北京化工大学-干燥实验报告

合集下载

干燥化工原理实验报告

干燥化工原理实验报告

干燥化工原理实验报告干燥化工原理实验报告一、引言干燥是化工过程中常见的操作,它的目的是将含有水分的物质去除,提高产品的稳定性和质量。

干燥过程涉及到一系列的化学原理和工程技术,本实验旨在探究干燥化工原理,并通过实验验证理论的可行性和有效性。

二、实验目的1. 理解干燥的基本原理和工艺流程;2. 掌握干燥设备的操作方法和注意事项;3. 研究不同干燥方法对物质性质的影响。

三、实验原理干燥是通过将物质与干燥介质接触,使水分从物质中蒸发出来的过程。

常用的干燥方法包括自然干燥、太阳干燥、热风干燥、真空干燥等。

本实验选取热风干燥作为研究对象。

热风干燥是利用热风将物质表面的水分蒸发掉的过程。

干燥设备通常由热风发生器、物料输送系统和干燥室组成。

热风发生器产生高温的热风,通过物料输送系统将物质送入干燥室,热风与物质接触使水分蒸发,然后通过排湿系统将湿气排出。

四、实验步骤1. 准备实验所需的设备和试剂;2. 将待干燥的物质放入干燥室中;3. 打开热风发生器,控制温度和风速;4. 观察干燥过程中物质的变化,并记录温度和湿度数据;5. 干燥结束后,关闭设备,取出干燥后的样品。

五、实验结果与讨论在实验过程中,我们选取了不同初始含水率的物质进行干燥实验,并记录了干燥过程中的温度和湿度数据。

实验结果显示,随着干燥时间的增加,物质的含水率逐渐降低,直到达到一定的干燥程度。

通过对实验数据的分析,我们发现干燥速率与热风温度和风速有关。

当热风温度和风速增加时,物质表面的水分蒸发速度加快,干燥时间缩短。

同时,我们还发现不同物质的干燥速率存在差异,这与物质的性质有关。

六、实验结论通过本次实验,我们深入了解了干燥化工原理,掌握了热风干燥的基本操作方法和注意事项。

实验结果表明,热风干燥是一种有效的干燥方法,可以根据不同物质的性质和要求进行调整和优化。

然而,本实验仅仅是对干燥原理的初步探究,还有许多问题需要进一步研究和实践。

例如,如何提高干燥效率和降低能耗,如何解决干燥过程中可能出现的质量变化和损失等问题。

化工原理干燥实验报告

化工原理干燥实验报告

化工原理干燥实验报告实验目的:本实验旨在通过干燥实验研究化工原理中的干燥过程,探究干燥对物质含水率的影响,并分析干燥过程的热力学参数,以便于进一步应用于化工生产中。

实验原理:干燥是指通过降低物质中的水分含量,达到目标含水率的过程。

在化工原理中,干燥是非常重要的一步,因为水分含量会对化工产品的质量和性能产生一定影响。

实验中常用的干燥方法有热风干燥、真空干燥等。

本次实验主要采用热风干燥方法。

实验步骤:1. 准备工作:将待干燥物质样品称取合适的重量,记录下原始含水率,并设定干燥终点。

2. 将样品均匀分布在干燥设备中。

3. 打开热风机,控制风量和温度,开始干燥过程。

4. 每隔一段时间,取出部分样品,快速冷却并称重,记录下质量,并计算出新的含水率。

实验数据与结果:在实验中,我们选取了不同质量的物质样品进行干燥实验,并记录了干燥过程中每个时间段的样品质量。

我们计算了每个时间段的含水率,并绘制了含水率随时间的变化曲线。

通过实验数据的分析,我们可以观察到样品的质量在干燥过程中不断减小,并且随着时间的推移,干燥速率逐渐减小。

同时,含水率也呈现逐渐减小的趋势。

通过实验数据的分析,我们可以计算出样品的干燥速率常数和干燥速率指数,进一步分析干燥过程的热力学参数。

实验讨论与结论:通过本实验,我们深入了解了化工原理中的干燥过程,并掌握了干燥过程中的关键参数和技术要点。

通过实验数据的分析,我们可以得出以下结论:1. 在干燥过程中,样品的含水率随着时间的推移逐渐降低,质量逐渐减小。

2. 干燥过程中,干燥速率会随着时间的推移逐渐减小,呈现出逐渐趋于稳定的态势。

3. 干燥速率常数和干燥速率指数是评价样品干燥性能的重要参数,可以通过实验数据计算得到。

通过本次实验,我们对化工原理中的干燥过程有了更深入的了解,并掌握了干燥实验的基本方法和步骤。

干燥在化工生产中具有重要的意义,通过合适的干燥方法和过程控制,可以改善产品质量,提高生产效率。

化工原理干燥实验报告

化工原理干燥实验报告

化工原理干燥实验报告化工原理干燥实验报告引言:干燥是化工过程中常见的操作,它是将物质中的水分或其他溶剂去除的过程。

在化工生产中,干燥技术广泛应用于原料处理、产品制造和储存等环节。

本实验旨在通过对不同干燥方法的比较研究,探讨干燥过程的原理及其影响因素。

一、实验目的本实验的主要目的是:1. 了解干燥的基本原理和常用方法;2. 掌握不同干燥方法的操作技巧;3. 分析干燥过程中的影响因素,并进行实验验证;4. 总结干燥过程中的注意事项和优化方法。

二、实验原理干燥是通过升高物体表面的温度,使其蒸发的水分达到饱和蒸汽压,从而实现水分的迁移和去除。

常用的干燥方法有自然风干、热风干燥、真空干燥等。

1. 自然风干自然风干是将湿物料暴露在自然环境中,利用自然风力和太阳辐射将水分蒸发。

这种方法简单易行,但速度较慢,适用于一些不急需干燥的物料。

2. 热风干燥热风干燥是通过加热空气,将热量传递给湿物料,使其水分蒸发。

热风干燥可以分为直接加热和间接加热两种方式。

直接加热是将热风直接接触物料,传热效率高,但易使物料变质。

间接加热是通过热交换器将热风间接传递给物料,避免了物料的变质问题。

3. 真空干燥真空干燥是将湿物料置于真空环境中,降低环境压力,使水分在低温下蒸发。

真空干燥适用于对物料质量要求较高的情况,但设备复杂且成本较高。

三、实验过程1. 实验准备准备不同湿度的物料样品,例如湿度分别为30%、50%、70%的物料样品。

2. 自然风干实验分别将不同湿度的物料样品放置在通风良好的环境中,观察并记录干燥时间和效果。

3. 热风干燥实验将不同湿度的物料样品放置在热风干燥设备中,设置适当的温度和时间,观察并记录干燥时间和效果。

4. 真空干燥实验将不同湿度的物料样品放置在真空干燥设备中,设置适当的真空度和时间,观察并记录干燥时间和效果。

四、实验结果与分析通过实验观察和记录,我们可以得到如下结果:1. 自然风干的干燥时间较长,效果一般;2. 热风干燥的干燥时间较短,效果较好;3. 真空干燥的干燥时间较长,但效果最佳。

干燥实验实验报告

干燥实验实验报告

姓名院专业班年月日干燥实验实验内容指导教师一、实验名称:干燥实验二、实验目的:1、了解气流常压干燥设备的流程和工作原理;2、测定物料的干燥曲线和干燥速率曲线;3、测定传质系数K H。

三、实验原理:干燥实验是在恒定的干燥条件下进行的,即实验操作为间歇式,采用大量的热空气干燥少量的湿物料,空气进出干燥器的温度、湿度、流速及物料的接触方式不变。

干燥曲线是指物料的平均干基湿度和温度随干燥时间而变化的关系曲线。

干燥速率曲线则是指干燥速率随平均干基湿度而变化的曲线。

平均干基湿度是指1kg绝干物料中含水分的Kg数。

绝干物料是把物料放在烘箱内,保持物性不变的条件下干燥至恒重而得。

1、干燥曲线如图2-2-8-1所示,AB为预热阶段,BC为恒速阶段,CD为降速阶段。

2、干燥速率曲线图2-2-8-2称干燥速率曲线,它可由图2-2-8-1干燥的数据整理而得。

C点对应的湿度叫临界湿度Xo,E点对应的湿度叫平衡湿度X P。

姓名院专业班年月日实验内容指导教师图2-2-8-1 干燥曲线图2-2-8-2 干燥速率曲线干燥速率曲线的形状随物料内部结构的不同而异。

像纸板等多孔吸水性物料,干燥时水分借毛细孔作用由物料内部向表面迁移,干燥过程有恒速和降速两阶段,恒速阶段如图2-2-8-2中BC直线段,降速阶段曲线常似图中CD段。

对于沙石类无孔固体,干燥时水分是借扩散作用由物料内部向表面迁移,此类物料的干燥常常不存在恒速阶段,作图时可用一水平虚线表示其恒速干燥过程,而它们的降速干燥阶段常似图中DE段形状。

测定不同时间的湿料质量后,可按下列公式计算物料的湿姓名院 专业 班 年 月 日实验内容 指导教师度X 和干燥速率u 。

C W G G W -=[kg] (1)CG WX =[kg 水/kg 绝干料] (2) )(1---=∆i i W W W [kg] (3)1--=∆i i i τττ [s] (4) τ∆⋅∆=A Wu 3600 [kg 水/m 2·h] (5)式中:Gc ——绝干物料质量[kg]G w ——干燥过程称得的湿料质量[kg] W ——干燥过程湿料中尚含有的水分量[kg] X ——物料的平均干基湿度[kg 水/kg 绝干料] △W ——汽化水分量[kg] τi ,τi-1——前后二次测定时间[s] △τ——汽化△W 水分所需要时间[s] A ——干燥面积[m 2] u ——干燥速率[kg 水/m 2·h]式(3)中的负号表示W 值随时间增加而减少。

化工原理实验报告干燥

化工原理实验报告干燥

化工原理实验报告干燥化工原理实验报告:干燥概述:干燥是化工过程中常见的一种操作,用于除去物料中的水分或其他溶剂,以提高产品质量或满足后续工艺的需要。

本实验旨在探究干燥的原理及其在化工工艺中的应用。

一、干燥的原理干燥是通过将物料暴露在适当的条件下,使水分或其他溶剂从物料中蒸发出来,达到去除水分的目的。

常见的干燥方法包括自然干燥、加热干燥、真空干燥等。

1. 自然干燥自然干燥是将物料暴露在自然环境下,利用自然界的温度、湿度和风力等因素,使水分逐渐蒸发。

这种方法操作简单,但速度较慢,且受环境因素的影响较大。

2. 加热干燥加热干燥是通过加热物料,提高其表面温度,使水分蒸发。

常见的加热干燥方法包括烘箱干燥、喷雾干燥等。

烘箱干燥是将物料放入烘箱中,利用热空气对物料进行加热,使水分蒸发。

喷雾干燥是将物料以液滴形式喷入热空气中,通过瞬间蒸发的方式进行干燥。

3. 真空干燥真空干燥是在低压条件下进行干燥,通过降低环境压力,使水分在较低温度下蒸发。

真空干燥适用于对热敏性物料的干燥,能够避免物料的热分解或变质。

二、干燥在化工工艺中的应用干燥在化工工艺中具有广泛的应用,以下是几个常见的例子:1. 化工产品的干燥在化工生产中,很多产品需要经过干燥操作,以去除其中的水分或其他溶剂。

例如,某些化工产品在含水状态下容易发生反应或降解,因此需要进行干燥以提高稳定性和保存性。

2. 溶剂的回收在溶剂回收过程中,通常需要对溶剂进行干燥,以去除其中的水分或其他杂质。

通过干燥,可以提高溶剂的纯度和再利用率,减少资源的浪费。

3. 催化剂的干燥在催化反应中,催化剂的活性往往与其表面的水分有关。

因此,在使用催化剂之前,通常需要对其进行干燥,以提高催化剂的活性和稳定性。

4. 原料的干燥在某些化工工艺中,原料的水分含量会影响反应的速率和产物的质量。

因此,在反应之前,需要对原料进行干燥,以确保反应的顺利进行和产物的质量。

结论:干燥是化工过程中常见的一种操作,通过去除物料中的水分或其他溶剂,提高产品质量或满足后续工艺的需要。

化工原理实验报告干燥

化工原理实验报告干燥

化工原理实验报告干燥化工原理实验报告:干燥实验目的:本实验旨在探究干燥过程中的原理和影响因素,通过实验数据分析和结果总结,加深对干燥过程的理解。

实验原理:干燥是化工生产中常见的一种工艺操作,其目的是将物料中的水分蒸发或者挥发,使物料达到一定的干燥程度。

在干燥过程中,热量的传递和水分的蒸发是两个关键的环节。

热传递可以通过对流、传导和辐射等方式进行,而水分的蒸发则受到温度、湿度、风速等因素的影响。

实验步骤:1. 准备实验所需的样品和干燥设备。

2. 将样品放入干燥设备中,并记录下初始重量和湿度。

3. 启动干燥设备,设置相应的温度和风速。

4. 定期取出样品,记录下其重量和湿度。

5. 根据实验数据进行分析和计算,得出干燥速率、热传递效率等参数。

实验结果:通过实验数据的统计和分析,我们得出了不同条件下的干燥速率和热传递效率。

在不同的温度、湿度和风速条件下,干燥速率和热传递效率均有所不同。

同时,我们也发现了一些影响干燥效果的因素,如样品的初始湿度、表面积等。

结论:通过本次实验,我们深入了解了干燥过程中的原理和影响因素,对干燥工艺有了更深入的理解。

同时,我们也发现了一些可以优化的地方,如调整干燥设备的工艺参数,选择合适的干燥方法等,以提高干燥效率和降低能耗。

总结:干燥是化工生产中不可或缺的一环,其效率和质量直接影响着产品的成品率和品质。

通过本次实验,我们对干燥过程有了更深入的了解,为今后的工艺优化和改进提供了一定的参考依据。

同时,也为我们的理论知识和实践技能提供了锻炼和提升的机会。

希望通过不断地实验和学习,我们能够更好地掌握化工原理,为工程实践提供更精准的指导。

干燥实训的实训报告

干燥实训的实训报告

一、实训目的本次干燥实训的主要目的是使学员熟悉干燥设备的操作原理、操作程序以及干燥过程中的注意事项,提高学员在干燥设备操作方面的实践能力,确保在今后的工作中能够安全、高效地完成干燥任务。

二、实训内容1. 干燥设备操作原理及操作程序(1)干燥设备操作原理干燥设备是利用热能将物料中的水分蒸发掉,使其达到干燥目的的设备。

干燥设备主要有以下几种类型:热风干燥、真空干燥、微波干燥等。

(2)干燥设备操作程序①启动设备:打开电源开关,检查设备各部件是否正常。

②预热:根据物料特性,设定预热温度和时间,启动加热系统,预热干燥设备。

③加料:将物料均匀地加入干燥设备中,注意控制加料速度。

④干燥:启动干燥设备,调节加热温度和干燥时间,使物料水分达到要求。

⑤出料:物料干燥完成后,关闭加热系统,待物料冷却后取出。

2. 干燥过程中的注意事项(1)控制干燥温度:根据物料特性,设定合适的干燥温度,避免过热或过冷。

(2)控制干燥时间:根据物料特性和干燥温度,设定合适的干燥时间,确保物料水分达到要求。

(3)防止物料结块:在干燥过程中,定期检查物料状态,防止物料结块。

(4)防止设备故障:定期检查设备各部件,确保设备正常运行。

三、实训过程1. 理论学习:了解干燥设备的分类、原理、操作程序及注意事项。

2. 实践操作:在指导老师的带领下,学员按照操作程序进行干燥设备操作,并注意观察设备运行状态。

3. 总结交流:实训结束后,学员之间进行交流,分享操作经验。

四、实训结果通过本次干燥实训,学员掌握了干燥设备的操作原理、操作程序及注意事项,提高了在干燥设备操作方面的实践能力。

同时,学员对干燥过程中的问题有了更深入的了解,为今后的工作打下了坚实基础。

五、实训总结1. 通过本次实训,学员对干燥设备有了更加全面的了解,提高了实际操作能力。

2. 学员在实训过程中,培养了团队协作精神,提高了沟通能力。

3. 学员在实训过程中,发现了自身存在的不足,为今后的学习和发展指明了方向。

化工干燥实验报告

化工干燥实验报告

化工干燥实验报告
实验目的
本实验旨在探究干燥对于化工物质性质和生产过程的影响,以及探索干燥实验的工艺条件和操作技能。

实验原理
化工干燥是指将湿物料通过热风干燥处理后获得干燥物料的工艺过程。

干燥理论包括传热排气、传质、相变和物料流动力学等方面,而干燥操作包括干燥设备的选择、空气流量的控制、温度调控、设备的清洗和维护等。

实验步骤
1.取样品并测量初始水分含量和颗粒度。

2.将物料放入干燥器内,并选择合适的工艺条件进行干燥。

干燥过程中需要监测干燥器内部温度、湿度和风量等参数。

3.干燥结束后,取出干燥物料并测量水分含量、颗粒度、比表
面积和形态等指标,并对干燥效果进行评价。

实验结果与分析
本实验中选择了不同温度、风量和时间的干燥工艺条件,并对
干燥效果进行了评价。

实验结果显示,随着温度、风量和时间的增加,物料的水分含
量显著降低,并且颗粒度和比表面积也呈现出不同程度的变化。

同时,在不同干燥条件下,物料的形态和发色也发生了明显变化。

结论
化工干燥是一项重要的化工技术,对于物料的质量和生产效率
有着至关重要的影响。

本实验通过探讨不同干燥条件下物料性质
的变化、干燥效果的评价和操作技巧的掌握,为进一步探究干燥
工艺提供了有益的实验基础和经验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e北京化工大学实验报告课程名称:化工原理实验实验日期:2012.5.9班级:化工0903班姓名:徐晗同组人:高秋,高雯璐,梁海涛装置型号:FFRS-Ⅱ型流化干燥实验一、摘要本实验通过空气加热装置测定了空气的干、湿球温度,通过孔板流量计测定了空气的流量,并采用湿小麦为研究对象,对其进行干燥,分别记录了物料温度、床层压降、孔板压降等参数,测定了小麦的干燥曲线、干燥速率曲线,以及流化床干燥器中小麦的流化曲线。

实验中通过Excel作图并进行了实验结果分析。

关键词:流化床干燥含水量床层压降速率曲线二、实验目的1. 了解流化床干燥器的基本流程及操作方法。

2.掌握流化床流化曲线的测定方法、测定流化床床层压降与气速的关系曲线。

3.测定物料含水量及床层温度随时间变化的关系曲线。

4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数K x。

三、实验原理1.流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。

如图1所示。

图1 流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。

当气速逐渐增加(进入BC阶段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。

当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。

当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。

D点处得流速被称为带出速度(u0)。

在流化状态下降低气速,压降与气速的关系将沿图中的DC线返回至C点。

若气速继续降低,曲线将无法按CBA继续变化,而使沿CA’变化。

C点处的流速被称为起始流化速度(u mf)。

在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。

据此,可以通过测定床层压降来判断床层流化的优劣。

2.干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线(如图2所示)。

物料含水量与时间关系曲线的斜率即为干燥速率(u)。

将干燥速率对物料含水量作图,即为干燥速率曲线(如图3所示)。

干燥过程可分为以下三个阶段。

图2 物料含水量、物料温度与时间的关系图3 干燥速率曲线(1)物料预热阶段(AB段)在开始干燥前,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。

(2)恒速干燥阶段(BC段)由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。

(3)降速干燥阶段(CDE段)物料含水量减少到某一临界含水量(X0),由于物料内部水分的扩散慢于物料表面的蒸发,不足以维持物料表面保持湿润,而形成干区,干燥速率开始降低,物料温度逐渐上升。

物料含水量越小,干燥速率越慢,直至达到平衡含水量(X*)而终止。

干燥速率为单位时间在单位表面积上汽化的水分量,用微分式表示为u=式中,u——干燥速率,kg水/(m2·s);A——干燥表面积,m2;dτ——相应的干燥时间,s;dW——汽化的水分量,kg。

图中的横坐标X为对应于某干燥速率下的物料平均含水量。

式中——某一干燥速率下湿物料的平均含水量;X i、X i+1——△τ时间间隔内开始和终了时的含水量,kg水/kg绝干物料。

Xi=式中G si——第i时刻取出的湿物料的质量,kg;G ci——第i时刻取出的物料的绝干质量,kg。

干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受到物料性质结构及含水量的影响。

本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。

四、装置和流程图4 装置实物图片图4 沸腾干燥实验装置和流程1、风机;2、湿球温度水筒;3、湿球温度计;4、干球温度计;5、空气加热器;6、空气流量调节阀;7、放净口;8、取样口;9、不锈钢筒体;10、玻璃筒体;11、气固分离段;12、加料口;13、旋风分离器;14、孔板流量计(d 0=20mm )本装置的所有设备,除床身筒体一部分采用高温硬质玻璃外,其余均采用不锈钢制造。

床身筒体部分由不锈钢段(内径φ100mm ,高100mm )和高温硬质玻璃段(内径φ100mm ,高400mm )组成,顶部有气固分离段(内径φ150mm ,高250mm )。

不锈钢筒体上设有物料取样器、放净口和温度计接口等,分别用于取样、放净和测温。

床身顶部气固分离段设有加料口和测压口,分别用于物料加料和测压。

空气加热装置由加热器和控制器组成,加热器为不锈钢盘管式加热器,加热管外壁设有1mm 铠装热电偶,其与人工智能仪表、固态继电器等,实现空气介质的温度控制。

空气加热装置底部设有测量空气干球温度和湿球温度的接口,以测定空气的干、湿球温度。

本装置空气流量采用孔板流量计计量,其流量Vs 可通过下式求取。

5.0)/(8.26kPa P V s ∆=式中 ΔP ——孔板流量计压降,KPa ,Vs ——空气流量,m 3/h 。

本装置的旋风分离器,可除去干燥物料的粉尘。

五、实验操作要点1、启动风机、加热器,最大风量预热5分钟后全部关停。

2、拔出取样器并旋转清空里面多余物料3、进料口加入湿小麦500g ,干基含水率 0.49844、再次启动风机、加热器,固定风量(如果有变化注意手动调整),记录孔板压降 3.0 kPa ,干球温度 55.9 ℃,湿球温度 46.7 ℃,时间点为 05、空气温度达到 70 ℃,小麦处于流化状态,开始取样记录时间点,称重G 湿,装盒、放入烘箱,1h 后记录G 干; 6、间隔2~5分钟取一次样品,45分钟取15个点左右 记录数据,注意清空取样器残余小麦;7、实验完成后可得到X ~τ曲线,在曲线上取至少10个(ΔX/1.5Δτ)值,作u ~τ曲线 8、小麦在含水率40%以上可能存在非结合水,才有可能出现恒速段,取点注意时间分配。

9、关加热器、风机,加入300克湿小麦,做流化实验(先将湿小麦加热烘干); 10、只开风机,找到临界流化点风量,记入表2第6点; 11、床层固定状态做5个点,流化态做4个点;六、实验数据处理 1、干燥速率曲线测定注:我们一共是做了14组数据,但是有两组数据误差比较大,即表中红色数据,遂于作图时舍去。

以第五组数据为例,计算过程如下:0001526.0)602(.51751.00.515.0170483.20236.20.2348090.690.6-52.8-含水量水54干干湿=⨯⨯=∆⨯∆==-=-=∆===τX u X X X G G G X表2 干燥实验数据表(2)2、流化曲线测定注:系列1数据为“逐渐增大孔板压降时,床层压降的数据”,系列2数据为“(从一个足够大的孔板压降)逐渐减小孔板压降时,床层压降的数据”。

- 1.09726 - 0.04031 - -0.18709 - 1.15315 - 0.06189 - -0.19382 - 1.21388 - 0.08418 - -0.18709 -1.25393-0.09827--0.18709以系列1第二组数据为例,计算过程如下:s m P A V u /47394.0.1085.70360033.08.26.104/36008.262.502.50孔板气=⨯⨯⨯=⨯⨯∆⨯==π 七、实验作图及结果讨论1、干燥特性曲线:t 物~τ和X ~τ曲线图5 物料含水量及物料温度随时间变化的关系曲线结果分析:(1)由于需要从X ~τ曲线上读取10个点,所以为减小误差,我利用Excel 对曲线进行了拟合(六次方效果相对较好)。

而对于t 物~τ曲线,也进行了六次方拟合,效果很好。

(2)由图5可知,在开始干燥阶段,物料含水量X 随着时间τ的增加,而呈现递减趋势,随后下降变慢。

由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减少。

(3)在开始干燥阶段,物料温度随时间的增加,呈现递增趋势,随后应有一段相对趋于平稳的水平线段。

然而实验结果作图后未能体现,分析可能原因为,前一组做完实验后,我们组急于进行实验,未能等待实验仪器冷却至较低温度,导致温度居高不下。

(4)由图中还可以看出,错过了B 点的测定时机,且干燥过程还并未进入到降速阶段。

2、干燥特性曲线:图6 干燥速率曲线结果分析:(1)通过Excel做出X~τ曲线(六次方拟合),删去误差太大的数据后作出N A~X曲线(逐步拟合)。

(2)通过与理想的干燥速率曲线对比,发现,实验得出的曲线恒速干燥阶段过长,分析可能原因是,湿小麦在取样前还没达到流化阶段,但是由于实验器材未冷却,床层温度影响了这一时段的干燥速率。

3、流化曲线图7 流化曲线结果分析:(1)图7与理想的流化曲线相比较,结果比较令人满意。

(2)在气速较小阶段,压降与流速成正比,此过程处于固定床阶段。

当气速增大时,进入到了流化阶段,床层压降基本保持不变。

而在实验过程中,气速还没增大至气流输送阶段。

(3)气速升高测定阶段(即AB段)本并非实验要求,但是好奇心驱使下便记录的前几个数据直至起始流化点,后面数据由于时间有限并未测量,尚不能确定起始流化点之后两种情况下的曲线是否能够如同理想的流化曲线那样基本重合起来,如有机会希望能够进行完整的实验证明。

八、思考题1、本实验所得的流化床压降与气速曲线有何特征?答:(1)在气速较小阶段,压降与流速成正比,此过程处于固定床阶段。

(2)气速增大至0.78m/s后,进入流化阶段,小麦颗粒随气流而悬浮运动,随着气速的增大,床层高度逐渐增大,但床层压降基本保持不变。

(3)本实验中,气速并未增大至气流输送阶段。

2、流化床操作中,存在腾涌和沟流两种不正常现象,如何利用床层压降对其进行判断?怎样避免他们的发生?答:腾涌时,床层压降不平稳,压力表不断摆动;沟流是床层压降稳定,只是数值比正常情况下低。

沟流是由于流体分布板设计或安装上存在问题,应从设计上避免出现沟流,腾涌是由于流化床内径较小而床高于床比径比较大时,气体在上升过程中易聚集继而增大,当气体占据整个床体截面时发生腾涌,故在设计流化床时高径比不宜过大。

3、本装置在加热器入口处装有干、湿球温度计,假设干燥过程为绝热增湿过程,如何求得干燥器内空气的平均湿度H。

相关文档
最新文档