm,长为9cm,从左面看到的宽为3cm,从上面看到的直角三角形的斜边为5cm,则这个几何体中所有棱长的和是多少?它的表面积是多少?22.用棱长为2cm的若干小正方体按如所示的规律在地面上搭建若干个几何体.图中每个几何体自上而下分别叫第一层、第二层,,第n层(n为正整数)(1)搭建第④个几何体的小立方体的个数为.(2)分别求出第②、③个几何体的所有露出部分(不含底面)的面积.1cm需要油漆0.2克,(3)为了美观,若将几何体的露出部分都涂上油漆(不含底面),已知喷涂2求喷涂第20个几何体,共需要多少克油漆?23.图中几何体由7个边长为1cm的正方体搭成,分别画如图几何体的主视图、左视图、俯视图.并算出此几何体的表面积24.用小立方块搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示该位置小立方块的个数,请解答下列问题:(1)a=________,b=_________,c=_________.(2)这个几何体最少由________个小立方块搭成,最多由________个小立方块搭成.(3)当d=e=1,f=2时,画出这个几何体的左视图.25.如图1所示,从大正方体中截去一个小正方体之后,可以得到图2的几何体.(1)设原大正方体的表面积为a,图2中几何体的表面积为b,那么a与b的大小关系是;A.a>b;B.a<b;C.a=b;D.无法判断.(2)小明说“设图1中大正方体的棱长之和为m,图2中几何体的各棱长之和为n,那么n比m正好多出大正方体的3条棱的长度.”你认为小明的说法正确吗?为什么?(3)如果截去的小正方体的棱长为大正方体的棱长的一半,那么图3是图2几何体的表面展开图吗?如有错误,请予修正.26.如图是由9个相同的棱长为2cm小立方体组成的一个几何体(1)请利用下方网格画出这个几何体的从正面看到主视图、从左面看到的左视图和从上面看到的俯视图(一个网格为小立方体的一个面).(2)计算这个堆积几何体的表面积(含底面).三、填空题27.10个棱长为a cm的正方体摆放成如图的形状,这个图形的表面积是____________.28.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有__________个29.由若干个小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体所用的小正方体的个数最多是________个,最少是________个.主视图俯视图30.如图,一个几何体是由若干个棱长为3的小正方体搭成的,小正方形中的数字表示在该位置小立方体的个数,则这个几何体的表面积是______.【答案与解析】1.D【解析】利用左视图的定义,从左向右看,看到的图形是一个长方形,由于右侧有一横线没看见,用虚线突出出来即可.从左向右看,看到的图形是一个长方形,右侧有横线看不见,为此用虚线显现出横线,左视图为D.故选:D.本题考查三视图的知识,左视图是从物体的左面看到的视图,掌握定义,会用定义选图是关键.2.C【解析】俯视图是从物体上面所看到的图形,可根据物体的特点作答;解:这是一个中间部分掏空的长方体,根据俯视图是从物体上面所看到的图形,故选:C本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,根据物体的特征回答是解题的关键.3.B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.C【解析】先根据俯视图和左视图确定底层和第二层正方体的最少个数,最后求和即可.解:根据俯视图可得:底层正方体最少5个正方体,根据左视图可得:第二层最少有1个正方体;则构成这个立体图形的小正方体的个数最少为5+1=6个.故答案为C.本题考查了根据三视图确定立体图形中正方体的个数,具有较好的空间想象能力是解答本题的关键.5.D【解析】先确定几何体的主视图,得到边长分别为3cm 、6cm ,再根据面积公式计算得出答案.如图,所得几何体的主视图是一个长方形,边长分别为3cm 、6cm ,∴所得几何体的主视图的面积是36 =218cm ,故选:D.此题考查几何体的三视图,平面图形的面积计算公式,正确理解几何体的三视图是解题的关键. 6.B【解析】根据三视图的意义可以得到解答.解:∵正方体的左视图与主视图均为以正方体棱长为边长的正方形,∴A 不符合题意; ∵倒放的圆柱体左视图为圆形,主视图为矩形,∴B 符合题意;∵圆锥的左视图与主视图均为以圆锥母线为腰、以底面直径为底的等腰三角形,∴C 不符合题意; ∵球的左视图与主视图均为以球半径为半径的圆,∴D 不符合题意;故选B .本题考查三视图的应用,熟练掌握三视图的意义和性质是解题关键 .7.C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为四边形,只有C 符合条件;故选:C .本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.8.D【解析】根据主视图和左视图小正方形的个数,在俯视图上标记每个位置上正方形的个数即可求解.根据题意,在俯视图上标注各个位置的个数为:所以一共有:1+2+2+1+1=7(个)故选D.本题考查了投影与视图,问题的关键是了解三种视图的关系与区别.9.C【解析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.从左边看是一个正方形,对面看不到的切割部分是虚线,故选:C.本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且存在的线是虚线.10.C【解析】根据左视图的定义:一般指由物体左边向右做正投影得到的视图,即可得出结论.解:根据左视图的定义,该几何体的左视图是:故选C.此题考查的是几何体左视图的判断,掌握左视图的定义是解题关键.11.B【解析】先由俯视图得出这个几何体的底层共有4个小正方体,再结合主视图和左视图可得第二层应该有1个小正方体,进而可得答案.解:由俯视图可得:这个几何体的底层共有4个小正方体,结合主视图和左视图可得:第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个.故选:B.本题考查了几何体的三视图,属于基础题型,掌握解答的方法是解题的关键.12.C【解析】根据从正面看到的是主视图,从上面看到的是俯视图,从左面看到的是左视图画出两个组合图形的三视图,再进行判断即可.解:图①的三视图为:图②的三视图为:故选:C.本题考查了简单组合体的三视图.解题的关键是学生对几何体三视图的空间想象能力.13.见解析【解析】主视图有3列,每列小正方形数目分别为2,3,4;左视图有2列,每列小正方形数目分别为4,3.依此画出图形即可求解.解:如图所示:本题考查了画三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.14.见解析观察图形可知,从正面看到的图形是3列,从左往右正方形个数依次是3,1,2;从左面看到的图形是2列,从左往右正方形个数依次是3,1;从上面看到的图形是3列,从左往右正方形个数依次是2,2,1;据此即可画图.解:如图所示:本题考查了作图-三视图:确定主视图位置,画出主视图;再在主视图的正下方画出俯视图,注意与主视图“长对正”;然后在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.15.画图见解析;40【解析】先根据题意可得主视图有3列,每列小正方数形数目分别为3,3,2;左视图有2列,每列小正方形数目分别为3,2,然后画出立体图形计算表面积即可.解:主视图和左视图如图所示:此几何体为:∴其几何表面积为:()855222++⨯+⨯=⨯+1824=+364本题主要考查了几何体的三视图画法以及立体图形表面积的求法,正确画出三视图和立体图形是解答本题的关键.16.见详解【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为2,3,3;左视图有2列,每列小正方形数目分别为3,3.据此可画出图形.解:如图所示:本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.17.见解析【解析】根据三视图的定义,分别画出几何体的主视图、左视图以及俯视图即可.由图可得几何体的三视图如下:主视图左视图俯视图本题主要考查几何体三视图的画法,熟记三视图的概念以及空间想象力的运用是解题关键.18.见解析【解析】由已知条件可知,主视图有3列,每列小正方数形数目分别为4,2,3,左视图有3列,每列小正方形数目分别为2,4,,3.据此可画出图形.如图,即为所求.本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.19.(1)画图见解析;(2)242cm.【解析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,2;俯视图有3列,每列小正方数形数目分别为3,3,1.据此可画出图形;(2)利用几何体的形状进而求出其表面积;(1)S=⨯+++(2)2(677)2=⨯+2202()2=42cm答:它的表面积是42cm2.本题考查了三视图的画法以及表面积的求法.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,物体的表面积是指露在外部的所有表面积之和.20.见解析【解析】主视图有4列,每列小正方形数目分别为1,3,1,1;左视图有3列,每列小正方形数目分别为3,1,1;俯视图有4列,每列小正方形数目分别为1,3,1,1,从而可得答案.解:主视图左视图俯视图考查了作图-三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,掌握以上知识是解题的关键.21.(1)直三棱柱;(2)51cm;2120cm【解析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长分别得出棱长和与表面积.(1)这个几何体是直三棱柱;故答案为:直三棱柱(2)由题意可得:它的所有棱长之和为:(3+4+5)×2+9×3=51(cm);它的表面积为:2×(12×3×4)+(3+4+5)×9=120(cm2)答:所有棱长的和是51cm,它的表面积为120cm2.此题主要考查了由三视图判断几何体的形状,正确得出物体的形状是解题关键.22.(1)30;(2)第②个几何体露出部分(不含底面)面积为264cm,第③个几何体露出部分(不含底面)面积为2132cm;(3)992克.【解析】(1)归纳出前3个几何体的规律即可得;(2)分别画出两个几何体的三视图,再根据四个侧面和向上的面的小正方形的个数即可得;(3)先根据(1)的方法得出第20个几何体每一层小立方体的个数,再根据(2)的方法得出第20个几何体的所有露出部分(不含底面)的面积,然后乘以0.2即可得.(1)搭建第①个几何体的小立方体的个数为1, 搭建第②个几何体的小立方体的个数为21412+=+, 搭建第③个几何体的小立方体的个数为22149123++=++,归纳类推得:搭建第④个几何体的小立方体的个数为22212341491630+++=+++=, 故答案为:30;(2)第②个几何体的三视图如下:由题意,每个小正方形的面积为2224()cm ⨯=,则第②个几何体的所有露出部分(不含底面)面积为()232324464()cm ⨯+⨯+⨯=;第③个几何体的三视图如下:则第③个几何体的所有露出部分(不含底面)面积为()2626294132()cm ⨯+⨯+⨯=;(3)第20个几何体从第1层到第20层小立方体的个数依次为221,2,,20,则第20个几何体的所有露出部分(不含底面)面积为()()2221220212202044960()cm ⎡⎤⨯++++⨯++++⨯=⎣⎦, 因此,共需要油漆的克数为49600.2992⨯=(克), 答:共需要992克油漆.本题考查了三视图、几何体的表面积、图形变化的规律型问题,依据题意,正确归纳类推出规律是解题关键.23.图见解析,228cm . 【解析】根据主视图、左视图、俯视图的定义画出图形即可;有顺序的计算前后面、左右面、上下面的表面积之和即可得.由主视图、左视图、俯视图的定义画出图形如下所示:由题意得:小正方体的每个面的面积为()2111cm⨯=, 则其表面积为()262142142128cm⨯⨯+⨯⨯+⨯⨯=.本题考查了三视图、几何体的表面积,熟练掌握三视图的概念是解题关键. 24.(1)3,1,1a b c ===;(2)9,11;(3)画图见解析. 【解析】(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3,从而可得答案; (2)第一列小立方体的个数最少为2+1+1,最多为2+2+2,那么加上其它两列小立方体的个数即可得到答案;(3)左视图有3列,每列小正方形数目分别为3,1,2,从而可得左视图.解:(1)由主视图可知,第二列小立方体的个数均为1,第3列小正方体的个数为3, 所以:3,1,1a b c ===. 故答案为:3,1,1;(2)由第一列小立方体的个数最少为2+1+1,最多为2+2+2, 所以这个几何体最少由4+2+3=9个小立方块搭成; 这个几何体最多由6+2+3=11个小立方块搭成; 故答案为:9,11.(3)由左视图有3列,每列小正方形数目分别为3,1,2, 如图所示:本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.25.(1)C;(2)不正确,理由见解析;(3)图③不是图②几何体的表面展开图,改后的图形见解析【解析】(1)根据“切去三个面”但又“新增三个面”,因此与原来的表面积相等;(2)根据多出来的棱的条数及长度得出答案;(3)根据展开图判断即可.解:(1)根据“切去三个小面”但又“新增三个相同的小面”,因此与原来的表面积相等,即a=b故答案为:a=b;(2)如图④红颜色的棱是多出来的,共6条,当且仅当每一条棱都等于原来正方体的棱长的一半,n比m正好多出大正方体的3条棱的长度,故小明的说法是不正确的;图④图⑤(3)图③不是图②几何体的表面展开图,改后的图形,如图⑤所示.本题考查几何体表面积的意义、棱长之和、几何体的表面展开图,考查学生的观察能力,关键是抓住几何图形变换后边长和棱长的变与不变的量.26.(1)见解析;(2)144cm2【解析】(1)主视图有3列,每列小正方形数目分别为2,3,1;左视图有3列,每列小正方形数目分别为3,1,2;俯视图有3列,每列小正方形数目分别为1,3,2;(2)分别求出各个方向的小正方形的个数,进一步即可求解.解:(1)如图所示:(2)6×6×(2×2)=144(cm 2).故这个堆积几何体的表面积(含底面)是144cm 2.本题考查了简单组合体的三视图及求小立方块堆砌图形的表面积.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线画成实线,看不见的轮廓画成虚线,不要漏掉. 27.2236a cm 【解析】先画出这个图形的三视图,从而可得上下面、前后面、左右面的小正方形的个数,再根据正方形的面积公式即可得.由题意,画出这个图形的三视图如下:则这个图形的表面积是()()22226262636a acm ⨯+⨯+⨯=,故答案为:2236a cm .本题考查了求几何体的表面积,正确画出图形的三视图是解题关键. 28.5 【解析】利用三视图得到排数及列数,即可得到答案. 由三视图可知,此摆放体有两排, 第一排有一列,第二排有两列,第一排一列有一个,第二排两列分别有两个,∴1+2+2=5个,故答案为:5.此题考查三视图的应用,会看三视图的组成特点及分析得到排数列数是解题的关键.29.17 11【解析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数,由主视图可得第二层和第三层最少或最多的正方体的个数,相加即可.++=(个)由主视图和俯视图可知:几何体的第一层最多有1337++=(个)第二层最多有1337++=(个)第三层最多有1113++=(个)故正方体的个数最多有77317++=(个),几何体的第一层最少有1337++=(个)第二层最少有1113第三层最少有1个,++=(个)故正方体的个数最少有73111故答案为:17;11.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.30.396【解析】首先确定该几何体的裸露的正方形的个数,然后确定面积即可.解:由该位置小立方体的个数可知,主视图为:有9个正方形左视图为:有6个正方形,俯视图为:有5个正方形,另外,该几何体有4个正方形的表面被遮挡,++⨯⨯+⨯=,∴这个几何体的表面积是(965)2949396故答案为:396.本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也考查了空间想象能力.解题的关键是由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.。

第二十九章 三视图 同步练习 2022—2023学年人教版数学九年级下册

第二十九章 三视图    同步练习 2022—2023学年人教版数学九年级下册

人教版九下 29.2 三视图一、选择题(共16小题)1. 如图是某几何体的三视图,该几何体是( )A. 正方体B. 圆锥C. 四棱柱D. 圆柱2. 如图所示的几何体,其俯视图是( )A. B.C. D.3. 如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A. B.C. D.4. 由若干个棱长为1cm的正方体堆积成一个几何体,它的三视图如图所示,则这个几何体的表面积是( )A. 15cm2B. 18cm2C. 21cm2D. 24cm25. 如图,是某几何体的三视图,该几何体是( )A. 圆柱B. 正方体C. 三棱柱D. 长方体6. 如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A. B.C. D.7. 若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是( )A. 球体B. 圆锥C. 圆柱D. 正方体8. 如图①,长方体的体积为120,图②是图①的三视图,用S表示面积,若S主=24,S 左=20,则S俯=( )A. 26B. 28C. 30D. 329. 下列选项中,如图所示的圆柱的三视图画法正确的是( )A. B.C. D.10. 如图所示,从左面看该几何体,看到的图形是( )A. B.C. D.11. 图②是图①中长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=( )A. a2+aB. 2a2C. a2+2a+1D. 2a2+a12. 一个几何体由若干个大小相同的小正方体组成,从上面看和从左面看得到的平面图形如图,那么组成该几何体所需小正方体的个数最少为( )A. 4B. 5C. 6D. 713. 如图所示的六角螺母,从上面看,得到的图形是( )A. B.C. D.14. 一个圆柱的三视图如图所示,则这个圆柱的体积为( )A. 24B. 24πC. 96D. 96π15. 如图,是一个几何体从正面、左面、上面看得到的图形,则这个几何体是( )A. B.C. D.16. 如图,下列关于物体的主视图画法正确的是( )A. B.C. D.二、填空题(共10小题)17. 如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.18. 下图是由一些相同长方体的积木块拾成的几何体的三视图,则此几何体共由块长方体的积木搭成.19. 在①长方体,②球,③圆锥,④圆柱,⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是.(填上序号即可)20. 长方体的主视图、俯视图如图所示,则这个长方体的体积为;21. 一个几何体的三视图如下图所示,这个几何体是(填名称).22. 有四块如图(1)这样的小正方体摆在一起(各部分之间必须相连),其主视图如图(2),则左视图有种画法.23. 长方体直观图有多种画法,通常我们采用画法.24. 下图是由十个小正方体组成的几何体,若每个小正方体的棱长都是2,则该几何体的主视图和左视图的面积之和是.25. 图是某几何体的三视图及相关数据,则该几何体的侧面积是26. 图是由小正方体组合而成的几何体的主视图、左视图和俯视图,则至少再加个小正方体后,该几何体可成为一个正方体.三、解答题(共7小题)27. 如图是一个几何体的三视图,根据图示的数据计算出该几何体的表面积.28. 画出下列组合体的三视图.29. 学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数1234⋯碟子的高度(单位:cm)22+1.52+32+4.5⋯(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从正面、左面、上面三个方向看这些碟子,看到的形状图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.30. 一个等腰Rt△ABC如图所示,将它绕直线AC旋转一周,形成一个几何体.(1)写出这个几何体的名称,并画出这个几何体的三视图;(2)依据图中的数据,计算这个几何体的表面积.(结果保留π)31. 如图是由一些大小相同的小立方块搭成的几何体.(1)图中有块小立方块;(2)请分别画出它的主视图,左视图和俯视图.32. 由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如下图所示,数字表示该位置上的小正方体个数.(1)请在下图中画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为.(3)在不改变主视图和俯视图的情况下,最多可添加个小正方体.33. 一个零件是由长为34mm、高和宽都为17mm的长方体与直径为34mm、高度为17mm的半圆柱组成几何体后,又切去直径为17mm的圆柱后剩下的几何体,其实物直观图如图所示,请画出这个零件的三视图.答案1. D【解析】该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.2. D【解析】从上面看,是一个带圆心的圆.3. A【解析】该组合体的主视图如下:4. B【解析】由三视图可知该几何体的直观图如图所示.∵各个小正方体的棱长为1cm,∴这个几何体的表面积是3×6×1×1=18(cm2).5. D6. A【解析】从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.7. A【解析】解答这种类型的题目时,可以像画图题一样,面出每个选项中的几何体的三视图,然后和已知三视图比较得出答案;也可以通过已知的三个视图想象出几何体,从选项中寻找和它一致的几何体,进而得出答案.8. C【解析】由题意,长方体的宽为120÷24=5,长为120÷20=6,∴俯视图的面积为6×5=30.9. A【解析】放置的圆柱的主视图是长方形,左视图是圆,俯视图是长方形.10. B【解析】从左面看是一个长方形,中间有两条水平的虚线,故选B.11. A【解析】∵S主=a2=a⋅a,S左=a2+a=a(a+1),∴俯视图的长为a+1,宽为a,=a⋅(a+1)=a2+a.∴S俯12. B【解析】由从上面看与从左面看得到的平面图形知,组成该几何体所需小正方体个数最少的分布情况如图所示(不唯一);所以组成该几何体所需小正方体的个数最少为5,故选B.13. B【解析】从上面看,是一个正六边形,六边形的中间是一个圆.14. B【解析】由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,=πr2ℎ=π⋅22×6=24π,∴V圆柱故选B.15. B【解析】观察从正面、左面、上面看得到的图形发现,这个几何体是长方体和圆锥的组合图形.故选B.16. C【解析】主视图是从正面看几何体得到的图形,在画图时规定:看得见的轮廓线画成实线,看不见的轮廓线画成虚线,显然空心圆柱的主视图画法正确的是C,故选C.17. 3π【解析】由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.18. 419. ②20. 1221. 四棱锥22. 4【解析】左视图可能为以下4种.23. 斜二侧24. 48【解析】该几何体的主视图和左视图如下,∴面积之和为2×2×(6+6)=48.25. 16√7π【解析】根据三视图可知该几何体为圆锥,高为6,母线长为8,则底面半径为√82−62=2√7,所以S=π×2√7×8=16√7π.圆锥侧26. 22【解析】观察三视图,可知这个几何体各个位置上的小正方体的个数,在俯视图上标出如图所示,则由题意可知最小可以组成3×3×3的正方体,即组成的正方体共有27个小正方体,27−2−1−1−1=22,所以至少再加22个小正方体后,才能组成一个正方体.27. 由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=√52+122=13,⋅2π⋅5⋅13=90π.所以圆锥的表面积=π⋅52+1228. 如图所示.29. (1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x−1)=1.5x+0.5.(2)由图可知,共有3摞,左前一摞有5个,左后一摞有4个,右边一摞有3个,共有3+4+5=12(个),叠成一摞后的高度=2+1.5×11=18.5(cm).30. (1)这个几何体是圆锥,这个几何体的三视图如图所示.×2π×2×√22+22+π×22=(4√2+4)π.(2)这个几何体的表面积为1231. (1)6(2)如图所示.32. (1)该几何体的主视图和左视图如图所示.(2)32【解析】给这个几何体喷上颜色(底面不喷色),需要喷色的面有32个,所以喷色的面积为32.(3)1【解析】在俯视图中标数字“2”的正方形的位置上再添加1个小正方体,不会改变主视图和俯视图.33. 三视图如图所示:。

人教版九年级下册数学第二十九章第2节《三视图》训练题 (8)(含答案解析)

人教版九年级下册数学第二十九章第2节《三视图》训练题 (8)(含答案解析)

九年级下册数学第二十九章第2节《三视图》训练题 (8)一、单选题1.下列几何体的主视图是三角形的是()A.B.C. D.2.下列四个几何体中,其中左视图中没有矩形的是()A.B.C.D.⨯的正方形,若拿掉若干3.如图,是由27个相同的小立方块搭成的几何体,它的三个视图是33⨯的正方形,则最多能拿掉小立方块的个数为个小立方块(几何体不倒掉),其三个视图仍都为33()A.9 B.10 C.12 D.154.如图所示的正六棱柱的主视图是A.B.C.D.5.如图是一根空心方管,则它的主视图是()A.B.C.D.6.如图所示的几何体的俯视图()A.B.C.D.7.如下右图是由完全相同的6个小正方体组成的几何体,则该几何体从上面看为( )A.B.C.D.8.图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒugǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是()A.B.C.D.9.如图所示的几何体的主视图是()A.B.C.D.10.如图是5个相同的小正方体搭成的几何体,若将小正方体D移到小正方体C的正上方,那么关于平移前后几何体的三视图,下列说法正确的是()A.主视图改变,左视图不变B.俯视图不变,主视图改变C.左视图和俯视图都没有改变D.三种视图都改变11.如图,一个长方体从正面、上面看到的图形如图所示,则这个长方体的体积等于()A.6 B.9 C.12 D.18A.B.C.D.13.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的表面积是()A.20πB.18πC.16πD.14π14.如图是由4个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.15.要拼一个从上面、正面、侧面看到的都是的图形,至少用多少个?()A.5 B.6 C.7 D.816.下列四个几何体中,主视图为圆的是()A.B.C.D.17.如图所示的物体的左视图为()A.B.C.D.18.如图是一个几何体的三视图,则这个几何体是()A.圆柱B.圆锥C.球D.三棱柱19.如图所示放置的几何体,它的俯视图是()A.B.C.D.二、填空题20.如图是将两个棱长为40mm的正方体分别切去一块后剩下的余料,在它们的三视图中,完全相同的是_____.21.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_____个.22.如图是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的最小值与最大值的和为______.23.直立的圆柱的俯视图是_________三、解答题24.分别画出从正面、左面、上面看到的几何体的形状图.25.如图1,这是一个由27个同样大小的立方体组成的三阶魔方,体积为27.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD,求出阴影部分的面积及其边长.(3)如图2,把图1中的正方形ABCD放到数轴上,使得点A与−1重合,那么点D在数轴上表示的数为.26.如图,画出下面几何体的主视图、左视图与俯视图.27.已知下图为从正面、左面、上面看到的一个几何体的形状图.(1)写出这个几何体的名称;(2)若从正面看到的长方形的宽为3cm,从上面看到的正方形的边长为8cm,求这个几何体的表面积.28.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.29.(1)画出下列几何体的三种视图.(2)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.30.由几个相同的正方体堆成的几何体的主视图和俯视图如图所示,(1)这样的几何体最少需要个小正方体,最多需要小正方体;(2)请画出这个几何体在用小正方体最少情况下的所有可能的左视图.【答案与解析】1.B【解析】找到从正面看所得到的图形即可.解:圆柱体主视图是矩形,故A错误;圆锥的主视图是三角形,故B正确;球的主视图是圆,故C错误;正方体的主视图是正方形,故D错误;故选:B.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.2.C【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,据此作答即可.解:根据题意,长方体、三棱柱,圆柱的左视图均为矩形,圆锥的左视图为矩形.但是圆锥的左视图为等腰三角形;故选:C.本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.3.C【解析】拿掉若干个小立方块后保证几何体不倒掉,且三个视图仍都为3⨯3的正方形,所以最底下一层必须有9个小立方块,这样能保证俯视图仍为3⨯3的正方形,为保证主视图与左视图也为3⨯3的正方形,所以上面两层必须保留底面上一条对角线方向的三个立方块,即可得到最多能拿掉小立方块的个数.根据题意,拿掉若干个小立方块后,三个视图仍都为3⨯3的正方形,则最多能拿掉小立方块的个数为6 +6 = 12个,故选:C.此题考查简单组合体的三视图,空间想象能力,能依据立体图形想象出拿掉小立方块后的三视图是解题的关键.4.D【解析】从正面得到的视图是主视图,从正面来观察就可以得到正六棱柱的主视图从正面来观察,主视图是由三个矩形组成的,所以选D本题考查了几何体的三视图,从正面看得到的图形是主视图.5.B【解析】根据从正面看得到的图形是主视图,可得答案.解:从正面看是:大正方形里有一个小正方形,∴主视图为:故选:B.本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.6.C【解析】根据三视图的的定义,分析从几何体的各个方向观察所得图形的特点,即可作出判断.根据三视图的定义可知:图A是从正面看到的图形,是主视图,不符合题意;图B是从左面看到的图形,是左视图,不符合题意;图C是从上面看到的图形,是俯视图,此项符合题意;图D既不是从左面看到的,也不是从正面看到的,更不是从上面看到的,不符合题意.故选C.本题考查三视图,熟练掌握三视图的定义和画法是解题关键.7.B【解析】从上面看到的图形即为几何体的俯视图,然后根据俯视图的意义解答即可.解:该几何体从上面看到的图形为:.故选:B.本题考查了简单组合体的三视图,属于基础题型,掌握俯视图的意义是关键.8.C【解析】根据几何体的三视图,可得到结果.解:根据俯视图是一个正方形知:C正确,其他选项均不正确,故选C.本题考查了由三视图判断几何体的知识,解题的关键是有较强的空间想象能力,难度不大.9.D【解析】几何体的主视图就是从正面看所得到的图形,注意所有的看到的棱都应表现在主视图中.由图可知,主视图由一个矩形和三角形组成.故选D.本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,关键是掌握主视图所看的位置.10.A【解析】分别画出平移前后几何体的三视图进行比较即可得到答案.平移前的几何体的三视图分别为:平移后的几何体的三视图分别为:故选:A.此题考查几何体的三视图,能依据几何体画出其对应的三视图是解题的关键.11.A【解析】先根据主视图和俯视图可得该长方体的长为3、宽为2、高为1,再根据长方体的体积公式即可得.由主视图和俯视图可知,该长方体的长为3、宽为1、高为2,⨯⨯=,则这个长方体的体积为3216故选:A.本题考查了主视图、俯视图、长方体的体积公式,掌握理解主视图和俯视图是解题关键. 12.A【解析】根据从左边看得到的图形是左视图,可得答案.解:从左边看第一层一个小正方形,第二层一个小正方形,故选A .本题考查了简单组合体的三视图,把从左边看到的图形画出来是解题关键.13.B【解析】由几何体的三视图可得出原几何体为圆锥和圆柱组合体,根据图中给定数据求出表面积即可. 由几何体的三视图可得出原几何体为圆锥和圆柱组合体,且底面半径为422r ==, ∴这个几何体的表面积=底面圆的面积+圆柱的侧面积+圆锥的侧面积 22r rh rl πππ=++=22π+2⨯2⨯2π+3⨯2π=18π,故选:B .本题考查了由三视图判断几何体、圆锥和圆柱的计算,由几何体的三视图可得出原几何体为圆锥和圆柱组合体是解题的关键.14.A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选:A .本题考查了三视图的知识,主视图是从物体的正面看得到的视图.15.B【解析】要拼一个从上面、正面、侧面看到的都是的图形,则这个物体是个正方体,长、宽、高最多都有2个小正方体,至少可以在两个顶点处各少一个小正方体,利用正方体的体积公式:V=长×宽×高,再减去2,即可求解.解:如下图:2×2×2-2=6,B 符合题意,故选B.本题主要考查了三视图以及空间想象能力.16.A【解析】首先依次判断每个几何体的主视图,然后即可得到答案.解:A、主视图是圆,B、主视图是三角形,C、主视图为矩形,D、主视图是正方形,故选:A.本题考查了简单几何体的三视图,熟知这些简单几何体的三视图是解决此类问题的关键.17.A【解析】试题分析:先观察原立体图形和俯视图中两个正方体的位置关系,从几何体的左边看去是2个正方体叠在一起,并且它们左边对齐,所以左视图是A故选A考点:左视图18.B【解析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.19.B【解析】由题意根据三视图相关概念可知俯视图是从物体的上面看得到的平面图形,从而得出选项.解:俯视图是从物体的上面看得到的平面图形,该几何体从上面看得到一个圆里面有一个小圆故选B.本题考查三视图,熟练掌握俯视图是从物体的上面看得到的平面图形是解题关键.20.俯视图和主视图【解析】分别对比三视图即可得出结果.解:根据三视图可知,两几何体的俯视图和主视图均为长方形正中间加一条横向实线,即在它们的三视图中,完全相同的是俯视图和主视图,故答案为:俯视图和主视图.本题主要考查简单几何体的三视图,解题关键是掌握三视图观察的方向.21.7【解析】根据几何体的三视图可进行求解.解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故答案为7.本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.22.26【解析】从俯视图中可以看出最底层小正方体的个数及形状,由主视图可以看出每一列的最大层数和个数,从而算出总的个数解:根据主视图和俯视图可知,该几何体中小正方体最少分别情况如下:故n的最小值为1+1+1+1+3+2+1=10,该几何体中小正方体最多分别情况如下:该几何体中小正方体最大值为3+3+3+2+2+2+1=16,故最大值与最小值得和为10+16=26故答案为:26本题主要考查了由三视图判断几何体中小正方体的个数问题,可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的可能个数.23.圆【解析】一个物体从上往下看得到的图叫做俯视图,据此求解即可.解:直立的圆柱的俯视图是圆,故答案为:圆.本题考查了几何体的三视图的判断,属于基础知识,比较简单.24.见解析【解析】根据三视图的定义结合图形可得.解:如图所示,本题考查作图-三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.25.(1)3;(2)面积为:5(3)1--【解析】(1)根据立方体的体积公式,直接求棱长即可;(2)根据棱长,求出每个小正方体的边长,进而可得小正方形的对角线,即阴影部分图形的边长,即可得解;(3)用点A 表示的数减去边长即可得解.解:(1)设魔方的棱长为x ,则327x =,解得:3x =;(2)棱长为3,∴每个小立方体的边长都是1,∴正方形ABCD =25ABCD S ∴==正方形;(3)正方形ABCD A 与1-重合,∴点D 在数轴上表示的数为:1-故答案为:1-本题主要考查实数与数轴、立方根的综合应用,解决此题的关键是能求出每个小正方形的边长. 26.图见解析【解析】主视图有4列,每列小正方形数目分别为3,2,1,1;左视图有2列,每列小正方形数目分别为3,1;俯视图有4列,每列小正方形数目分别为2,1,1,1.解:作图如下:此题主要考查了三视图画法,正确根据三视图观察角度不同得出答案是解题关键.27.(1)长方体(四棱柱);(2)s =224【解析】(1)根据长方体的定义和三视图,即可判定;(2)该长方体由四个长方形和两个相对的面是正方形围成,即可求解其表面积.(1)由题意,得该几何体是长方体(四棱柱);(2)由题意,得s =64×2+24×4=224.此题主要考查长方体的特征以及表面积的求解,熟练掌握,即可解题.28.见解析【解析】分别从正面、左面、上面分析所看到的立体图形的相应平面图形即可.如图所示.本题考查作图:立体图的三视图,是重要考点,难度较易,掌握相关知识是解题关键.29.(1)见解析;(2)见解析【解析】(1)由已知条件可知,主视图有3列,每列小正方数形数目分别为1,3,2,左视图有2列,每列小正方形数目分别为3,1;俯视图有3列,每列小正方数形数目分别为1,2,1,据此可画出图形.(2)主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.解:(1)如图所示:(2)如图所示:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.30.(1)6,8;(2)见解析【解析】(1)俯视图可确定最底层正方体的个数,主视图第二层正方体的个数即为第二层最多和最少正方体的个数,然后相加即可.(2)由俯视图可知,左视图最底层是三个小正方形,第二层所用最少情况是只有一个小正方形,分三种情况可得答案解:(1)∵俯视图中有5个正方形,∴最底层有5个正方体;∵主视图第二层有1个正方形,∴几何体第二层最多有3个正方体,最少有1个正方体,∴最多需要小正方体8个,最少有几何体5+1=6;故答案为:6,8;(2)这个几何体所用小正方体最少情况下的所有可能的左视图如图所示:此题考查由三视图判断几何体;用到的知识点为:俯视图中正方形的个数即为几何体最底层正方体的个数.。

数学29.2三视图第2课时课件人教新课标九年级下

数学29.2三视图第2课时课件人教新课标九年级下
展 开 图
第41页/共45页





第42页/共45页
• ⒉由三视图描述几何体(或实物原型),一
般步骤为: • ① 想象:根据各视图想象从各个方向看到
的几何体形状; • ② 定形:综合确定几何体(或实物原型)
的形状; • ③ 定大小位置:根据三个视图“长对正,
高平齐,宽相等”的关系,确定轮廓线的位 置,以及各个方向的尺寸.
解:物体是五棱柱现状的,如图所示.
第8页/共45页
练习 由三视图想象实物现状:




第9页/共45页
使用帮助




第10页/共45页
5.根据三视图描述物体的形状,试画出物体的表面展开图.






俯 视 图







第11页/共45页
P125 由三视图描述实物形状,画出物体表面展开 图(2)
探究活动
用6个相同的小方块搭成一 个几何体,它的俯视图如图3-25所 示.则一共有几种不同形状的搭救 法(你可以用实物模型动手试一试)? 你能用三视图表示你探究的结果 吗?
图3-25
第38页/共45页
例6 某工厂要加工一批密封罐,设计者给出了密封 罐的三视图,请你按照三视图确定制作每个密封罐 所需钢板的面积.
密封罐的高为50mm,店面正六边形的直径为100mm,边长为 50mm,图是它的展开图. 由展开图可知,制作一个密封罐所需钢板的面积为
65050 2 6 1 5050sin 60 2
6 502 1
3 2
27990 (mm2)

人教版九年级下册数学 第29章 投影与视图 同步练习题(含答案)

人教版九年级下册数学 第29章  投影与视图  同步练习题(含答案)

人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时由三视图确定几何体
01 基础题
知识点由三视图确定立体图形
1.(襄阳中考)一个几何体的三视图如图所示,则这个几何体是( )
A.球体
B.圆锥
C.棱柱
D.圆柱
2.(孝感中考)如图是某个几何体的三视图,则该几何体的形状是( )
A.长方体
B.圆锥
C.圆柱
D.三棱柱
3.(云南中考)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是( )
A.圆柱B.圆锥
C.球D.正方体
4.(内江中考)一个几何体的三视图如图所示,那么这个几何体是( )
5.(大庆中考)由若干边长相等的小正方体构成的几何体的主视图、左视图、俯视图如图所示,则构成这个几何体的小正方体有( )
A.5 B.6
C.7 D.8
6.(河北中考)图中的三视图所对应的几何体是( )
7.(孝感中考)如图是一个几何体的三视图,则这个几何体是( )
A.正方体
B.长方体
C.三棱柱
D.三棱锥
8.(深圳模拟)如图是一个几何体的俯视图,则该几何体可能是( )
02中档题
9.(金华中考)一个几何体的三视图如图所示,那么这个几何体是( )
10.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是( )
位置小正方体的个数,其中主视图相同的是( )
A.仅有甲和乙相同B.仅有甲和丙相同
C.仅有乙和丙相同D.甲、乙、丙都相同
12.(永州中考)一张桌子上摆放有若干个大小、形状完全相同的碟子,现从三个方向看,其三种视图如图所示,则这张桌子上碟子的总数为( )
A.11 B.12 C.13 D.14
13.用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图所示,则该立方体的俯视图不可能是( )
14.(牡丹江中考)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体最多是____________个.
15.根据几何体的三视图描述物体的形状.
03综合题
16.某个长方体主视图是边长为1 cm的正方形.沿这个正方形的对角线向垂直于正方形的方向将长方体切开,截面是一个正方形.那么这个长方体的俯视图是下图哪一个( )
参考答案
1.D 2.D 3.C 4.C 5.B 6.B7.B8.B9.D10.C
11.B12.B13.D14.7 15.几何体的形状为:
16.D。

相关文档
最新文档