【备战高考】2018最新数学高考回扣突破练第03练基本函数性质与图像-文科
2018年高考文科数学回扣突破练(4)函数的图象、函数与方程(word版含答案)

第4练 函数的图象、函数与方程一.强化题型考点对对练1.(函数图象的辨识与变换)【2018届福建省福清市期中联考】函数()2sin f x x x x =-在区间[],ππ-上的图象大致为( )A. B. C. D.【答案】C【解析】由于函数()2sin f x x x x =-,所以()0fππ=-< ,所以可以排除B 和D ;20242f πππ⎛⎫-=-+< ⎪⎝⎭又函数过点(),0π,可以排除A ,所以只有C 符合,故选C .2.(函数图象的辨识与变换)已知函数的图象如图所示,则函数的图象为( )A. B. C. D.【答案】A3.(函数的综合应用问题)【2018届河南省天一大联考(二)】设函数()2()3xf x x e =-,若函数()()()2616G x fx af x e =-+有6个不同的零点,则实数a 的取值范围是( ) A. 33826,3e e ⎛⎫⎪⎝⎭ B. 33426,3e e ⎛⎫ ⎪⎝⎭ C. 38,e ⎛⎫+∞ ⎪⎝⎭ D. 326,3e ⎛⎫+∞ ⎪⎝⎭【答案】A【解析】设(),f x t =原式变为2616y t at e =-+, ()()()()()22()3,2332x x x f x x e f x x x e x x e =-=+-=+-' ,故原函数在(),3-∞ 上增,在()3,1-上减,在()1,+∞ 增;画出函数图像,先增后减,再增,当x →-∞,时函数无限靠近x 轴的上方,当x →+∞,极大值大于0,极小值小于0.根据题意有6个根,故每一个t 对应3个,故两个t 都在360,e ⎛⎫⎪⎝⎭之间,转化为函数2616y t at e =-+在360,e ⎛⎫⎪⎝⎭间有两个不等根.满足,故答案为A. 4.(函数的零点与方程根的个数)已知表示不超过实数的最大整数,为取整函数,是函数的零点,则等于( )A. 1B. 2C. 3D. 4 【答案】B5.(函数图象的应用)如图,有一直角墙角,两边的长度足够长,若P 处有一棵树与两墙的距离分别是4m 和am (012a <<),不考虑树的粗细.现用16m 长的篱笆,借助墙角围成一个矩形花圃ABCD ,设此矩形花圃的最大面积为u ,若将这棵树围在矩形花圃内,则函数()u f a =(单位: 2m )的图象大致是( )【答案】B【解析】设AD 长为x ,则CD 长为16x -,又因为要将P 点围在矩形ABCD 内,∴a x 12≤≤,则矩形ABCD 的面积为()x 16x -,当0a 8<≤时,当且仅当x 8=时, S 64=,当8a 12<<时,()S a 16a =-,()8,0816,812a S a a a <≤⎧=⎨-<<⎩,分段画出函数图形可得其形状与C 接近,故选C.6. (函数的零点与方程根的个数)函数()2log 2f x x x =+-的零点所在的区间是( ) A. ()0,1 B. ()1,2 C. ()2,3 D. ()3,4 【答案】B【解析】()()221log 11210,2log 22210f f =+-=-=+-=因为,由零点存在定理知区间()1,2必有零点,故选B.7. (函数的零点与指数幂综合应用问题)【2018届安徽省马鞍山联考】已知函数()421xf x x -=-+的零点为a ,设,ln a b c a π==,则,,a b c 的大小关系为( ) A. a b c << B. a c b << C. c a b << D. b a c << 【答案】C8. (函数的零点综合应用问题)【2018届山东省菏泽市期中】若函数()113x f x m -⎛⎫=+ ⎪⎝⎭的图象与x 轴没有交点,则实数m 的取值范围是( )A. 0m ≥或1m <-B. 0m >或1m <-C. 1m >或0m ≤D. 1m >或0m < 【答案】A【解析】∵函数()113x f x m -⎛⎫=+ ⎪⎝⎭的图象与x 轴没有交点,∴1103x m -⎛⎫+= ⎪⎝⎭无解,即11m 3x -⎛⎫=- ⎪⎝⎭,又11013x -⎛⎫<≤ ⎪⎝⎭,∴m 0m 1-≤->或,解得: 0m ≥或1m <-,故选:A9. (函数的零点综合应用问题)已知函数,.方程有六个不同的实数解,则的取值范围是( ) A.B.C.D.【答案】D10. (方程的根的综合应用问题)【2018届山东省青岛期中】已知定义在R 上的函数()f x 满足()[)[)222,0,1{2,1,0x x f x x x +∈=-∈-,且()()()252,2x f x f x g x x ++==+,则方程()()f x g x =在区间[]5,1-上的所有实根之和为( )A. 9-B. 9C. 7-D. 7【答案】C【解析】()[)[)222,0,1{2,1,0x x f x x x +∈=-∈- ,且()()2f x f x +=, ()22f x ∴--[)[)22,20,1{ ,21,0x x x x -∈=--∈-,又()()251,222x g x g x x x +=∴=+++,当21,x k k Z ≠-∈时,上述两个函数都是关于()2,2-对称,画出两函数图象,如图,由图象可得两函数图象()()f x g x =在区间[]5,1-上有三个交点,所以方程()()f x g x =在区间[]5,1-上的实根有3个, 123,x x =-满足2354,x x -<<-满足32301,4x x x <<+=-, ∴方程()()f x g x =在区间[]5,1-上的所有实根之和为7-,故选C.11. (函数的综合应用问题)函数())(0){0lnx x f x x >=≤与()()112g x x a =++的图象上存在关于y 轴对称的点,则实数a 的取值范围是( ) A. (],32ln2-∞- B. [)32ln2,-+∞C. )+∞D. (,-∞【答案】B二.易错问题纠错练12. (多变量问题无从下手而致错)已知函数且,若当时,,则的取值范围为()A. B. C. D.【答案】B【注意问题】借助图象寻求两个变量之间的关系,转化为一个变量,进而利用函数思想求解.13.(不能灵活运算数形结合思想而致错)已知函数()212,{632,x x af x x x x a+>=++≤,函数()()g x f x ax =-,恰有三个不同的零点,则a 的取值范围是( )A. 1,36⎛- ⎝B. 13,62⎛⎫⎪⎝⎭C. (,3-∞-D. ()3-+∞ 【答案】A【注意问题】将方程根的个数问题转化为图象交点个数问题,其中要注意切线这个特殊位置.三.新题好题好好练14.数22(1)x xe y x +=+的图像大致为( )A B C D 【答案】A【解析】因为当0x <时,0y <,当0x >时,0y >,排除D .又223(1)(1)x x e y x ++'=+,则函数在(,1)-∞-上是减函数,在(1,)-+∞上是增函数,排除C ,D ,故选A .15.已知函数20()0xpx qx r x f x ax ⎧++≤⎪=⎨>⎪⎩的图象如图所示,则p q r a ++-=( )A .0B .1C .2D .3 【答案】D16.【2018届山东省德州市期中】已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x >时,()()12,02{ 22,2x x f x f x x -<≤=->,则函数()()2g x f x =-的零点个数为( )A. 2B. 4C. 6D. 8 【答案】B【解析】由()()2=0g x f x =-,得()=2f x ,要判断函数()g x 的零点个数,则根据()f x 是定义在()(),00,-∞⋃+∞上的偶函数,只需要判断当x >0时()=2f x 的根的个数即可,当02x <≤时,()[]121,2x f x -=∈,当24x <≤时, 022x <-≤时, ()()[]322222,4x f x f x -=-=⋅∈;当4<x≤6时,2<x-2≤4时, ()()[]522424,8x f x f x -=-=⋅∈,作出函数()f x 在(0,6)上的图象,由图象可知()=2f x 有2个根,则根据偶函数的对称性可知()=2f x 在()(),00,-∞⋃+∞上共有4个根,即函数()()2g x f x =-的零点个数为4个.选B.17.【2018届上海复旦大学附中第一次月考】设()f x 是定义在R 上的奇函数,且对于任意的x R ∈, ()()11f x f x +=-恒成立,当[]0,1x ∈时, ()2f x x =,若关于x 的方程()f x ax =有5个不同的解,则实数a 的取值范围是________ 【答案】222,375⎛⎫⎧⎫--⋃⎨⎬ ⎪⎝⎭⎩⎭18.【2018届广东省珠海市期中联考】若函数()12f x x x -=-, ()xg x x e =+, ()ln h x x x =+的零点分别为1x , 2x , 3x ,则( ) A. 231x x x << B. 213x x x <<C. 123x x x <<D. 312x x x <<【答案】A【解析】()12f x x x-=- 的零点为1,()xg x x e =+的零点必定小于零,()h x x lnx =+的零点必位于()01,内,231x x x ∴<<,故答案选A19.函数1()21xf x x x+=--的图象与与函数2()g x x =的图象的交点个数为___________个. 【答案】3。
2018年 高考数学复习(文数) 函数的图象性质 例题跟踪训练题(含答案详解)

2018年高考数学复习函数的图象性质一基本函数图象二图象平移:三含|x|的函数图象:四含|y|的函数图象:五分段函数的图象:例:y=|x-1|+|x+2|考点一:由函数解析式判断函数图象:1.函数y=的图象可能是( )2.函数y=sin x2的图象是( )3.已知lg a+lg b=0(a>0且a≠1,b>0且b≠1),则函数f(x)=a x与g(x)=-log b x的图象可能是( )考点二:根据图象判断函数单调性:4.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图象;(3)根据图象指出f(x)的单调递减区间;(4)若方程f(x)=a只有一个实数根,求a的取值范围.考点三:求参数取值范围:5.已知函数f(x)的图象与函数21)(++=xx x h 的图象关于点A(0,1)对称.(1)求f(x)的解析式; (2)若xax f x g +=)()(,且g(x)在区间(0,2]上为减函数,求实数a 的取值范围.跟踪训练1.设奇函数f(x)的定义域为[-5,5],当x ∈[0,5]时,函数y=f(x)的图象如图所示,则满足不等式f(x)<0的x 的取值范围为( )A.(2,5)B.(-2,0)C.(-2,0)∪(2,5)D.(-5,-2)∪(2,5)2.函数f(x)=log a |x|+1(0<a<1)的图象大致为( )3.函数y=x|x|的图象大致是( )4.函数f(x)=ln x 的图象与函数g(x)=x 2-4x+4的图象的交点个数为( ) A.0 B.1 C.2 D.35.已知函数f(x)=log a (2x +b-1)(a>0,且a ≠1)的图象如图所示,则a,b 满足的关系是( )A.0<a -1<b<1B.0<b<a -1<1C.0<b -1<a<1D.0<a -1<b -1<16.若函数f(x)=是R上的减函数,则实数a的取值范围是( )A. B. C. D.7.(2016课标全国Ⅰ,7,5分)函数y=2x2-e|x|在[-2,2]的图象大致为( )8.函数y=log2|x+1|的单调递减区间为,单调递增区间为.9.若函数y=f(x+3)的图象经过点P(1,4),则函数y=f(x)的图象必经过点.10.如图,定义在[-1,+∞)上的函数f(x)的图象由一条线段及抛物线的一部分组成,则f(x)的解析式为.11.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为.12.已知函数f(x)=关于x的方程f(x)+x-a=0有且只有一个实根,则实数a的取值范围是.13.当x∈(1,2)时,函数y=(x-1)2的图象始终在函数y=log a x的图象的下方,则实数a的取值范围是.14.定义区间[x1,x2]的长度为x2-x1,已知函数f(x)=3|x|的定义域为[a,b],值域为[1,9],则区间[a,b]的长度的最大值为,最小值为.15.给定min{a,b}=已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,则实数m的取值范围为.16.已知函数y=lo(x2-ax+a)在区间(-∞,]上是增函数,则实数a的取值范围是.17.已知函数f(x)=log a(x+1)-log a(1-x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)当a>1时,解不等式f(x)>0.18.已知函数f(x)=b·a x(其中a,b为常数,a>0,且a≠1)的图象经过点A(1,6),B(3,24).(1)求f(x)的表达式;(2)若不等式+-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围.参考答案1.B2.D;排除法.由y=sin x2为偶函数判断函数图象的对称性,排除A,C;当x=时,y=sin=sin≠1,排除B,故选D.3.B 因为lg a+lg b=0(a>0且a≠1,b>0且b≠1),所以lg(ab)=0,所以ab=1,即b=,故g(x)=-log b x=-lo x=log a x,则f(x)与g(x)互为反函数,其图象关于直线y=x对称,结合选项知B正确.故选B.4.解析:(1)∵f(4)=0,∴4|m-4|=0,即m=4.(2)f(x)=x|x-4|=f(x)的图象如图所示.(3)f(x)的单调递减区间是[2,4].(4)从f(x)的图象可知,当a>4或a<0时, f(x)的图象与直线y=a只有一个交点,即方程f(x)=a只有一个实数根,所以a的取值范围是(-∞,0)∪(4,+∞).5.解析:(1)设f(x)图象上的任一点的坐标为(x,y),则点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上,∴2-y=-x++2,即y=x+,∴f(x)=x+.(2)g(x)=f(x)+=x+,则g'(x)=1-.∵g(x)在(0,2]上递减,∴g'(x)≤0在(0,2]上恒成立,即a≥x2-1在(0,2]上恒成立,∴a≥(x2-1)max,x∈(0,2],可得a≥3.跟踪训练参考答案1.C2.A3.A y=x|x|=为奇函数,奇函数的图象关于原点对称.4.C;在同一直角坐标系中作出函数f(x)=ln x与g(x)=x2-4x+4=(x-2)2的图象,如图所示.由图知f(x)与g(x)的图象的交点个数为2,故选C.5.A 由函数图象可知, f(x)为单调递增函数,故a>1.函数图象与y轴的交点坐标为(0,log a b),由函数图象可知-1<log a b<0,解得<b<1.综上,有0<<b<1.6.C7.D 当x∈(0,2]时,y=f(x)=2x2-e x, f '(x)=4x-e x. f '(x)在(0,2)上只有一个零点x0,且当0<x<x0时, f '(x)<0;当x0<x≤2时, f '(x)>0.故f(x)在(0,2]上先减后增,又f(2)-1=7-e2<0,所以f(2)<1.故选D.8.答案:(-∞,-1);(-1,+∞)9.答案:(4,4);解析:解法一:函数y=f(x)的图象是由y=f(x+3)的图象向右平移3个单位长度而得到的,故y=f(x)的图象经过点(4,4).解法二:由题意得f(4)=4,故函数y=f(x)的图象必经过点(4,4).10.答案:f(x)=解析:当-1≤x≤0时,设解析式为f(x)=kx+b(k≠0),则得∴当-1≤x≤0时, f(x)=x+1.当x>0时,设解析式为f(x)=a(x-2)2-1,∵图象过点(4,0),∴0=a(4-2)2-1,∴a=0.25.故函数f(x)的解析式为f(x)=11.答案:(-1,0)∪(0,1);解析因为f(x)为奇函数,所以不等式<0可化为<0,即xf(x)<0, f(x)的大致图象如图所示,所以xf(x)<0的解集为(-1,0)∪(0,1).12.答案(1,+∞);解析:问题等价于函数y=f(x)与y=-x+a的图象有且只有一个交点,结合函数图象可知a>1.13.答案:1,2];解析:如图,在同一平面直角坐标系中画出函数y=(x-1)2和y=log a x的图象,由于当x∈(1,2)时,函数y=(x-1)2的图象恒在函数y=log a x的图象的下方,则解得1<a≤2.14.答案:4;2;解析:由3|x|=1得x=0,由3|x|=9得x=±2,故满足题意的定义域为[-2,m](0≤m≤2)或[n,2](-2≤n≤0),故区间[a,b]的最大长度为4,最小长度为2.15.答案:(4,5);解析由题意知f(x)=作出函数f(x)的图象,如图,由于直线y=m与y=f(x)的图象有3个交点,数形结合可得m的取值范围为(4,5).16.答案:[2,2+2);解析:设g(x)=x2-ax+a,由于y=lo g(x)在区间(-∞,]上是增函数,故在区间(-∞,]上,g(x)应是减函数,且g(x)>0.故有即解得∴2≤a<2+2.17.解析:(1)要使函数f(x)有意义则有解得-1<x<1.故所求函数f(x)的定义域为(-1,1).(2)f(x)为奇函数.证明:由(1)知f(x)的定义域为(-1,1),关于原点对称,且f(-x)=log a(-x+1)-log a(1+x)=-[log a(x+1)-log a(1-x)]=-f(x),故f(x)为奇函数.(3)因为当a>1时, f(x)在定义域(-1,1)内是增函数,所以f(x)>0⇔>1,解得0<x<1.所以不等式f(x)>0的解集是(0,1).18.解析:(1)因为f(x)的图象过点A(1,6),B(3,24),所以解得a2=4,又a>0,所以a=2,则b=3.所以f(x)=3·2x.(2)由(1)知a=2,b=3,则当x∈(-∞,1]时,+-m≥0恒成立,即m≤+在x∈(-∞,1]时恒成立.因为y=与y=均为减函数,所以y=+也是减函数,所以当x=1时,y=+在(-∞,1]上取得最小值,且最小值为.所以m≤,即m的取值范围是.。
2018北师大版文科数学高考总复习练习:4-3三角函数的

第3讲 三角函数的图像与性质基础巩固题组(建议用时:40分钟)一、选择题1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析 ①y =cos|2x |=cos 2x ,最小正周期为π; ②由图像知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π;④y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2,因此选A. 答案 A2.(2017·石家庄模拟)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) 解析 当k π-π2<2x -π3<k π+π2(k ∈Z )时,函数y =tan ⎝ ⎛⎭⎪⎫2x -π3单调递增,解得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数y =tan⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B. 答案 B3.(2016·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2, 所以y max =2,y min =-2. 答案 D4.(2016·铜川模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),下面结论错误的是( )A .函数f (x )的最小正周期为πB .函数f (x )是偶函数C .函数f (x )的图像关于直线x =π4对称D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图像可知,函数f (x )的图像不关于直线x =π4对称,C 错误;由函数f (x )的图像易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确. 答案 C5.(2017·安徽江南十校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且任意x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图像的一个对称中心坐标是( )A.⎝ ⎛⎭⎪⎫-2π3,0 B.⎝ ⎛⎭⎪⎫-π3,0C.⎝ ⎛⎭⎪⎫2π3,0D.⎝ ⎛⎭⎪⎫5π3,0 解析 由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ),由|φ|<π2,得φ=π3,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3. 令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图像的对称中心为⎝ ⎛⎭⎪⎫2k π-2π3,0(k ∈Z ),当k =0时,f (x )图像的对称中心为⎝ ⎛⎭⎪⎫-2π3,0,故选A. 答案 A 二、填空题6.(2017·郑州调研)若函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________.解析 因为f (x )为奇函数,所以φ-π3=π2+k π,φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6. 答案 5π67.(2016·哈尔滨、长春、沈阳、大连四市联考)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.解析 ∵y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ), 解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z ),又x ∈⎣⎢⎡⎦⎥⎤0,π2,∴单调递增区间为⎣⎢⎡⎦⎥⎤0,π6.答案 ⎣⎢⎡⎦⎥⎤0,π68.(2016·承德模拟)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 法一 由于函数f (x )=sin ωx (ω>0)的图像经过坐标原点,由已知并结合正弦函数的图像可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32. 法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1. 由已知并结合正弦函数图像可知,π3ω=π2,解得ω=32. 答案 32 三、解答题9.(2015·安徽卷)已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=sin 2 x +cos 2 x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4+1, 所以函数f (x )的最小正周期为T =2π2=π. (2)由(1)的计算结果知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图像知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1; 当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.10.(2017·昆明调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫πx 4-π6-2cos 2πx 8+1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图像关于直线x =1对称,求当x ∈⎣⎢⎡⎦⎥⎤0,43时,y =g (x )的最大值.解 (1)f (x )=sin πx 4cos π6-cos πx 4sin π6-cos πx4 =32sin πx 4-32cos πx 4=3sin ⎝ ⎛⎭⎪⎫πx 4-π3,故f (x )的最小正周期为T =2ππ4=8.(2)法一 在y =g (x )的图像上任取一点(x ,g (x )), 它关于x =1的对称点(2-x ,g (x )).由题设条件,知点(2-x ,g (x ))在y =f (x )的图像上, 从而g (x )=f (2-x )=3sin ⎣⎢⎡⎦⎥⎤π4(2-x )-π3=3sin ⎣⎢⎡⎦⎥⎤π2-πx 4-π3=3cos ⎝ ⎛⎭⎪⎫πx 4+π3.当0≤x ≤43时,π3≤πx 4+π3≤2π3,因此y =g (x )在区间⎣⎢⎡⎦⎥⎤0,43上的最大值为g (x )max =3cos π3=32.法二 区间⎣⎢⎡⎦⎥⎤0,43关于x =1的对称区间为⎣⎢⎡⎦⎥⎤23,2, 且y =g (x )与y =f (x )的图像关于直线x =1对称, 故y =g (x )在⎣⎢⎡⎦⎥⎤0,43上的最大值为y =f (x )在⎣⎢⎡⎦⎥⎤23,2上的最大值.由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫πx 4-π3,当23≤x ≤2时,-π6≤πx 4-π3≤π6. 因此y =g (x )在⎣⎢⎡⎦⎥⎤0,43上的最大值为g (x )max =3sin π6=32.能力提升题组 (建议用时:20分钟)11.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23 B.32 C .2D .3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4. 由已知条件知-ωπ3≤-π2,∴ω≥32. 答案 B12.(2015·安徽卷)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 由于f (x )的最小正周期为π,∴ω=2,即f (x )=A sin(2x +φ),又当x =2π3时,2x +φ=4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ),又φ>0,∴φmin =π6,故f (x )=A sin(2x +π6).于是f (0)=A sin π6, f (2)=A sin ⎝ ⎛⎭⎪⎫4+π6=A sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫4+π6=A sin ⎝ ⎛⎭⎪⎫5π6-4,f (-2)=A sin ⎝ ⎛⎭⎪⎫-4+π6=A sin ⎝ ⎛⎭⎪⎫13π6-4=A sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫13π6-4=A sin ⎝ ⎛⎭⎪⎫4-7π6.又∵-π2<5π6-4<4-7π6<π6<π2. 又f (x )在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,∴f (2)<f (-2)<f (0),故选A. 答案 A13.若函数f (x )=4sin 5ax -43cos 5ax 的图像的相邻两条对称轴之间的距离为π3,则实数a 的值为________.解析 因为f (x )=8sin ⎝ ⎛⎭⎪⎫5ax -π3,依题意有,T 2=π3,所以T =2π3.又因为T =2π5|a |,所以2π5|a |=2π3,解得a =±35. 答案 ±3514.(2017·安康调研)已知函数f (x )=a ⎝ ⎛⎭⎪⎫2cos 2x 2+sin x +b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解 f (x )=a (1+cos x +sin x )+b =2a sin ⎝ ⎛⎭⎪⎫x +π4+a +b .(1)当a =-1时,f (x )=-2sin ⎝ ⎛⎭⎪⎫x +π4+b -1,由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ), 得2k π+π4≤x ≤2k π+5π4(k ∈Z ),∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ).(2)∵0≤x ≤π,∴π4≤x +π4≤5π4, ∴-22≤sin ⎝ ⎛⎭⎪⎫x +π4≤1,依题意知a ≠0.(ⅰ)当a >0时,⎩⎨⎧2a +a +b =8,b =5,∴a =32-3,b =5.(ⅱ)当a <0时,⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.。
2018届高三数学文二轮新课标专题复习课时巩固过关练 三 1.2.1函数的图象与性质 含解析

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时巩固过关练三函数的图象与性质(40分钟80分)一、选择题(每小题5分,共60分)1.(2016·合肥一模)函数y=错误!未找到引用源。
的定义域是( )A.[-错误!未找到引用源。
,-1)∪(1,错误!未找到引用源。
]B.(-错误!未找到引用源。
,-1)∪(1,错误!未找到引用源。
)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)【解析】选A.错误!未找到引用源。
⇔错误!未找到引用源。
⇔错误!未找到引用源。
⇔错误!未找到引用源。
即:-错误!未找到引用源。
≤x<-1或1<x≤错误!未找到引用源。
.所以y=错误!未找到引用源。
的定义域为[-错误!未找到引用源。
,-1)∪(1,错误!未找到引用源。
].2.(2016·福州一模)错误!未找到引用源。
(-6≤a≤3)的最大值为( )A.9B.错误!未找到引用源。
C.3D.错误!未找到引用源。
【解析】选B.令f(a)=(3-a)(a+6)=-错误!未找到引用源。
+错误!未找到引用源。
,而且-6≤a≤3,由此可得函数f(a)的最大值为错误!未找到引用源。
,故错误!未找到引用源。
(-6≤a≤3)的最大值为错误!未找到引用源。
=错误!未找到引用源。
.3.(2016·承德二模)若a=ln2,b=5-0.5,c=sin30°,则a,b,c的大小关系是( )A.a<b<cB.b<a<cC.b<c<aD.c<b<a【解题导引】利用有理指数幂的化简求值及对数的运算性质比较三个数与0.5的大小得答案.【解析】选C.因为a=ln2>ln错误!未找到引用源。
=错误!未找到引用源。
,b=5-0.5=错误!未找到引用源。
=错误!未找到引用源。
=错误!未找到引用源。
2018年高考文科数学考前集训:函数的图象与性质(解析版)

高考文科数学考前集训:函数的图象与性质(解析版)[考情分析]1.函数的性质是本部分考查的热点,其中函数的奇偶性、单调性和值域(最值)问题依然是命题重点,多以选择、填空题形式出现;2.函数图象的识别是考查的热点,多与性质隐含结合命题,注意方法的选择与识别的技巧.[真题自检]1.(2017·高考全国卷Ⅰ)函数y=sin 2x1-cos x的部分图象大致为()解析:由题意,令函数f (x )=sin 2x1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x 1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (π2)=sin π1-cosπ2=0,f (3π4)=sin3π21-cos3π4=-11+22<0,所以排除A ;f (π)=sin 2π1-cos π=0,排除D.故选C. 答案:C2.(2016·高考全国卷Ⅱ)已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑mi =1x i =( ) A .0 B .m C .2mD .4m解析:∵f (x )=f (2-x ),∴函数f (x )的图象关于直线x =1对称. 又y =|x 2-2x -3|=|(x -1)2-4|的图象关于直线x =1对称, ∴两函数图象的交点关于直线x =1对称. 当m 为偶数时,mi =1x i =2×m2=m ;当m 为奇数时,m i =1x i =2×m -12+1=m .故选B.答案:B3.(2016·高考全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =x B .y =lg x C .y =2xD .y =1x解析:函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =1x的定义域与值域均为(0,+∞).故选D. 答案:D函数及其表示[方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[题组突破]1.(2017·西安模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >03x +1,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是( ) A.109 B.19 C .-19D .-109解析:由题意可得:函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >03x +1,x ≤0,∴f ⎝⎛⎭⎫14=log 214=-2, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2+1=109.故选A. 答案:A2.函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为( )A .[1,10]B .[1,2)∩(2,10]C .(1,10]D .(1,2)∪(2,10]解析:要使原函数有意义,则⎩⎪⎨⎪⎧-x 2+9x +10≥0x -1>0x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为(1,2)∪(2,10],故选D.答案:D3.(2017·石家庄模拟)已知函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <1x 3+x ,x ≥1,则f (f (x ))<2的解集为( )A .(1-ln 2,+∞)B .(-∞,1-ln 2)C .(1-ln 2,1)D .(1,1+ln 2)解析:因为当x ≥1时,f (x )=x 3+x ≥2,当x <1时,f (x )=2e x -1<2,所以f (f (x ))<2等价于f (x )<1,即2e x -1<1,解得x <1-ln 2,所以f (f (x ))<2的解集为(-∞,1-ln 2),故选B.答案:B [误区警示]分段函数易被误认为是多个函数,其实质是一个函数,其定义域为各段的并集,其最值是各段函数最值中的最大者与最小者,求值时要注意判断自变量的取值,否则要分类讨论.函数图象及应用[典例] (1)函数y =e cos x (-π≤x ≤π)的大致图象为( )解析:当x =0时,则y =e cos 0=e ;当x =π时,则y =e cos π=1e .可排除A ,B ,D ,选C.答案:C(2)函数f (x )=ln(x -1x)的图象是( )解析:因为f (x )=ln(x -1x ),所以x -1x =(x +1)(x -1)x >0,解得-1<x <0或x >1,所以函数的定义域为(-1,0)∪(1,+∞),可排除A ,D.因为函数u =x -1x 在(-1,0)和(1,+∞)上单调递增,函数y =ln u 在(0,+∞)上单调递增,根据复合函数的单调性可知,函数f (x )在(-1,0)和(1,+∞)上单调递增,选B. 答案:B(3)已知三次函数f(x)=2ax3+6ax2+bx的导函数为f′(x),则函数f(x)与f′(x)的图象可能是()解析:因为f′(x)=6ax2+12ax+b,则函数f′(x)的图象的对称轴为x=-1,故可排除A,D;由选项C的图形可知,当x>0时,f′(x)>0,故函数f(x)=2ax3+6ax2+bx在(0,+∞)上单调递增,但图象中函数f(x)在(0,+∞)上不具有单调性,故排除C.选B.答案:B(4)已知函数f(x-1)是定义在R上的奇函数,且在[0,+∞)上是增函数,则函数f(x)的图象可能是()解析:函数f(x-1)的图象向左平移1个单位,即可得到函数f(x)的图象;因为函数f(x-1)是定义在R上的奇函数,所以函数f(x-1)的图象关于原点对称,所以函数f(x)的图象关于点(-1,0)对称,排除A,C,D,选B.答案:B[类题通法]函数图象的识别与判断技巧方法1特殊点法用特殊点法破解函数图象问题需寻找特殊的点,即根据已知函数的图象或已知函数的解析式,取特殊点,判断各选项的图象是否经过该特殊点,从而得正确的选项.在求函数值的过程中运算一定要认真,从而准确进行判断.如本例中(1).方法2性质检验法已知函数解析式,判断其图象的关键:由函数解析式明确函数的定义域、值域、单调性、奇偶性、周期性等性质,根据这些性质对函数图象进行具体的分析和判断,即可得出正确选项.若能熟记基本初等函数的性质,则此类题就不攻自破.如本例中(2). 方法3 导数法判断复杂函数的图象,常借助导数这一工具,先对原函数进行求导,再利用导数判断函数的单调性、极值或最值,从而对选项进行筛选.要注意函数求导之后,导函数发生了变化,故导函数和原函数的定义域会有所不同,我们必须在原函数的定义域内研究函数的极值和最值.如本例中(3). 方法4 图象变换法有关函数y =f (x )与函数y =af (bx +c )+h 的图象问题的判断,熟练掌握图象的平移变换(左加右减,上加下减)、对称变换、伸缩变换等,便可顺利破解此类问题.如本例中(4).[演练冲关]1.(2017·长沙模拟)函数y =ln|x |-x 2的图象大致为( )解析:令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln |x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B ,D ;当x >0时,y =ln x -x 2,则y ′=1x -2x ,当x ∈(0,22)时,y ′=1x-2x >0,y =ln x -x 2单调递增,排除C.选A. 答案:A2.(2017·惠州模拟)函数f (x )=(x -1x)cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析:函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=(π-1π)cos π=1π-π<0,排除选项C ,故选D.答案:D函数的性质及应用[方法结论]1.判断函数单调性的一般规律对于选择、填空题,若能画出图象一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法. 2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 3.记住几个周期性结论(1)若函数f (x )满足f (x +a )=-f (x )(a >0),则f (x )为周期函数,且2a 是它的一个周期. (2)若函数f (x )满足f (x +a )=1f (x )(a >0),则f (x )为周期函数,且2a 是它的一个周期. [典例] (1)(2016·湖南六校联考)已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( ) A.⎝⎛⎭⎫1100,1 B.⎝⎛⎭⎫0,1100∪(1,+∞) C.⎝⎛⎭⎫1100,100D .(0,1)∪(100,+∞)解析:通解:不等式可化为⎩⎪⎨⎪⎧ lg x ≥0lg x <2或⎩⎪⎨⎪⎧lg x <0-lg x <2,解得1≤x <100或1100<x <1,所以x 的取值范围是⎝⎛⎭⎫1100,100.优解:由偶函数的定义可知,f (x )=f (-x )=f (|x |),故不等式f (lg x )>f (2)可化为|lg x |<2,即-2<lg x <2,解得1100<x <100,故选C.答案:C(2)(2017·安徽六安一中测试)已知函数y =3-|x |3+|x |的定义域为[a ,b ](a ,b ∈Z ),值域为[0,1],则满足条件的整数对(a ,b )共有( ) A .6个B .7个C .8个D .9个解析:函数y =3-|x |3+|x |=63+|x |-1,易知函数是偶函数,x >0时是减函数,所以函数的图象如图所示,根据图象可知,函数y =3-|x |3+|x |的定义域可能为[-3,0],[-3,1],[-3,2],[-3,3],[-2,3],[-1,3],[0,3],共7种,所以满足条件的整数对(a ,b )共有7个.故选B.答案:B [类题通法]1.数学思想转化在函数性质的应用,主要是已知偶函数时注意f (x )=f (-x )=f (|x |). 2.求解函数性质的综合问题时注意数形结合思想化抽象为直观. 3.注意特殊值、特殊点法在性质中的应用.[演练冲关]1.(2017·甘肃会宁一中月考)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1ln x ,x ≥1的值域为R ,则实数a 的取值范围是( ) A .[-1,12)B .(-1,12)C .(-∞,-1]D .(0,12)解析:通解:当x ≥1时,ln x ≥0,要使函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1ln x ,x ≥1的值域为R ,只需⎩⎪⎨⎪⎧1-2a >01-2a +3a ≥0,解得-1≤a <12,故选A.优解:取a =-1,则函数f (x )的值域为R ,所以a =-1满足题意,排除B 、D ;取a =-2,则函数f (x )的值域为(-∞,-1)∪[0,+∞),所以a =-2不满足题意,排除C ,故选A. 答案:A2.已知函数f (x )=2×4x -a2x的图象关于原点对称,g (x )=ln(e x +1)-bx 是偶函数,则log a b =( ) A .1 B .-1 C .-12D.14解析:由题意得f (0)=0,∴a =2.∵g (1)=g (-1),∴ln(e +1)-b =ln(1e +1)+b ,∴b =12,∴log 2 12=-1.故选B. 答案:B3.(2017·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( ) A .f (1)<f (52)<f (72)B .f (72)<f (1)<f (52)C .f (72)<f (52)<f (1)D .f (52)<f (1)<f (72)解析:因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又因为函数y =f (x )在区间[0,2]上单调递增,所以函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f (72)<f (3)<f (52),即f (72)<f (1)<f (52),故选B.答案:B新定义下的函数问题[方法结论]新定义函数问题主要包括两类:(1)概念型,即基于函数概念背景的新定义问题,此类问题常以函数的三要素(定义域、对应法则、值域)作为重点,考查考生对函数概念的深入理解;(2)性质型,即基于函数性质背景的新定义问题,主要涉及函数的单调性、奇偶性、周期性、有界性、对称性等性质及有关性质的延伸,旨在考查考生灵活应用函数性质的能力.[题组突破]1.对定义在[0,1]上,并且同时满足以下两个条件的函数f (x )称为M 函数: (ⅰ)对任意的x ∈[0,1],恒有f (x )≥0;(ⅱ)当x 1≥0,x 2≥0,x 1+x 2≤1时,总有f (x 1+x 2)≥f (x 1)+f (x 2)成立. 则下列3个函数中不是M 函数的个数是( ) ①f (x )=x 2 ②f (x )=x 2+1 ③f (x )=2x -1 A .0 B .1 C .2D .3解析:在[0,1]上,3个函数都满足f (x )≥0. 当x 1≥0,x 2≥0,x 1+x 2≤1时:对于①,f (x 1+x 2)-[f (x 1)+f (x 2)]=(x 1+x 2)2-(x 21+x 22)=2x 1x 2≥0,满足;对于②,f (x 1+x 2)-[f (x 1)+f (x 2)]=[(x 1+x 2)2+1]-[(x 21+1)+(x 22+1)]=2x 1x 2-1<0,不满足;对于③,f (x 1+x 2)-[f (x 1)+f (x 2)]=(212x x +-1)-(21x -1+22x -1)=21x 22x -21x -22x +1=(21x -1)(22x -1)≥0,满足.故选B.答案:B2.(2017·哈尔滨四校联考)已知函数f (x )=⎩⎪⎨⎪⎧2(1-x ),0≤x ≤1,x -1,1<x ≤2,如果对任意的n ∈N *,定义f n (x )=f {f [f …f n 个 (x )]},那么f 2 016(2)的值为( ) A .0 B .1 C .2D .3解析:∵f 1(2)=f (2)=1,f 2(2)=f (1)=0,f 3(2)=f (0)=2,f 4(2)=f (2)=1,∴f n (2)的值具有周期性,且周期为3,∴f 2 016(2)=f 3×672(2)=f 3(2)=2,故选C. 答案:C。
【高考复习】2018年高考数学总复习:第4章 第3讲 三角函数的图象与性质 (含解析)

第3讲 三角函数的图象与性质最新考纲 1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性;2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值、图象与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.知 识 梳 理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0), ⎛⎭⎪⎫3π2,-1,(2π,0). (2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )1.判断正误(在括号内打“√”或“×”)(1)由sin ⎝ ⎛⎭⎪⎫π6+2π3=sin π6知,2π3是正弦函数y =sin x (x ∈R )的一个周期.( )(2)余弦函数y =cos x 的对称轴是y 轴.( ) (3)正切函数y =tan x 在定义域内是增函数.( ) (4)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (5)y =sin|x |是偶函数.( )解析 (1)函数y =sin x 的周期是2k π(k ∈Z ).(2)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条.(3)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(4)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)× (5)√2.(2015·四川卷)下列函数中,最小正周期为π的奇函数是( ) A.y =sin ⎝ ⎛⎭⎪⎫2x +π2B.y =cos ⎝ ⎛⎭⎪⎫2x +π2C.y =sin 2x +cos 2xD.y =sin x +cos x解析 y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 是最小正周期为π的偶函数;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 是最小正周期为π的奇函数;y =sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4是最小正周期为π的非奇非偶函数;y =sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4是最小正周期为2π的非奇非偶函数. 答案 B3.(2017·郑州模拟)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2B.2π3C.3π2D.5π3解析 由已知f (x )=sin x +φ3是偶函数,可得φ3=k π+π2,即φ=3k π+3π2(k ∈Z ),又φ∈[0,2π],所以φ=3π2. 答案 C4.函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( )A.-1B.-22C.22D.0解析 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.答案 B5.(必修4P47B2改编)函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________. 解析 因为y =tan x 的单调递增区间为⎝ ⎛⎭⎪⎫-π2+k π,π2+k π(k ∈Z ),所以由-π2+k π<2x -3π4<π2+k π, 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ) 6.(2017·绍兴调研)设函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0,x ∈R ),最小正周期T =π,则实数ω=________,函数f (x )的图象的对称中心为________,单调递增区间是________.解析 由T =2πω=π,∴ω=2,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,令2sin ⎝⎛⎭⎪⎫2x +π6=0,得2x+π6=k π(k ∈Z ),∴x =k π2-π12,对称中心为⎝ ⎛⎭⎪⎫k π2-π12,0(k ∈Z ),由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ),∴单调递增区间为⎝⎛⎭⎪⎫k π-π3,k π+π6(k ∈Z ).答案 2 ⎝ ⎛⎭⎪⎫k π2-π12,0(k ∈Z ) ⎝⎛⎭⎪⎫k π-π3,k π+π6(k ∈Z )考点一 三角函数的定义域及简单的三角不等式 【例1】 (1)函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠π6B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-π12C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+π6(k ∈Z )D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π2+π6(k ∈Z )(2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由正切函数的定义域,得2x +π6≠k π+π2, 即x ≠k π2+π6(k ∈Z ),故选D.(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |-5π6≤x ≤56π, 故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56π+2k π(k ∈Z ). 所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝⎛⎦⎥⎤13π6,8.答案 (1)D(2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8 规律方法 (1)三角函数定义域的求法①以正切函数为例,应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域.②转化为求解简单的三角不等式求复杂函数的定义域. (2)简单三角不等式的解法 ①利用三角函数线求解. ②利用三角函数的图象求解.【训练1】 (1)函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π2+π4,k ∈Z(2)函数y =sin x -cos x 的定义域为________.解析 (1)由2x ≠k π+π2,k ∈Z ,得x ≠k π2+π4,k ∈Z , ∴y =tan 2x的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π2+π4,k ∈Z .(2)法一 要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .法二 利用三角函数线,画出满足条件的终边范围(如图阴影部分所示). 所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. 法三 sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π(k ∈Z ), 解得2k π+π4≤x ≤2k π+5π4(k ∈Z ).所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z .答案 (1)D(2)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z考点二 三角函数的值域【例2】 (1)函数y =-2sin x -1,x ∈⎣⎢⎡⎭⎪⎫76π,136π的值域是( ) A.[-3,1]B.[-2,1]C.(-3,1]D.(-2,1](2)(2016·全国Ⅱ卷)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)由正弦曲线知y =sin x 在⎣⎢⎡⎭⎪⎫76π,136π上,-1≤sin x <12,所以函数y =-2sin x -1,x ∈⎣⎢⎡⎭⎪⎫7π6,136π的值域是(-2,1].(2)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,所以当sin x =1时函数的最大值为5,故选B. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x , sin x cos x =1-t 22,且-2≤t ≤ 2. ∴y =-t 22+t +12=-12(t -1)2+1. 当t =1时,y max =1;当t =-2时,y min =-12- 2. ∴函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.答案 (1)D (2)B (3)⎣⎢⎡⎦⎥⎤-12-2,1规律方法 求解三角函数的值域(最值)常见到以下几种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值);(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【训练2】 (1)(2017·杭州调研)函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( ) A.2- 3B.0C.-1D.-1- 3(2)(2017·金华检测)函数y =-2cos ⎝ ⎛⎭⎪⎫12x -π3+1的最大值是________,此时x 的取值集合为________.解析 (1)因为0≤x ≤9,所以-π3≤π6x -π3≤7π6, 所以sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.所以y ∈[-3,2], 所以y max +y min =2- 3.选A. (2)y max =-2×(-1)+1=3, 此时,12x -π3=2k π+π, 即x =4k π+8π3(k ∈Z ). 答案 (1)A (2)3⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =4k π+8π3,k ∈Z考点三 三角函数的性质(多维探究) 命题角度一 三角函数的奇偶性与周期性【例3-1】 (1)(2017·宁波调研)函数y =2cos 2⎝⎛⎭⎪⎫x -π4-1是( )A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为π2的奇函数 D.最小正周期为π2的偶函数 (2)(2017·衡水中学金卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6B.π6C.-π3D.π3解析 (1)y =2cos 2⎝ ⎛⎭⎪⎫x -π4-1=cos2⎝ ⎛⎭⎪⎫x -π4=cos ⎝ ⎛⎭⎪⎫2x -π2=cos ⎝ ⎛⎭⎪⎫π2-2x =sin 2x ,则函数为最小正周期为π的奇函数. (2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3,由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ),∵|θ|<π2,∴k =-1时,θ=-π6.故选A. 答案 (1)A (2)A规律方法 (1)若f (x )=A sin(ωx +φ)(A ,ω≠0),则 ①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); ②f (x )为奇函数的充要条件是φ=k π(k ∈Z ).(2)函数y =A sin(ωx +φ)与y =A cos(ωx +φ)的最小正周期T =2π|ω|,y =A tan(ωx +φ)的最小正周期T =π|ω|.命题角度二 三角函数的单调性【例3-2】 (1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)若f (x )=2sin ωx +1(ω>0)在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,则ω的取值范围是________.解析 (1)由已知可得函数为y =-sin ⎝ ⎛⎭⎪⎫2x -π3,欲求函数的单调减区间,只需求y =sin ⎝⎛⎭⎪⎫2x -π3的单调增区间.由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ). (2)法一 由2k π-π2≤ωx ≤2k π+π2,k ∈Z , 得f (x )的增区间是⎣⎢⎡⎦⎥⎤2k πω-π2ω,2k πω+π2ω(k ∈Z ). 因为f (x )在⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,所以⎣⎢⎡⎦⎥⎤-π2,2π3⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω. 所以-π2≥-π2ω且2π3≤π2ω,所以ω∈⎝ ⎛⎦⎥⎤0,34.法二 因为x ∈⎣⎢⎡⎦⎥⎤-π2,2π3,ω>0.所以ωx ∈⎣⎢⎡⎦⎥⎤-ωπ2,2πω3, 又f (x )在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,所以⎣⎢⎡⎦⎥⎤-ωπ2,2πω3⊆⎣⎢⎡⎦⎥⎤-π2,π2,则⎩⎪⎨⎪⎧-ωπ2≥-π2,2πω3≤π2,又ω>0,得0<ω≤34.法三 因为f (x )在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,故原点到-π2,2π3的距离不超过T 4,即⎩⎪⎨⎪⎧π2≤T4,2π3≤T4,得T ≥8π3,即2πω≥8π3,又ω>0,得0<ω≤34.答案 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)⎝ ⎛⎦⎥⎤0,34规律方法 (1)求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.(2)对于已知函数的单调区间的某一部分确定参数ω的范围的问题,首先,明确已知的单调区间应为函数的单调区间的子集,其次,要确定已知函数的单调区间,从而利用它们之间的关系可求解,另外,若是选择题利用特值验证排除法求解更为简捷. 命题角度三 三角函数的对称轴或对称中心【例3-3】 (1)(2017·浙江适应性测试)若函数f (x )=2sin(4x +φ)(φ<0)的图象关于直线x =π24对称,则φ的最大值为( ) A.-5π3B.-2π3C.-π6D.-5π6(2)(2016·全国Ⅰ卷)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,x =-π4为f (x )的零点,x =π4为y =f (x )图象的对称轴,且f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,则ω的最大值为( ) A.11B.9C.7D.5解析 (1)由题可得,4×π24+φ=π2+k π,k ∈Z ,∴φ=π3+k π,k ∈Z ,∵φ<0,∴φmax =-2π3.(2)因为x =-π4为f (x )的零点,x =π4为f (x )的图象的对称轴,所以π4-⎝ ⎛⎭⎪⎫-π4=T4+kT ,即π2=4k +14T =4k +14·2πω,所以ω=4k +1(k ∈N *),又因为f (x )在⎝ ⎛⎭⎪⎫π18,5π36上单调,所以5π36-π18=π12≤T 2=2π2ω,即ω≤12,由此得ω的最大值为9,故选B.答案 (1)B (2)B规律方法 (1)对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.(2)对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练3】 (1)(2017·昆明二检)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2的图象关于( )A.原点对称B.y 轴对称C.直线x =5π2对称D.直线x =-5π2对称(2)已知ω>0,函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递增,则ω的取值范围是( ) A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,74 C.⎣⎢⎡⎦⎥⎤34,94D.⎣⎢⎡⎦⎥⎤32,74 解析 (1)因为f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π2=cos ⎝ ⎛⎭⎪⎫π2+2x =-sin 2x ,f (-x )=-sin(-2x )=sin 2x =-f (x ),所以f (x )=-sin 2x 是奇函数,所以f (x )的图象关于原点对称.故选A.(2)函数y =cos x 的单调递增区间为[-π+2k π,2k π],k ∈Z ,则⎩⎪⎨⎪⎧ωπ2+π4≥-π+2k π,ωπ+π4≤2k π(k ∈Z ),解得4k -52≤ω≤2k -14,k ∈Z ,又由4k -52-⎝ ⎛⎭⎪⎫2k -14≤0,k ∈Z 且2k -14>0,k ∈Z , 得k =1,所以ω∈⎣⎢⎡⎦⎥⎤32,74.答案 (1)A (2)D[思想方法]1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.3.数形结合是本讲的重要数学思想. [易错防范]1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.基础巩固题组 (建议用时:40分钟)一、选择题1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝ ⎛⎭⎪⎫2x +π6,④y =tan ⎝ ⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为( ) A.①②③ B.①③④ C.②④D.①③解析 ①y =cos|2x |=cos 2x ,最小正周期为π;②由图象知y =|cos x |的最小正周期为π; ③y =cos ⎝ ⎛⎭⎪⎫2x +π6的最小正周期T =2π2=π;④y =tan ⎝ ⎛⎭⎪⎫2x -π4的最小正周期T =π2,因此选A.答案 A2.(2017·温州模拟)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z )B.⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z )C.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z )D.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z ) 解析 当k π-π2<2x -π3<k π+π2(k ∈Z )时,函数y =tan ⎝ ⎛⎭⎪⎫2x -π3单调递增,解得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数y =tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ),故选B.答案 B3.(2016·成都诊断)函数y =cos 2x -2sin x 的最大值与最小值分别为( ) A.3,-1B.3,-2C.2,-1D.2,-2解析 y =cos 2x -2sin x =1-sin 2x -2sin x =-sin 2x -2sin x +1,令t =sin x ,则t ∈[-1,1],y =-t 2-2t +1=-(t +1)2+2, 所以y max =2,y min =-2. 答案 D4.(2016·银川模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2(x ∈R ),下面结论错误的是( ) A.函数f (x )的最小正周期为π B.函数f (x )是偶函数C.函数f (x )的图象关于直线x =π4对称 D.函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确. 答案 C5.(2017·安徽江南十校联考)已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且∀x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图象的一个对称中心坐标是( )A.⎝ ⎛⎭⎪⎫-2π3,0 B.⎝ ⎛⎭⎪⎫-π3,0 C.⎝ ⎛⎭⎪⎫2π3,0D.⎝ ⎛⎭⎪⎫5π3,0解析 由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ),由|φ|<π2,得φ=π3,故f (x )=sin ⎝ ⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图象的对称中心为⎝ ⎛⎭⎪⎫2k π-2π3,0(k ∈Z ),当k =0时,f (x )图象的对称中心为⎝ ⎛⎭⎪⎫-2π3,0,故选A.答案 A 二、填空题6.(2017·台州调研)若函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +φ-π3(0<φ<π)是奇函数,则φ=________;f (x )取最大值时,x 的取值集合为________.解析 因为f (x )为奇函数,所以φ-π3=π2+k π,φ=5π6+k π,k ∈Z .又因为0<φ<π,故φ=5π6.由f (x )=cos ⎝ ⎛⎭⎪⎫2x +5π6-π3=cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x (x ∈R ),∴当2x =2k π-π2,即x =k π-π4(k ∈Z )时,f (x )得最大值1.答案 5π6 ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x =k π-π4,k ∈Z7.(2016·哈尔滨、长春、沈阳、大连四市联考)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.解析 ∵y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ), 解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z ), 又x ∈⎣⎢⎡⎦⎥⎤0,π2,∴单调递增区间为⎣⎢⎡⎦⎥⎤0,π6.答案 ⎣⎢⎡⎦⎥⎤0,π68.(2016·承德模拟)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________. 解析 法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32. 法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2,解得ω=32. 答案 32三、解答题9.(2015·安徽卷)已知函数f (x )=(sin x +cos x )2+cos 2x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)因为f (x )=sin 2 x +cos 2 x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1,所以函数f (x )的最小正周期为T =2π2=π.(2)由(1)的计算结果知,f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知, 当2x +π4=π2,即x =π8时,f (x )取最大值2+1; 当2x +π4=5π4,即x =π2时,f (x )取最小值0. 综上,f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.10.(2017·昆明调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫πx 4-π6-2cos 2πx 8+1.(1)求f (x )的最小正周期;(2)若函数y =g (x )与y =f (x )的图象关于直线x =1对称,求当x ∈⎣⎢⎡⎦⎥⎤0,43时,y =g (x )的最大值.解 (1)f (x )=sin πx 4cos π6-cos πx 4sin π6-cos πx4 =32sin πx 4-32cos πx 4=3sin ⎝ ⎛⎭⎪⎫πx 4-π3,故f (x )的最小正周期为T =2ππ4=8.(2)法一 在y =g (x )的图象上任取一点(x ,g (x )), 它关于x =1的对称点(2-x ,g (x )).由题设条件,知点(2-x ,g (x ))在y =f (x )的图象上, 从而g (x )=f (2-x )=3sin ⎣⎢⎡⎦⎥⎤π4(2-x )-π3=3sin ⎣⎢⎡⎦⎥⎤π2-πx 4-π3=3cos ⎝ ⎛⎭⎪⎫πx 4+π3.当0≤x ≤43时,π3≤πx 4+π3≤2π3, 因此y =g (x )在区间⎣⎢⎡⎦⎥⎤0,43上的最大值为g (x )max =3cos π3=32.法二 区间⎣⎢⎡⎦⎥⎤0,43关于x =1的对称区间为⎣⎢⎡⎦⎥⎤23,2,且y =g (x )与y =f (x )的图象关于直线x =1对称, 故y =g (x )在⎣⎢⎡⎦⎥⎤0,43上的最大值为 y =f (x )在⎣⎢⎡⎦⎥⎤23,2上的最大值.由(1)知f (x )=3sin ⎝ ⎛⎭⎪⎫πx 4-π3,当23≤x ≤2时,-π6≤πx 4-π3≤π6. 因此y =g (x )在⎣⎢⎡⎦⎥⎤0,43上的最大值为g (x )max =3sin π6=32.能力提升题组 (建议用时:25分钟)11.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C.2D.3解析 ∵ω>0,-π3≤x ≤π4, ∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32. 答案 B12.(2015·安徽卷)已知函数f (x )=A sin(ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( ) A.f (2)<f (-2)<f (0) B.f (0)<f (2)<f (-2) C.f (-2)<f (0)<f (2)D.f (2)<f (0)<f (-2)解析 由于f (x )的最小正周期为π,∴ω=2,即f (x )=A sin(2x +φ),又当x =2π3时,2x +φ=4π3+φ=2k π-π2(k ∈Z ),∴φ=2k π-11π6(k ∈Z ),又φ>0,∴φmin =π6,故f (x )=A sin(2x +π6).于是f (0)=A sin π6,f (2)=A sin ⎝ ⎛⎭⎪⎫4+π6=A sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫4+π6=A sin ⎝ ⎛⎭⎪⎫5π6-4,f (-2)=A sin ⎝ ⎛⎭⎪⎫-4+π6=A sin ⎝ ⎛⎭⎪⎫13π6-4=A sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫13π6-4=A sin ⎝ ⎛⎭⎪⎫4-7π6. 又∵-π2<5π6-4<4-7π6<π6<π2. 又f (x )在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,∴f (2)<f (-2)<f (0),故选A. 答案 A13.(2017·湖州调研)若x =π6是函数f (x )=sin 2x +a cos 2x 的一条对称轴,则函数f (x )的最小正周期是________;函数f (x )的最大值是________.解析 ∵f (x )=sin 2x +a cos 2x =1+a 2sin(2x +θ)(tan θ=a ), 又x =π6是函数的一条对称轴,∴2×π6+θ=π2+k π,即θ=π6+k π,k ∈Z . 则f (x )=1+a 2sin ⎝ ⎛⎭⎪⎫2x +π6+k π.T =2π2=π;由a =tan θ=tan ⎝ ⎛⎭⎪⎫π6+k π=tan π6=33,得1+a 2=1+⎝ ⎛⎭⎪⎫332=233. ∴函数f (x )的最大值是233. 答案 π23314.(2017·武汉调研)已知函数f (x )=a ⎝ ⎛⎭⎪⎫2cos 2x 2+sin x +b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值. 解 f (x )=a (1+cos x +sin x )+b =2a sin ⎝ ⎛⎭⎪⎫x +π4+a +b .(1)当a =-1时,f (x )=-2sin ⎝ ⎛⎭⎪⎫x +π4+b -1,由2k π+π2≤x +π4≤2k π+3π2(k ∈Z ), 得2k π+π4≤x ≤2k π+5π4(k ∈Z ),∴f (x )的单调增区间为⎣⎢⎡⎦⎥⎤2k π+π4,2k π+5π4(k ∈Z ). (2)∵0≤x ≤π,∴π4≤x +π4≤5π4, ∴-22≤sin ⎝⎛⎭⎪⎫x +π4≤1,依题意知a ≠0.(ⅰ)当a >0时,⎩⎨⎧2a +a +b =8,b =5,∴a =32-3,b =5.(ⅱ)当a <0时,⎩⎨⎧b =8,2a +a +b =5,∴a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8. 15.设函数f (x )=sin ⎝ ⎛⎭⎪⎫πx 3-π6-2cos 2πx 6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,求当x ∈[0,1]时,函数y =g (x )的最大值.解 (1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝ ⎛⎭⎪⎫πx 3-π3-1,所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤π3x -π3≤2k π+π2,k ∈Z ,得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤6k -12,6k +52,k ∈Z .(2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值, 当x ∈[3,4]时,π3x -π3∈⎣⎢⎡⎦⎥⎤23π,π,sin ⎝ ⎛⎭⎪⎫π3x -π3∈⎣⎢⎡⎦⎥⎤0,32,f (x )∈⎣⎢⎡⎦⎥⎤-1,12,即此时y =g (x )的最大值为12.。
[推荐学习]2018版高考数学一轮总复习第3章三角函数解三角形3.3三角函数的图象和性质模拟演练文
![[推荐学习]2018版高考数学一轮总复习第3章三角函数解三角形3.3三角函数的图象和性质模拟演练文](https://img.taocdn.com/s3/m/06db8c25f90f76c661371ae1.png)
[推荐学习]2018版高考数学一轮总复习第3章三角函数解三角形3.3三角函数的图象和性质模拟演练文2018版高考数学一轮总复习 第3章 三角函数、解三角形 3.3 三角函数的图象和性质模拟演练 文[A 级 基础达标](时间:40分钟) 1.给定性质:①最小正周期为π;②图象关于直线x =π3对称,则下列四个函数中,同时具有性质①②的是( )A .y =sin ⎝ ⎛⎭⎪⎫x 2+π6B .y =sin ⎝⎛⎭⎪⎫2x -π6C .y =sin ⎝⎛⎭⎪⎫2x +π6 D .y =sin|x |答案 B解析 注意到函数y =sin ⎝⎛⎭⎪⎫2x -π6的最小正周期T =2π2=π,当x =π3时,y =sin ⎝⎛⎭⎪⎫2×π3-π6=1,因此该函数同时具有性质①②.2.[2017·衡阳模拟]函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )= 3.4.[2017·南昌模拟]函数y =cos x -32的定义域为( )A .⎣⎢⎡⎦⎥⎤-π6,π6B.⎣⎢⎡⎦⎥⎤k π-π6,k π+π6(k ∈Z)C .⎣⎢⎡⎦⎥⎤2k π-π6,2k π+π6(k ∈Z)D .R 答案 C解析 ∵cos x -32≥0, 得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z.5.函数y =2sin ⎝ ⎛⎭⎪⎫π6-2x (x ∈[0,π])的递增区间是( )A .⎣⎢⎡⎦⎥⎤π3,5π6 B .⎣⎢⎡⎦⎥⎤π3,πC .⎣⎢⎡⎦⎥⎤π12,7π12 D .⎣⎢⎡⎦⎥⎤-π6,π3答案 A解析 首先将函数化为y =-2sin ⎝⎛⎭⎪⎫2x -π6(x ∈[0,π]),令t =2x -π6,x 增大,t 增大,所以为求函数的增区间,须研究y =2sin t 的减区间.由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z得π3+k π≤x ≤5π6+k π,k ∈Z ,所以k =0时得⎣⎢⎡⎦⎥⎤π3,5π6,故选A. 6.函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为________,此时x =________.答案 5 3π4+2k π(k ∈Z)解析 函数y =3-2cos ⎝⎛⎭⎪⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π(k ∈Z),即x =3π4+2k π(k ∈Z). 7.若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N *)的一个对称中心是⎝ ⎛⎭⎪⎫π6,0,则ω的最小值是________.答案 2解析 由题意得ω×π6+π6=π2+k π(k ∈Z),ω=6k +2(k ∈Z),∵ω∈N *,所以ω的最小值是2.8.[2017·郑州模拟]已知函数f (x )=2sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值为________.答案 32解析 因为f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,所以T 4≤π3,即π2ω≤π3.所以ω≥32,即ω的最小值为32. 9.设函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π3.(1)求函数f (x )的定义域、周期和单调区间; (2)求不等式-1≤f (x )≤3的解集. 解 (1)由x2-π3≠π2+k π(k ∈Z),得x ≠5π3+2k π(k ∈Z),所以函数f (x )的定义域是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠5π3+2k π,k ∈Z. 因为ω=12,所以周期T =πω=2π.由-π2+k π<x 2-π3<π2+k π(k ∈Z),得-π3+2k π<x <5π3+2k π(k ∈Z).所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-π3+2k π,5π3+2k π(k ∈Z).(2)由-1≤tan ⎝ ⎛⎭⎪⎫x 2-π3≤3,得-π4+k π≤x 2-π3≤π3+k π(k ∈Z).解得π6+2k π≤x ≤4π3+2k π(k ∈Z).所以不等式-1≤f (x )≤3的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6+2k π≤x ≤4π3+2k π,k ∈Z. 10.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,0<φ<2π3的最小正周期为π.(1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32,求f (x )的单调递增区间.解 ∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2,∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ),∴sin(2x +φ)=sin(-2x +φ), 展开整理得sin2x cos φ=0, 由已知上式对∀x ∈R 都成立, ∴cos φ=0.∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝ ⎛⎭⎪⎫π6,32时,sin ⎝ ⎛⎭⎪⎫2×π6+φ=32,即sin ⎝ ⎛⎭⎪⎫π3+φ=32.又∵0<φ<2π3,∴π3<π3+φ<π,∴π3+φ=2π3,φ=π3, ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3.令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z.∴f (x )的递增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12,k ∈Z.[B 级 知能提升](时间:20分钟) 11.函数y =3cos(x +φ)+2的图象关于直线x =π4对称,则|φ|的最小值是( )A .π4B .π3C .π6D .π2答案 A解析 由题意可知,π4+φ=k π,k ∈Z ,故φ=k π-π4,k ∈Z.当k =0时,φ=-π4,此时|φ|=π4为最小值,选A.12.[2017·石家庄模拟]若f (x )=2sin ωx+1(ω>0)在区间⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数,则ω的取值范围是________.答案 ⎝⎛⎦⎥⎤0,34解析 由2k π-π2≤ωx ≤2k π+π2,k ∈Z , 得f (x )的增区间是⎣⎢⎡⎦⎥⎤2k πω-π2ω,2k πω+π2ω,k ∈Z. 因为f (x )在⎣⎢⎡⎦⎥⎤-π2,2π3上是增函数, 所以⎣⎢⎡⎦⎥⎤-π2,2π3⊆⎣⎢⎡⎦⎥⎤-π2ω,π2ω. 所以-π2≥-π2ω且2π3≤π2ω,所以ω∈⎝⎛⎦⎥⎤0,34. 13.已知x ∈(0,π],关于x 的方程2sin ⎝⎛⎭⎪⎫x +π3=a 有两个不同的实数解,则实数a 的取值范围为________.答案 (3,2)解析 令y 1=2sin ⎝⎛⎭⎪⎫x +π3,x ∈(0,π],y 2=a ,作出y 1的图象如图所示.若2sin ( x +π3)=a 在(0,π]上有两个不同的实数解,则y 1与y 2应有两个不同的交点,所以3<a <2.14.已知函数f (x )=sin(ωx +φ)(0<ω<1,0≤φ≤π)是R 上的偶函数,其图象关于点M ⎝ ⎛⎭⎪⎫34π,0对称. (1)求φ,ω的值;(2)求f (x )的单调递增区间;(3)x ∈⎣⎢⎡⎦⎥⎤-3π4,π2, 求f (x )的最大值与最小值.解 (1)因为f (x )=sin(ωx +φ)是R 上的偶函数,所以φ=π2+k π,k ∈Z ,且0≤φ≤π,则φ=π2, 即f (x )=cos ωx .因为图象关于点M ⎝ ⎛⎭⎪⎫34π,0对称,所以ω×34π=π2+k π,k ∈Z ,且0<ω<1,所以ω=23. (2)由(1)得f (x )=cos 23x , 由-π+2k π≤23x ≤2k π且k ∈Z 得,3k π-3π2≤x ≤3k π,k ∈Z , 所以函数f (x )的递增区间是⎣⎢⎡⎦⎥⎤3k π-3π2,3k π,k ∈Z. (3)因为x ∈⎣⎢⎡⎦⎥⎤-3π4,π2,所以23x ∈⎣⎢⎡⎦⎥⎤-π2,π3,当23x=0时,即x=0,函数f(x)的最大值为1,当23x=-π2时,即x=-3π4,函数f(x)的最小值为0.。
《高考领航》2018-2019高三数学(文)(北师大版)一轮复习课件:第3章-第5课时 三角函数的图像和性质

首页
上页 下页
尾页
教材梳理 基础自测
【基础自测】
4.(教材改编题)y=1+cos x,x∈[0,2π] 的图像与 y=0 的交点的个数为 ________.
画出 y=1+cos x,x∈[0,2π] 的图像可知.
1
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
素能提升 应考展示 课时训练 规范解答
首页
上页 下页
尾页
教材梳理 基础自测
【基础自测】
3.函数 f(x)=sin x-cos x 的最大值为( A.1 C. 3 B. 2 D.2
)
π 因为 f(x)= 2sinx-4≤ 2,故选 B.
B
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
首页
尾页
教材梳理 基础自测 考点突破 题型透析
素能提升 应考展示 课时训练 规范解答
上页 下页
教材梳理 基础自测
2.正弦函数、余弦函数、正切函数的图像和性质
值域
[ -1,1]
π π 2kπ- ,2kπ+ 2 2
[-1,1]
R
(k∈Z)上递增, 单调性
[2kπ-π,2kπ] (k∈ Z)上递增,
首页
上页 下页
尾页
教材梳理 基础自测
2.正弦函数、余弦函数、正切函数的图像和性质
对称中心 (kπ,0),k∈Z 对称性 对称轴 l π x=kπ+2,k∈Z 周期 2π
对称中心
π kπ+ ,0,k∈Z 2
Hale Waihona Puke 对称中心kπ ,0 2 ,k∈Z
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3练 常见基本函数性质与图像
一.强化题型考点对对练
1. (幂函数)【2018届河南省天一大联考(二)】已知点(),8m 在幂函数()()1n
f x m x =-的图象上,设
1
213a f ⎛⎫
⎛⎫
⎪= ⎪ ⎪⎝⎭⎝⎭
, ()ln b f
π=, 1
22c f -⎛⎫
= ⎪⎝⎭
,则,,a b c 的大小关系为( )
A. a c b <<
B. a b c <<
C. b c a <<
D. b a c << 【答案】A
2.(二次函数及其应用)若函数的图象关于直线
对称,则
的最小
值为( ) A.
B. C.
D.
【答案】C 【解析】 由题意得
是函数零点,因此
为方程
的根,即
, ,当 时,取最小值 选C.
3.(指数函数的应用)【2018届山东省青岛市期中联考】已知
()
()
()
s in s in c o s ,
,s in ,c o s ,s in 4
2m n k α
α
α
ππαα
αα⎛⎫
∈===
⎪⎝⎭
,则( )
A. m n k <<
B. m k n <<
C. n m k <<
D. k m n << 【答案】C
【解析】,
,0c o s 14
22
sin ππααα⎛⎫
∈∴<<<<
⎪⎝⎭
,幂函数s in y x
α
= 在()0,1 上递增,指数函数
()sin x
y α=在()0,1 上递增递减, ()
()
()
co s co s sin sin n
sin sin α
α
α
ααα∴=>>, n m k >>,即
k m n <<,故选C.
4.(与对数函数相关的综合问题)若函数(且)在上既是奇函数又是
增函数,则函数
的大致图象是( )
【答案】
B
5.(指数函数与对数函数的结合)在平面直角坐标系中,如果不同的两点(),A a b , (),B a b -在函数
()y f
x =的图象上,则称(),A B 是函数()y
f
x =的一组关于y 轴的对称点((),A B 与(),B A 视为同一组),
则函数()31
(,0,
{2|lo g ,0
x
x f x x x ≤=)关于y 轴的对称点的组数为( )
A. 0
B. 1
C. 2
D. 4 【答案】C
【解析】根据题意,在同一坐标系内,作出11(0)2x
y x ⎛⎫
=> ⎪⎝⎭
,3lo g (0)y x x =>的图象,
根据定义,可以知道函数()31,0,
{2|lo g ,0
x
x f x x x ⎛⎫
≤ ⎪
=⎝⎭
关于y 轴的对称点的组数,就是图象交点的个数,所以关于
y 轴的对称点的组数为2,所以C 选项是正确的.
6. (指数函数与对数函数的图象与性质的结合)若1
512a ⎛⎫= ⎪⎝⎭, 12
15b -
⎛⎫
= ⎪
⎝⎭
, 15
lo g 10c =,则,,a b c 大小
关系为( )
A. a b c >>
B. a c b >>
C. c b a >>
D. b a c >> 【答案】
D
7.(对数函数与二次函数图象与性质的结合)已知函数()2
1
3
,1
{lo g ,1x x x f x x x -+≤=>,若对任意的x R ∈,不等
式()2
54
f x m m ≤
-恒成立,则实数m 的取值范围为( )
A. 11,
4⎡⎤-⎢⎥⎣
⎦ B. 1,14⎡⎤⎢⎥⎣⎦ C. 12,4⎡⎤-⎢⎥⎣⎦ D. 1,13⎡⎤
⎢⎥
⎣⎦
【答案】B
【解析】易知函数()2
13
,1
{lo g ,1x x x f x x x -+≤=>在区间1,2⎛⎫-∞ ⎪⎝⎭上单调递增,在区间1,2∞⎛⎫
+ ⎪⎝⎭
上单调递减,所以
函数在12
x =
处取得最大值
14
,所以有
2
154
4
m m ≤
-,解得
114
m ≤≤,故选B.
8.(与指数函数相关的综合问题)【2018届湖北省襄阳市四校联考】 已知函数()2x
f x =且
()()()f
x g x h x =+,其中()g x 为奇函数, ()h x 为偶函数,若不等式()()320ag x h x +≥对任意
[]1,2x ∈恒成立,则实数a 的取值范围是__________.
【答案】17
,18⎡⎫
-
+∞⎪⎢⎣⎭
【解析】由已知得()()2x
g x h x += …①,所以()()2x
g x h x --+-= ,又因为()g x 为奇函数,()h x 为。