实验六:干燥实验
药物的干燥实验报告

一、实验名称:药物的干燥实验二、实验目的:1. 了解药物干燥的基本原理和方法;2. 掌握干燥设备的使用及操作技巧;3. 通过实验,测定药物干燥过程中的干燥曲线和干燥速率曲线;4. 分析影响药物干燥效果的因素。
三、实验原理:药物干燥是将药物中的水分去除,以防止药物变质、失效,提高药物稳定性。
干燥方法有常压干燥、减压干燥、微波干燥等。
本实验采用常压干燥方法,通过控制干燥条件,使药物中的水分逐渐蒸发,直至干燥。
四、实验材料:1. 药物:某中药提取物(如:金银花提取物);2. 仪器:干燥箱、干燥器、电子天平、温度计、湿度计、干燥速率曲线测定仪等;3. 药品:无水乙醇、无水硫酸钠等。
五、实验步骤:1. 将药物样品置于干燥箱中,设定干燥温度为50℃,预干燥30分钟;2. 在干燥箱中放入干燥器,将药物样品放入干燥器中,关闭干燥器门;3. 设置干燥速率曲线测定仪,记录干燥过程中的温度、湿度、干燥速率等数据;4. 每隔一定时间(如:10分钟、20分钟、30分钟等)取出干燥器,称量药物样品,计算干燥速率;5. 绘制干燥曲线和干燥速率曲线;6. 分析影响药物干燥效果的因素。
六、实验结果与分析:1. 干燥曲线:如图1所示,药物样品在干燥过程中,干燥时间与干燥率呈正相关关系。
在干燥初期,干燥速率较快,干燥率增加明显;随着干燥时间的延长,干燥速率逐渐减小,干燥率增加趋于平稳。
图1 药物干燥曲线2. 干燥速率曲线:如图2所示,干燥速率曲线呈“S”型,分为三个阶段:预热阶段、恒速阶段和降速阶段。
在预热阶段,药物样品表面水分迅速蒸发,干燥速率较大;在恒速阶段,干燥速率基本保持恒定;在降速阶段,干燥速率逐渐减小,直至干燥完成。
图2 药物干燥速率曲线3. 影响药物干燥效果的因素:(1)干燥温度:干燥温度越高,干燥速率越快,但过高的温度可能导致药物成分分解,影响药物质量;(2)干燥时间:干燥时间越长,干燥率越高,但过长的干燥时间可能导致药物成分损失;(3)干燥器类型:干燥器类型不同,干燥效果存在差异。
干燥实验报告

化工基础实验报告实验名称 风道干燥实验;红外干燥实验 班级 化21 姓名 张腾 学号 2012011864 成绩 实验时间 2014年7月 同组成员 张煜林 石坚一、实验目的1、了解各种干燥器的结构特点,熟悉其操作方法。
2、测定两种干燥方式下,物料的干燥曲线、干燥速度曲线级临界含水量。
3、了解影响物料干燥速度的因素,改变某些因素,比较干燥速度的变化。
4、测定恒速干燥阶段,物料与空气之间的对流传热系数,估算恒速阶段的干燥速率,与实测值比较。
二、实验原理干燥速度:单位时间内,单位干燥面积上汽化的水分质量,即dWU Sdt=U ——干燥速度,kg 水/(m2*s ) S ——干燥面积,m2 W ——汽化的水分质量,kg t ——时间,s因为 'c dW G dX =-所以 'c G dXU Sdt-=Gc ——绝干物料的质量,kgX ——干基含水量,以绝干物料为基准表示的含水量。
干燥曲线是表示物料含水量(kg 水/kg 干物料)与干燥时间t 的关系曲线。
干燥速度曲线是干燥速度与物料含水量的关系曲线。
本实验采取在恒定干燥条件下,采用大量空气干燥少量物料,保证空气进出干燥器的状态、气速和空气的流动方式均不变。
对流干燥是由热干燥介质将热能传给湿物料,使物料内部水分汽化的过程。
红外线和远红外线干燥器是利用辐射传热干燥的一种方法。
红外线或远红外线辐射器所产生的电磁波,以光的速度直线传播到达被干燥的物料,当红外线或远红外线的发射频率和被干燥物料中分子运动的固有频率(也即红外线或远红外线的发射波长和被干燥物料的吸收波长)相匹配时,引起物料中的分子强烈振动,在物料的内部发生激烈摩擦产生热而达到干燥的目的。
在红外线或远红外线干燥中,由于被干燥的物料中表面水分不断蒸发吸热,使物料表面温度降低,造成物料内部温度比表面温度高,这样使物料的热扩散方向是由内往外的。
同时,由于物料内存在水分梯度而引起水分移动,总是由水分较多的内部向水分含量较小的外部进行湿扩散。
仪器认领洗涤和干燥的实验结论与反思

仪器认领洗涤和干燥的实验结论与反思一、引言在科研实验中,仪器的使用十分重要。
本文将探讨仪器认领洗涤和干燥的实验结论与反思,通过实验结果和经验总结,为科研工作者提供一些有益的参考。
二、实验结论2.1 洗涤实验结论1.仪器表面的洗涤方法:使用温水和中性清洁剂,避免使用酸性或碱性清洁剂,以免对仪器表面造成损害。
2.仪器内部的洗涤方法:根据不同仪器的特点,选择适当的洗涤液进行清洗,避免使用过于浓度的溶液,以免对仪器内部的部件造成腐蚀或损坏。
3.洗涤时间:根据仪器的使用频率和污染程度,合理确定洗涤时间。
过长的洗涤时间可能导致仪器长时间无法使用,而过短的洗涤时间可能无法达到清洁效果。
4.洗涤后的干燥:洗涤后应充分晾干或使用专门的干燥设备,避免水分残留导致仪器内部腐蚀或损坏。
2.2 干燥实验结论1.干燥温度:根据仪器的材质和耐热性,选择适当的干燥温度。
过高的温度可能导致仪器变形或损坏,而过低的温度可能无法达到干燥效果。
2.干燥时间:根据仪器的大小和湿度,合理确定干燥时间。
过长的干燥时间可能导致仪器长时间无法使用,而过短的干燥时间可能无法完全除去水分。
3.干燥方法:根据仪器的特点和需求,选择适当的干燥方法,如自然风干、热风干燥或真空干燥等。
不同的干燥方法对仪器的干燥效果和时间有所影响。
4.干燥后的保存:干燥后的仪器应妥善保存,避免暴露在潮湿或灰尘较多的环境中,以免再次受到污染或损坏。
三、实验反思3.1 实验设计反思1.实验目的明确性:在进行仪器认领洗涤和干燥实验前,应明确实验的目的和预期结果,以便更好地设计实验方案。
2.实验条件控制:在实验过程中,应尽量控制实验条件的一致性,减少外界因素对实验结果的影响。
3.样本选择合理性:在实验中选择合适的仪器样本进行洗涤和干燥,以保证实验结果的可靠性和代表性。
3.2 实验操作反思1.操作规范性:在进行仪器洗涤和干燥时,应按照操作规范进行,避免不必要的操作失误或疏忽。
2.操作安全性:在操作过程中,应注意安全防护,避免对自身或他人造成伤害。
北京化工大学化工原理实验思考题答案汇编-DHX

一、流体阻力实验思考题1、不锈钢管、镀锌钢管实验测量的只是Re改变后的λ值,为什么判断λ受Re和ε/d共同影响?答:分析实验结果,不锈钢管与镀锌钢管的摩擦阻力系数均随雷诺数的增大而减小,在Re相同的情况下,、镀锌钢管的摩擦阻力系数λ要高于不锈钢管的,由此说明λ受Re和ε/d共同影响。
2、在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的λ-Re数据能否关联在一条曲线上?为什么?答:只要ε/d相同,λ-Re数据就能关联在一条曲线上。
3、以水作工作流体所测得的λ-Re关系能否适用于其它种类的牛顿型流体?为什么?答:对于其他牛顿型流体也适用。
Re反应了流体的性质,其他的流体的密度和黏度都可以在Re上面反应出来。
所以仍然适用。
4、以下测出的直管摩擦阻力与设备的放置状态有关吗?它们分别是多少?(管径、管长一样,管内走水,且R1=R2=R3)答:无关,22udlPhf⋅⋅=∆=λρ=(gz1-gz2)+⋅-+-2222121uuppρ,压差计高度差R 反映了两个测压点截面位能和压强能综合变化值,即R=(gz1-gz2)+⋅-ρ21pp,因为R1=R2=R3,u1=u2,所以三种状态下的hf不变,推出λ不变。
5、柏努利方程的适用条件是什么?该条件与本实验有什么联系?答:不可压缩的理想流体在稳定状态下恒温流动。
本实验的流体满足柏努利方程,推导水平无变径直管道摩擦阻力系数λ的时候就采用了柏努利方程,满足柏努利方程是该实验的理论基础。
6、在测量前,为什么要将设备中的空气排净?怎样才能迅速排净?答:本实验所研究的对象为单一连续流体,排净气体是为了使流体连续流动,以达到实验的条件要求。
迅速排净的方法:主管路:开大流量调节阀,使流体迅速流过各直管,将气泡冲出;引压管:打开引压管控制阀,流体流过引压管,气泡被带出。
排净标志为流量为零时,传感器示数为零。
二、离心泵实验思考题1,根据离心泵的工作原理,分析为什么离心泵启动前要灌泵?在启动前为何要关闭调节阀?离心泵是靠叶轮旋转产生的离心力把水排出,泵内的水排出后形成真空,又把水吸进泵中,依次循环工作。
北京化工大学化工原理实验思考题答案汇编-DHX

一、流体阻力实验思考题1、不锈钢管、镀锌钢管实验测量的只是Re改变后的λ值,为什么判断λ受Re和ε/d共同影响答:分析实验结果,不锈钢管与镀锌钢管的摩擦阻力系数均随雷诺数的增大而减小,在Re相同的情况下,、镀锌钢管的摩擦阻力系数λ要高于不锈钢管的,由此说明λ受Re和ε/d共同影响。
2、在不同设备(包括相对粗糙度相同而管径不同)、不同温度下测定的λ-Re数据能否关联在一条曲线上为什么答:只要ε/d相同,λ-Re数据就能关联在一条曲线上。
3、以水作工作流体所测得的λ-Re关系能否适用于其它种类的牛顿型流体为什么答:对于其他牛顿型流体也适用。
Re反应了流体的性质,其他的流体的密度和黏度都可以在Re上面反应出来。
所以仍然适用。
4、以下测出的直管摩擦阻力与设备的放置状态有关吗它们分别是多少(管径、管长一样,管内走水,且R1=R2=R3)答:无关,22udlPhf⋅⋅=∆=λρ=(gz1-gz2)+⋅-+-2222121uuppρ,压差计高度差R 反映了两个测压点截面位能和压强能综合变化值,即R=(gz1-gz2)+⋅-ρ21pp,因为R1=R2=R3,u1=u2,所以三种状态下的hf不变,推出λ不变。
5、柏努利方程的适用条件是什么该条件与本实验有什么联系答:不可压缩的理想流体在稳定状态下恒温流动。
本实验的流体满足柏努利方程,推导水平无变径直管道摩擦阻力系数λ的时候就采用了柏努利方程,满足柏努利方程是该实验的理论基础。
6、在测量前,为什么要将设备中的空气排净怎样才能迅速排净答:本实验所研究的对象为单一连续流体,排净气体是为了使流体连续流动,以达到实验的条件要求。
迅速排净的方法:主管路:开大流量调节阀,使流体迅速流过各直管,将气泡冲出;引压管:打开引压管控制阀,流体流过引压管,气泡被带出。
排净标志为流量为零时,传感器示数为零。
二、离心泵实验思考题1, 根据离心泵的工作原理,分析为什么离心泵启动前要灌泵在启动前为何要关闭调节阀离心泵是靠叶轮旋转产生的离心力把水排出,泵内的水排出后形成真空,又把水吸进泵中,依次循环工作。
干燥实验

六、实验数据处理
横坐标
均含水量。
x
为相应于某干燥速率下的物料的平
x i x i 1 Gs ( i ) Gs ( i 1) x 1 2 2GC
以
u 为纵坐标,某干燥速率下的湿物料的平
x 为横坐标,即可绘出干燥速率曲线。
均含水量
九、实验数据处理
dw u Ad
(kg/m2· s)
式中:
u
—— 干燥速率,kg/(m2· s);
A ——干燥表面 (m2) ;
d —— 相应的干燥时间 (s);
dw ——汽化的水分量,kg。
dw GCdx
GC dx GC x dw u Ad Ad A
式中: GC —— 湿物料中绝干物料的质量,kg;
六、注意事项
必须先开风机,后开加热器,否则加热管可能 会被烧坏。
七、实验报告
1. 绘制干燥曲线(失水量~时间关系曲线); 2. 根据干燥曲线作干燥速率曲线;
3. 读取物料的临界湿含量;
4. 绘制床层温度随时间变化的关系曲线;
5. 对实验结果进行分析讨论。
八、思考题
1. 什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥 过程在恒定干燥条件下进行? 2. 控制恒速干燥阶段速率的因素是什么?控制降速干燥阶段干燥速 率的因素又是什么? 3. 为什么要先启动风机,再启动加热器?实验过程中床层温度是如 何变化?为什么?如何判断实验已经结束? 4. 若加大热空气流量,干燥速率曲线有何变化?恒速干燥速率、临 界湿含量又如何变化?为什么?
三、实验原理
图1 干燥曲线
图2 干燥速率曲线
干燥速率曲线只能通过实验测得,因为干燥速率不 仅取决于空气的性质和操作条件,而且还受物料性质、 结构及所含水分性质的影响。
实验6洞道干燥实验

洞道干燥实验一、实验目的1、了解洞道式干燥装置的基本结构、工艺流程和操作方法。
2、学习测定物料在恒定干燥条件下干燥特性的实验方法。
3、掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平衡含水量的实验分析方法。
4、实验研究干燥条件对于干燥过程特性的影响。
二、实验原理在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。
由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。
按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。
若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。
主要参数与公式:三、 实验装置四、 实验步骤1、 单价开启风机,再单击自动读数2、 将鼠标指向天平右边的砝码并按住左键迅速拖走,此时天平向左倾,当天平平衡时,会自动“读取数据”,此时一个秒表停止,另一个秒表启动,再减重,再自动读取数据,依次类推,建议每次减重1克,读一组数据,直到余30克左右。
3、 干燥结束后,关闭风机。
天平通风机温度计秒表加热器 湿球温度计干燥箱五、数据处理质量(g)减重(g)干燥时间(s)X(kg水/kg干料)Ux(kg·m-2·s-1)1 74 1.75 1 0 0.00 0.0002 73 1.71 1 56 1.73 5.4773 72 1.67 1 53 1.69 5.7874 71 1.63 1 51 1.65 6.0145 70 1.60 1 49 1.61 6.2606 69 1.56 1 49 1.58 6.2607 68 1.52 1 47 1.54 6.5268 67 1.49 1 48 1.50 6.3909 66 1.45 1 48 1.47 6.39010 65 1.41 1 48 1.43 6.39011 64 1.37 1 48 1.39 6.39012 63 1.34 1 48 1.35 6.39013 62 1.30 1 48 1.32 6.39014 61 1.26 1 48 1.28 6.39015 60 1.23 1 48 1.24 6.39016 59 1.19 1 48 1.21 6.39017 58 1.15 1 48 1.17 6.39018 57 1.11 1 51 1.12 6.01419 56 1.08 1 52 1.09 5.88920 55 1.04 1 53 1.06 5.78721 54 1.00 1 54 1.02 5.68022 53 0.97 1 56 0.98 5.47723 52 0.93 1 57 0.95 5.38124 51 0.89 1 59 0.91 5.19925 50 0.85 1 61 0.87 5.02826 49 0.82 1 63 0.83 4.86927 48 0.78 1 65 0.80 4.71928 47 0.74 1 68 0.76 4.51129 46 0.71 1 71 0.72 4.32030 45 0.67 1 73 0.69 4.20231 44 0.63 1 77 0.65 3.98332 43 0.59 1 81 0.61 3.78733 42 0.56 1 85 0.57 3.60834 41 0.52 1 89 0.54 3.44635 40 0.48 1 94 0.50 3.26336 39 0.44 1 100 0.46 3.06737 38 0.41 1 107 0.42 2.86638 37 0.37 1 114 0.39 2.69039 36 0.33 1 122 0.35 2.51440 35 0.30 1 133 0.31 2.30641 34 0.26 1 147 0.28 2.08642 33 0.22 1 165 0.24 1.85943 32 0.18 1 192 0.20 1.59744 31 0.15 1 238 0.16 1.28845 30 0.11 1 363 0.13 0.845六、思考题1、什么是恒定干燥条件?本实验装置中采用了哪些措施来保持干燥过程在恒定干燥条件下进行?答:恒定干燥条件指干燥介质的温度、湿度、流速及与物料的接触方式,都在整个干燥过程中均保持恒定。
流化床干燥实验【范本模板】

化工原理实验报告学院:专业: 班级:(4)开启风机,调节风量至40~60m3/h ,打开加热器加热。
待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,每过4min 取出10克左右的物料,同时读取床层温度。
将取出的湿物料在快速水分测定仪中测定,得初始质量i G 和终了质量iC G 。
则物料中瞬间含水率i X 为iC iCi i G G G X -=(11-2)方法二(数字化实验设备可用此法):利用床层的压降来测定干燥过程的失水量。
(1)准备0.5~1kg 的湿物料,待用。
(2)开启风机,调节风量至40~60m3/h ,打开加热器加热。
待热风温度恒定后(通常可设定在70~80℃),将湿物料加入流化床中,开始计时,此时床层的压差将随时间减小,实验至床层压差(e p ∆)恒定为止。
则物料中瞬间含水率i X 为e ei p p p X ∆∆-∆=(11-3)式中,p ∆-时刻τ时床层的压差。
计算出每一时刻的瞬间含水率i X ,然后将i X 对干燥时间i τ作图,如图11-1,即为干燥曲线。
图11-1恒定干燥条件下的干燥曲线上述干燥曲线还可以变换得到干燥速率曲线.由已测得的干燥曲线求出不同i X 下的斜率i id dX τ,再由式11-1计算得到干燥速率U ,将U 对X 作图,就是干燥速率曲线,如图11-2所示.图11-2恒定干燥条件下的干燥速率曲线将床层的温度对时间作图,可得床层的温度与干燥时间的关系曲线.3. 干燥过程分析预热段见图11-1、11-2中的AB段或A′ B段.物料在预热段中,含水率略有下降,温度则升至湿球温度tW ,干燥速率可能呈上升趋势变化,也可能呈下降趋势变化。
预热段经历的时间很短,通常在干燥计算中忽略不计,有些干燥过程甚至没有预热段。
恒速干燥阶段见图11-1、11-2中的BC段。
该段物料水分不断汽化,含水率不断下降。
但由于这一阶段去除的是物料表面附着的非结合水分,水分去除的机理与纯水的相同,故在恒定干燥条件下,物料表面始终保持为湿球温度tW,传质推动力保持不变,因而干燥速率也不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
干燥实验
一、实验目的
1、了解气流常压干燥设备的基本流程和工作原理;
2、掌握物料干燥速率曲线的测定方法;
3、了解操作条件改变对不同的干燥阶段所产生的影响。
二、实验原理
干燥是最常见的有效除湿的方法之一,干燥速率受众多因素的影响,主要与物料及其含水性质、干燥介质的性质、流速和干燥介质与湿物料接触方式等因素有关,一般由实验测定。
三、实验装置
图1 实验装置流程图
1.中压风机;
2.孔板流量计;
3. 空气进口温度计;
4.重量传感器;
5.被干燥物料;
6.加热器;
7.干球温度计;8.湿球温度计;9.洞道干燥器;10.废气排出阀;11.废气循环阀;
12.新鲜空气进气阀;13.干球温度显示控制仪表;14.湿球温度显示仪表;
15.进口温度显示仪表;16.流量压差显示仪表;17.重量显示仪表;18.压力变送器。
四、实验步骤
(一)实验前的准备工作
1. 将被干燥物料试样进行充分的浸泡。
2. 向湿球温度湿度计的附加蓄水池内,补充适量的水,使池内水面上升至
适当位置。
3. 将被干燥物料的空支架安装在洞道内。
4. 调节新空气入口阀到全开的位置。
(二) 装置的实验操作方法
1. 按下电源开关的绿色按键,在按风机开关按钮,开动风机。
2. 调节三个蝶阀到适当的位置,将空气流量调至所需读数。
3. 在温度显示控制仪表上,利用(<,>,︿)键调节实验所需温度值,sv窗口
显示,此时pv窗口所显示的即为干燥器的干球温度值,按下加热开关,
让电热器通电。
4. 干燥器的流量和干球温度恒定达5分钟之后,即可开始实验。
此时,读
取数字显示仪的读数作为试样支撑架的重量(G D)。
5. 将被干燥物料试样从水盆内取出,控去浮挂在其表面上的水份(使用呢子
物料时,最好用力挤去所含的水分,以免干燥时间过长。
将支架从干燥
器内取出,再将支架插入试样内直至尽头)。
6. 将支架连同试样放入洞道内,并安插在其支撑杆上。
注意:不能用力过大,
使传感器受损。
7. 立即按下秒表开始计时,并记录显示仪表的显示值。
然后每隔一段时间
记录数据一次( 记录总重量和时间),直至减少同样时间重量的减少是恒速阶段所用时间的8倍时,即可结束实验。
注意: 最后若发现时间已过去很长,但减少的重量还达不到所要求的克数,则可立即记录数据。
注意:放入物料后不要在点击〈读取操作条件〉,那样会使实验程序进入错误状态,无法正常数据的采集和处理。
五、实验数据记录与处理
表一:洞道干燥实验原始数据表
六、 实验注意事项
1. 在安装试样时,一定要小心保护传感器,以免用力过大使传感器造成机械性损伤。
2. 在设定温度给定值时,不要改动其它仪表参数,以免影响控温效果。
3. 为了设备的安全,开车时,一定要先开风机后开空气预热器的电热器。
停车时则反之。
4.突然断电后,在次开启实验时,检查风机开关、加热器开关是否已被按下,如果被按下,请再按一下使其弹起,不再处于导通状态。
附录:
(一) 调试实验的结果
1. 调试实验的数据见表2, 表中符号的意义如下: S─干燥面积, [m 2] G C ─绝干物料量, [g] R─空气流量计的读数, [kPa] T o ─干燥器进口空气温度, [℃] t─试样放置处的干球温度, [℃] t w ─试样放置处的湿球温度, [℃] G D ─试样支撑架的重量, [g]
G T ─被干燥物料和支撑架的"总重量", [g] G─被干燥物料的重量, [g] T─累计的干燥时间, [S]
X─物料的干基含水量, [kg 水/kg 绝干物料]
X A V ─两次记录之间的被干燥物料的平均含水量, [kg 水/kg 绝干物料] U─干燥速率, [kg 水/(s·m 2)] 2. 数据的计算举例
以表2所示的实验的第i 和i +1组数据为例 (1) 公式: 被干燥物料的重量 G:
D i T i G G G -=, ,[g] (1) D 1i T 1i G G G -=++, ,[g] (2)
被干燥物料的干基含水量 X:
c c
i i G G G X -=
, [kg 水/kg 绝干物料] (3) c
c
1i 1i G G G X -=
++ ,[kg 水/kg 绝干物料] (4)
两次记录之间的平均含水量 X A V
2
X X X 1
i i AV ++=
,[kg 水/kg 绝干物料] (5) 两次记录之间的平均干燥速率
I
1i i
1i 3C 3C T T X X S 10G dT dX S 10G U --⨯
⨯-=⨯⨯-=++-- ,[kg 水/(s·m 2)] (6) 干燥曲线X─T 曲线,用X 、T 数据进行标绘,见图 2。
干燥速率曲线U─X 曲线,用U 、X A V 数据进行标绘,见图 3 。
恒速阶段空气至物料表面的对流传热系数
tw
t 10U t S Q
3tw C -⨯γ=∆⨯=α ,[W/(m 2℃)] (7)
流量计处体积流量∨t [m 3/h]用其回归式算出。
由流量公式[1]计算 t
t P
A c V ρ∆⨯⨯
⨯=200
其中,c 0-孔板流量计孔流系数,c 0=0.65 A 0-孔的面积 m 2
d 0-孔板孔径 , d 0 =0.040 m
t V - 空气入口温度(及流量计处温度)下的体积流量,m 3/h ; P ∆-孔板两端压差,Kpa
t ρ-空气入口温度(及流量计处温度)下密度,Kg/m 3。
干燥试样放置处的空气流量
t 273t
273V V ++⨯
=试 ,[m 3/h] (9)
干燥试样放置处的空气流速
A
3600V
u ⨯=
,[m /s] (10)
(2) 数据:以表1实验数据为例进行计算(见表2) i =1 i +1=2 G T ,i =185.6[g] G T ,i +1=184.1[g] G D =98.3[g]
由式(1)(2)得: G i =87.3[g], G i +1=85.8[g] G C =20.9[g]
由式(3)(4)得: X i =3.1770 [kg 水/kg 绝干物料]
X i +1=3.1053 [kg 水/kg 绝干物料]
由式(5)得: X A V =3.1411 [kg 水/kg 绝干物料] S =2×0.139×0.078=0.021684[m 2] T i =0 [s], T i +1=180 [s]
由式(6)得: U =3.611×10-4 [kg 水/(s·m 2)]
七、思考题
预习报告思考题:
1. 在60~70℃的空气流中干燥,经过相当长的时间,能否得到绝干物料?为什
么?通常要获得绝干物料采用什么方法?
2. 干球温度和湿球温度有何区别?随着湿度的增加,干球温度与湿球温度差
值如何变化?它们之间关系如何表达?
3. 开车时,新空气入口阀、风机、空气加热器开启顺序如何?停车时,新空气
入口阀、风机、空气加热器关闭顺序如何?
实验报告思考题:
1. 本次实验中,阀门的变化与流量之间的关系如何?本次实验如何实现对废
气进行循环利用?
2. 测定干燥速率曲线有何意义?它对设计干燥器及指导生产有些什么帮助?
3. 临界含水量和平衡含水量如何定义?本次实验中临界含水量约为多少?平
衡含水量值为多少?。