(word完整版)高中数学函数图象高考题.doc
高考数学函数的图像专题卷

高考数学函数的图像专题卷一、单选题(共28题;共56分)1. ( 2分) (2020高三上·兴宁期末)函数y=xcos x+sin x的图象大致为( ).A. B.C. D.2. ( 2分) (2021高三上·宝安月考)函数的图象大致为()A. B.C. D.3. ( 2分) (2021高三上·河南月考)函数的大致图象为()A. B.C. D.4. ( 2分) (2021高三上·河北期中)函数的图象大致为()A. B.C. D.5. ( 2分) (2021高三上·湖北期中)函数的图象大致为()A. B.C. D.6. ( 2分) (2021·芜湖模拟)函数的部分图象可能为()A. B.C. D.7. ( 2分) (2020高三上·天津月考)函数的图象大致是()A. B. C. D.8. ( 2分) 函数的图象大致为()A. B.C. D.9. ( 2分) (2020高三上·杭州期中)函数的部分图象大致为()A. B.C. D.10. ( 2分) (2021高三上·赣州期中)已知函数,则函数的大致图象为()A. B.C. D.11. ( 2分) (2021高三上·湖州期中)函数的图象可能是()A. B. C. D.12. ( 2分) (2021高三上·金华月考)已知,函数,,则图象为上图的函数可能是()A. B. C. D.13. ( 2分) (2021高三上·杭州期中)函数的图象可能是()A. B.C. D.14. ( 2分) (2021高三上·陕西月考)在同一直角坐标系中,函数,,(,且)的图像可能是()A. B.C. D.15. ( 2分) (2021高三上·贵州月考)函数f(x)= 的大致图象不可能是()A. B.C. D.16. ( 2分) (2020高三上·温州月考)函数的图像可能是()A. B.C. D.17. ( 2分) (2021·四川模拟)函数及,则及的图象可能为()A. B.C. D.18. ( 2分) 已知函数f(x)=ka x﹣a﹣x(a>0且a≠1)在R上是奇函数,且是增函数,则函数g(x)=log a (x﹣k)的大致图象是()A. B. C. D.19. ( 2分) (2021高三上·重庆月考)函数的大致图象如图所示,则a,b,c 大小顺序为()A. B. C. D.20. ( 2分) (2021·株洲模拟)若函数的大致图象如图所示,则()A. B. C. D.21. ( 2分) (2020高三上·浙江开学考)已知函数的图像如图所示,则下列判断正确的个数是()(1),(2),(3),(4)A. 1个B. 2个C. 3个D. 4个22. ( 2分) 如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A. B.C. D.23. ( 2分) (2021·新乡模拟)如图,在正方形中,点M从点A出发,沿向,以每2个单位的速度在正方形的边上运动;点N从点B出发,沿方向,以每秒1个单位的速度在正方形ABCD的边上运动.点M与点N同时出发,运动时间为t(单位:秒),的面积为(规定共线时其面积为零,则点M第一次到达点A 时,的图象为()A. B.C. D.24. ( 2分) (2017高三上·九江开学考)如图,圆C:x2+(y﹣1)2=1与y轴的上交点为A,动点P从A点出发沿圆C按逆时针方向运动,设旋转的角度∠ACP=x(0≤x≤2π),向量在=(0,1)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.25. ( 2分) 在边长为1的正方体中,E,F,G,H分别为A1B1,C1D1,AB,CD的中点,点P从G出发,沿折线GBCH匀速运动,点Q从H出发,沿折线HDAG匀速运动,且点P与点Q运动的速度相等,记E,F,P,Q四点为顶点的三棱锥的体积为V,点P运动的路程为x,在0≤x≤2时,V与x的图象应为()A. B. C. D.26. ( 2分) 如图,正△ABC的中心位于点G(0,1),A(0,2),动点P从A点出发沿△ABC的边界按逆时针方向运动,设旋转的角度∠AGP=x(0≤x≤2π),向量在=(1,0)方向的射影为y(O为坐标原点),则y关于x的函数y=f(x)的图象是()A. B.C. D.27. ( 2分) (2013·江西理)如图,半径为1的半圆O与等边三角形ABC夹在两平行线l1,l2之间,l∥l1,l与半圆相交于F,G两点,与三角形ABC两边相交于E,D两点.设弧的长为x(0<x<π),y=EB+BC+CD,若l从l1平行移动到l2,则函数y=f(x)的图象大致是()A. B.C. D.28. ( 2分) (2016高三上·崇明期中)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成,它们的圆心分别为O,O1,O2.动点P从A点出发沿着圆弧按A→O→B→C→A→D→B的路线运动(其中A,O1,O,O2,B五点共线),记点P运动的路程为x,设y=|O1P|2,y与x的函数关系为y=f (x),则y=f(x)的大致图象是()A. B.C. D.答案解析部分一、单选题1.【答案】D【考点】函数的图象【解析】【解答】由于函数y=xcosx+sinx为奇函数,故它的图象关于原点对称,所以排除B,由当时,y=1>0,当x=π时,y=π×cosπ+sinπ=−π<0.由此可排除A和C,故正确的选项为D.故答案为:D.【分析】利用奇函数的定义证出函数为奇函数,再利用奇函数的图象关于原点对称的性质结合特殊值法及函数值与0的大小关系,再利用排除法得出函数y=xcos x+sin x的大致图象。
(word版)高中数学三角函数y=Asin(ωx+φ)图像变换练习题

三角函数y =Asin(ωx +φ)图像练习题一、单选题1. 函数f(x)=2sin(ωx +φ)(ω>0,−π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是( )A. 2,−π3 B. 2,−π6 C. 4,−π6 D. 4,π32. 为了得到函数y =sin (2x +π3)的图象,只需要把函数y =sinx 的图象上( )A. 各点的横坐标缩短到原来的12,再向左平移π3个单位长度 B. 各点的横坐标缩短到原来的12,再向左平移π6个单位长度 C. 各点的横坐标伸长到原来的2倍,再向左平移π3个单位长度 D. 各点的横坐标伸长到原来的2倍,再向左平移π6个单位长度3. 要得到函数y =sinx +cosx 的图象,只需把函数y =√2sin (x −π12)的图象( )A. 向左平移π3个单位长度 B. 向右平移π3个单位长度 C. 向左平移13个单位长度D. 向右平移13个单位长度4. 要得到函数y =3sin (2x +π4)的图象,只需将y =3sin2x 的图象( )A. 向左平移π8个单位 B. 向右平移π8个单位 C. 向左平移π4个单位D. 向右平移π4个单位5. 已知函数f(x)=Msin(ωx +φ)(M >0,ω>0,|φ|<π2)在半个周期内的图象如图所示,则函数f(x)的解析式为( )A. f(x)=2sin(x +π6) B. f(x)=2sin(2x −π6)C. f(x)=2sin(x−π6)D. f(x)=2sin(2x+π6)6.为得到函数y=cos(x+π3)的图象,只需将函数y=sinx的图象()A. 向左平移π6个单位长度 B. 向右平移π6个单位长度C. 向左平移5π6个单位长度 D. 向右平移5π6个单位长度7.函数y=Asin(ωx+φ)在一个周期上的图象如图所示,则函数的解析式是()A. y=2sin(x2−23π)B. y=2sin(x2+43π)C. y=2sin(x2+23π)D. y=2sin(x2−π3)8.设ω>0,函数y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后与原图象重合,则ω的最小值是().A. 23B. 43C. 32D. 39.如图所示,函数f(x)=Asin(2x+φ)(其中A>0,|φ|<π2)的图象过点(0,√3),则f(x)的图象的一个对称中心是()A. (−π3,0)B. (−π6,0)C. (π6,0)D. (π4,0)10.将函数y=sinωx(ω>0)的图象向左平移π6个单位长度,平移后的图象如图所示,则平移后的图象所对应的函数解析式为()A. y=sin(x+π6)B. y=sin(x−π6)C. y=sin(2x+π3)D. y=sin(2x−π3)11.将函数f(x)=sin(x+φ)图象上所有点的横坐标变为原来的1ω(ω>1)(纵坐标不变),得函数g(x)的图象.若g(π6)=1,g(2π3)=0,且函数g(x)在(π6,π2)上具有单调性,则ω的值为()A. 2B. 3C. 5D. 712.设函数的最小正周期为π,则下列说法正确的是()A. 函数f(x)的图象关于直线x=π3对称B. 函数f(x)的图象关于点(π12,0)对称C. 函数f(x)在(−5π12,π12)上单调递减D. 将函数f(x)的图象向右平移5π12个单位,得到的新函数是偶函数13.已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π2),其图象相邻的最高点之间的距离为π,将函数y=f(x)的图象向左平移π12个单位长度后得到函数g(x)的图象,且g(x)为奇函数,则()A. f(x)的图象关于点(π6,0)对称 B. f(x)的图象关于点(−π6,0)对称C. f(x)在(−π6,π3)上单调递增 D. f(x)在(−2π3,−π6)上单调递增14.已知曲线C1:y=cosx,C2:y=sin(2x+2π3),则下面结论正确的是()A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C2C. 把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C2D. 把C1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C215.已知曲线y=sin(2x+π6)向左平移φ(φ>0)个单位,得到的曲线y=g(x)经过点(−π12,1),则()A. 函数y=g(x)的最小正周期T=π2B. 函数y=g(x)在[11π12,17π12]上单调递增C. 曲线y=g(x)关于直线x=π6对称D. 曲线y=g(x)关于点(2π3,0)对称16.若函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤π)的图象如图所示,则函数y=f(x)的解析式为()A. y=32sin(2x+π6)B. y=32sin(2x−π6)C. y=32sin(2x+π3)D. y=32sin(2x−π3)二、多选题17.已知函数f(x)=sin(2x+π3),将其图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若函数g(x)为奇函数,则φ的值可以为()A. π12B. π6C. π3D. 2π318.为了得到函数y=cos(2x+π4)的图象,只要把函数y=cosx图象上所有的点()A. 向左平移π4个单位长度,再将横坐标变为原来的2倍B. 向左平移π4个单位长度,再将横坐标变为原来的12倍C. 横坐标变为原来的12倍,再向左平移π8个单位长度 D. 横坐标变为原来的12倍,再向左平移π4个单位长度19. 已知函数f(x)=2cos 2ωx +√3sin2ωx −1(ω>0)的最小正周期为π,则下列说法正确的有( )A. ω=2B. 函数f(x)在[0,π6]上为增函数C. 直线x =π3是函数y =f(x)图象的一条对称轴 D. 点(512π,0)是函数y =f(x)图象的一个对称中心20. 将函数f(x)的图象向右平移π6个单位长度,再将所得函数图象上的所有点的横坐标缩短到原来的23,得到函数g(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象.已知函数g(x)的部分图象如图所示,则下列关于函数f(x)的说法正确的是( )A. f(x)的最小正周期为π,最大值为2B. f(x)的图象关于点(π6,0)中心对称 C. f(x)的图象关于直线x =π6对称 D. f(x)在区间[π6,π3]上单调递减第II 卷(非选择题)三、解答题21. 已知函数f(x)=4cos xsin (x +π6)−1.(1)求f(x)的最小正周期;(2)求f(x)在区间[−π6,π4]上的最大值和最小值.22.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,−π2<φ<π2)的部分图象如图所示.(1)求函数f(x)的解析式;(2)若x∈[−53,53],求函数f(x)的值域.23.已知函数f(x)=2√3sinxcosx−cos(2x+π3)−cos(2x−π3).(Ⅰ)求f(π2)的值.(Ⅱ)求函数f(x)在区间[−π12,5π12]上的最大值和最小值.24.已知函数y=12sin (2x+π6),x∈R.(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的简图;(3)该函数的图象可由y=sin x(x∈R)的图象经过怎样的平移和伸缩变换得到⋅25.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2)的部分图像如图所示:(1)求函数f(x)的解析式;(2)将函数y=f(x)的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)的图像,求函数y=g(x)在区间[0,π4]上的最大值及函数取最大值时相应的x 值.26.已知函数f(x)=cos2x+sin(2x−π6).(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)当x∈[0,π]时,求函数f(x)的单调递增区间.27.已知函数f(x)=2cos(x−π3)+2sin(3π2−x).(1)求函数f(x)的单调递减区间;(2)求函数f(x)的最大值,并求f(x)取得最大值时的x的取值集合;(3)若f(x)=65,求cos(2x−π3)的值.28.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<π)的部分图像如图所示.(I)求f(x)的解析式;(II)在△ABC中,角A、B、C的对边分别为a,b,c,a=1,c=2,f(A)=1,求b的值.29.已知函数f(x)=√3sinxcosx+sin2x−12.(1)求f(x)的单调递增区间;(2)若A∈(π12,π3),f(A)=13,求cos(2A−5π6)的值.30.已知函数f(x)=4sinxcos(x+π3)+√3.(1)求函数f(x)的最小正周期及单调增区间;(2)求函数f(x)在区间[−π4,π6]上的值域和取得最大值时相应的x的值.答案和解析1.【答案】A本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,属于基础题.结合图象由周期求出ω,由特殊点的坐标求出φ的值.【解答】解:由题意可知T=2×(11π12−5π12)=π,∴ω=2,x=5π12时,函数取得最大值2,可得:2sin(2×5π12+φ)=2,,即,又∵−π2<φ<π2,所以φ=−π3.故选A.2.【答案】B本题考查了函数y=Asin(ωx+φ)的图象的伸缩平移,属于基础题.根据函数图象伸缩平移变换法则即可得到答案.【解答】解:y=sinx图象上各点的横坐标缩短到原来的12,得到y=sin2x的图象,再向左平移π6个单位长度得到y=sin[2(x+π6)]=sin(2x+π3)的图象,故选B.3.【答案】A【分析】本题主要考查函数y=Asin(ωx+φ)的图象的平移变换,辅助角公式,属于基础题.由辅助角公式,根据函数y=Asin(ωx+φ)的图象的平移变换可得答案.【解答】解:y =sinx +cosx,则要得到函数y =sinx +cosx 的图象,只需把函数y =√2sin (x −π12)的图象向左平移π3个单位长度. 故选A .4.【答案】A本题考查函数y =Asin(ωx +φ)的图象变换规律,属于基础题.由y =3sin (2x +π4)=3sin [2(x +π8)],根据左加右减的平移原理,即可得到结果. 【解答】解:y =3sin (2x +π4)=3sin [2(x +π8)],因此将函数y =3sin2x 的图象向左平移π8个单位,即可得到函数y =3sin (2x +π4)的图象. 故选A .5.【答案】A【分析】本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,属于基础题. 由函数的最值求出A ,由周期求出ω,由五点法作图求出φ的值.【解答】解:由图象知M =2. 设函数f(x)的最小正周期为T , 则14T =π3−(−π6)=π2,可知T =2π,ω=2πT=1,将(π3,2)代入f(x)的解析式得sin(π3+φ)=1, 又|φ|<π2,可得φ=π6,故函数f(x)的解析式为f(x)=2sin(x +π6). 故选A .6.【答案】C本题考查了函数y =Asin(ωx +φ)的图象与性质、函数图象的变换的相关知识,属于基础题.根据函数y=Asin(ωx+φ)的图象变换的规则可得结论.【解答】解:故选C.7.【答案】C本题考查三角函数y=Asin(ωx+φ)的图象和性质,涉及诱导公式应用,属于基础题.依题意,根据图象求得A=2,ω=12,根据五点作图法得进而求得结果.【解答】解:由图知A=2,T2=8π3−2π3=2π=πω,ω=12,y=2sin(12x+φ),根据五点作图法知,代入得,,所以,k∈Z,故选C.8.【答案】C本题考查函数y=Asin(ωx+φ)的图象和性质,属于基础题.函数y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后与原图象重合,可判断出4π3是此函数周期的整数倍,由此能求出ω的表达式,判断出它的最小值.【解答】解:由函数的图象向右平移4π3个单位长度后与原图象重合,得4π3是此函数周期的整数倍.又ω>0,∴2πω⋅k=4π3(k∈Z,且k>0),∴ω=3k2(k∈Z,且k>0),∴ωmin=32.故选C.9.【答案】B【解答】解:由函数图象可知A=2,由于图象过点(0,√3),可得2sinφ=√3,即sinφ=√32,由于|φ|<π2,解得φ=π3,即有f(x)=2sin(2x+π3).由2x+π3=kπ,k∈Z,解得x=kπ2−π6,k∈Z,故f(x)的图象的对称中心是(kπ2−π6,0),k∈Z,当k=0时,f(x)的图象的一个对称中心是(−π6,0).故选B.10.【答案】C本题考查三角函数图像的平移变换,函数的解析式,属于基础题.由三角函数图像的平移得为,代入点,得,得ω=2,从而得解析式.【解答】解:函数y=sinωx(ω>0)的图象向左平移π6个单位长度,则平移后的图象所对应的函数解析式为,代入点,得,,k∈Z,当k=0时,ω=2,即解析式为y=sin(2x+π3).故选C.11.【答案】B本题考查函数y=Asin(ωx+φ)的图象与性质,属于中档题.根据题意得出,得出ω=2n−1(n∈N∗),由函数g(x)在(π6,π2)上具有单调性,得出π2−π6⩽T2=πω,即可求出结果.【解答】解:由题意得,g(x)=sin(ωx+φ),最小正周期T=2πω,若g(π6)=1,g(2π3)=0,,∴ω=2n−1(n∈N∗),∵函数g(x)在(π6,π2)上具有单调性,∴π2−π6⩽T2=πω,解得ω⩽3,又ω>1,ω=2n−1(n∈N∗),∴ω=3.故选B.12.【答案】D本题考查函数y=Asin(ωx+φ)的图象与性质,正弦、余弦函数的图象与性质,属于中档题.先根据函数f(x)=12sin(ωx+π3)(ω>0)的最小正周期为π,求出ω=2,再根据选项逐一判断即可.【解答】解:∵函数f(x)=12sin(ωx+π3)(ω>0)的最小正周期为π,∴2πω=π,解得ω=2,则f(x)=12sin(2x+π3),对于A.当x=π3时,f(π3)=12sin(2×π3+π3)=0,∴函数f(x)的图象关于点(π3,0)对称,故A不正确;对于B.当x=π12时,f(π12)=12sin(2×π12+π3)=12,∴函数f(x)的图象关于直线x=π12对称,故B不正确;对于C.f(x)=12sin(2x+π3)的单调递减区间满足:2kπ+π2≤2x+π3≤2kπ+3π2,k∈Z,解得kπ+π12≤x≤kπ+7π12,k∈Z,k=−1时不符合,故C不正确;对于D.将函数f(x)的图象向右平移5π12个单位,得到新函数为g(x)=f(x−5π12)=1 2sin(2x−π2)=−12cos2x,是偶函数,故D正确.故选D.13.【答案】C本题考查三角函数的图象的性质,属一般题.根据题意求出函数解析式,然后验证对称性和单调性.【解答】解:f(x)=2sin(ωx +φ)(ω>0,|φ|<π2),其图象相邻最高点之间距离为,ω=2, 所以将函数y =f(x)的向左平移π12个单位长度后,,因为g(x)为奇函数, 所以,则,则,当,,当,,故A ,B 错误;当x ∈(−π6,π3)时,,所以f(x)在(−π6,π3)单调递增,故C 正确;当x ∈(−2π3,−π6)时,,所以f(x)在(−2π3,−π6)单调递减,故D 错误; 故选C .14.【答案】D本题考查三角函数的图象变换、诱导公式的应用. 利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变, 得到函数y =cos2x 图象,再把得到的曲线向左平移π12个单位长度, 得到函数y =cos2(x +π12)=cos(2x +π6) =sin(2x +2π3)的图象,即曲线C 2,故选D .15.【答案】D本题主要考查函数y =Asin(ωx +φ)的图象变换规律,三角函数的图象和性质,属于基础题.利用函数y =Asin(ωx +φ)的图象变换规律求得g(x)的解析式,再利用余弦函数的图象和性质,可得结论.【解答】解:把曲线y=sin(2x+π6)向左平移φ(φ>0)个单位,得到的曲线y=g(x)=sin(2x+2φ+π6),由于所得曲线经过点(−π12,1),∴sin(−π6+2φ+π6)=sin2φ=1,,,∵φ>0,,,,,故g(x)=cos(2x+π6)的最小正周期为2π2=π,故A错误;在[11π12,17π12]上,2x+π6∈[2π,3π],故函数y=g(x)在[11π12,17π12]上单调递减,故B错误;当x=π6时,g(x)=0,故g(x)的图象关于点(π6,0)对称,故C错误;当x=2π3时,g(x)=0,故g(x)的图象关于点(2π3,0)对称,故D正确,故选:D.16.【答案】D由图象求y=Asin(ωx+φ)(A>0,ω>0)解析式的方法;(1)A可由图象上最高点和最低点的纵坐标确定;(2)ω可由图象上最高点与最低点的横坐标确定,先求出最小正周期T,再由T=2πω求出ω;(3)φ可以由某一点处的函数值求得,要注意φ的范围.【解答】解:设f(x)的最小正周期为T,则12T=2π3−π6=π2,T=π,∴ω=2πT =2.又由图象可得A=32,∴f(x)=32sin(2x+φ).∵f(5π12)=32sin(2×5π12+φ)=32,∴5π6+φ=2kπ+π2,k∈Z,即φ=2kπ−π3,k∈Z,又|φ|≤π,∴φ=−π3,∴y=f(x)=32sin(2x−π3).故选D.17.【答案】BD【解析】【分析】本题考查了函数y=Asin(ωx+φ)的图象与性质的相关知识,试题难度较易由题意将函数f(x)图象向右平移φ(φ>0)个单位长度后,得到的图象对应的解析式g(x),又函数g(x)为奇函数,即可得出φ的值【解答】解:将函数f(x)图象向右平移φ(φ>0)个单位长度后,得到的图象对应的解析式为g(x)=sin[2(x−φ)+π3]=sin(2x−2φ+π3).由g(x)为奇函数可得−2φ+π3=kπ(k∈Z),故φ=π6−kπ2(k∈Z),又φ>0,结合选项,所以φ的值可以为π6,23π.故应选BD.18.【答案】BC【分析】本题考查函数y=Asin(ωx+φ)的图象与性质,函数图象的平移伸缩变换,属于基础题.依据函数y=Asin(ωx+φ)的图象平移伸缩变换的规则逐一判定即可.【解答】解:对于A,把函数y=cosx图象上所有的点向左平移π4个单位长度,可得函数,再将横坐标变为原来的2倍,可得函数,故A错误;对于B,把函数y=cosx图象上所有的点向左平移π4个单位长度,可得函数,再将横坐标变为原来的12倍,可得函数,故B正确;对于C,把函数y=cosx图象上所有的点横坐标变为原来的12倍,可得函数y=cos 2x,再向左平移π8个单位长度,可得函数,故C正确;对于D,把函数y=cosx图象上所有的点横坐标变为原来的12倍,可得函数y=cos 2x,再向左平移π4个单位长度,可得函数,故D错误.故选BC.19.【答案】BD本题考查三角函数的性质应用,考查两角和与差的三角函数公式,辅助角公式及二倍角公式应用,属基础题.依题意,根据两角和与差的三角公式及二倍角公式化简函数,再根据三角函数的性质求解即可.【解答】解:,因最小正周期为π得ω=1,故A错误,当时,,得函数f(x)在[0,π6]上为增函数,故B正确;当,,所以直线x=π3不是函数y=f(x)图象的一条对称轴,故C 错误;当,,得点(512π,0)是函数y=f(x)图象的一个对称中心,故D正确;故选BD.20.【答案】ACD本题考查三角函数的图象与性质,涉及正弦函数图象与性质的应用,属于中档题.先由函数图象得出g(x)的解析式,再由函数图象的变换得出f(x)的解析式,借助正弦函数的图象与性质得出答案即可.【解答】解:由图可知,A=2,T=4×(2π9−π18)=2π3,∴ω=2πT=3,又由g(2π9)=2,可得2π9×3+φ=π2+2kπ(k∈Z),且lφ|<π2,∴φ=−π6,∴g(x)=2sin(3x −π6),将函数g(x)的图象上所有点的横坐标伸长到原来的32,可得函数,再将函数图象向左平移π6个单位长度,得到函数,∴f(x)=2sin(2x +π6),∴f(x)的最小正周期为π,最大值为2,A 正确. 令2x +π6=kπ,k ∈Z ,得,∴函数f(x)图象的对称中心为(kπ2−π12,0)(k ∈Z), 由kπ2−π12=π6,得k =12,不符合k ∈Z ,B 错误; 对于选项C ,令2x +π6=π2+kπ(k ∈Z),得x =π6+kπ2(k ∈Z),∴函数f(x)图象的对称轴为直线x =π6+kπ2(k ∈Z),当k =0时,x =π6,故C 正确;当x ∈[π6,π3]时,2x +π6∈[π2,5π6],∴f(x)在区间[π6,π3]上单调递减,D 正确. 故选ACD .21.【答案】解:(1)因为f(x)=4cos xsin (x +π6)−1=4cos x (√32sin x +12cos x)−1=√3sin 2x +2cos 2x −1 =√3sin 2x +cos 2x=2sin (2x +π6), 所以f(x)的最小正周期为π; (2)因为−π6≤x ≤π4, 所以−π6≤2x +π6≤2π3.故当2x +π6=π2,即x =π6时,f(x)取得最大值2; 当2x +π6=−π6,即x =−π6时,f(x)取得最小值−1.【解析】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于中档题.(1)利用二倍角和两角和与差以及辅助角公式将函数化为y=Asin(ωx+φ)的形式,即可求出函数的最小正周期;(2)先根据x的取值范围求得2x+π6的范围,再由正弦函数的性质即可求出函数的最大值和最小值.22.【答案】解:(1)由图象知函数的最大值为1,即A=1,T2=3−(−1)=4,即周期T=8,即2πω=8,得ω=π4,则f(x)=sin(π4x+φ),由五点对应法得π4×1+φ=π2,得φ=π4,即f(x)=sin(π4x+π4).(2)若x∈[−53,53 ],则π4x+π4∈[−π6,2π3],∴当π4x+π4=−π6时,即x=−53时,f(x)最小,最小值为f(−53)=−12,当π4x+π4=π2时,即x=1时,f(x)最大,最大值为f(1)=1,∴f(x)的值域为[−12,1].【解析】本题主要考查三角函数的图象和性质,利用图象法求出函数的解析式以及结合三角函数的最值性质是解决本题的关键.难度不大.(1)根据函数图象先求出A和周期,结合周期公式求出ω,利用五点对应法求出φ即可求出函数的解析式.(2)求出角的范围,结合三角函数的最值关系进行求解即可.23.【答案】解:(Ⅰ;(Ⅱ)f(x)=2√3sinxcosx−cos(2x+π3)−cos(2x−π3)=√3sin2x−12cos2x+√32sin2x−12cos2x−√32sin2x=√3sin2x −cos2x =2sin(2x −π6),因为x ∈[−π12,5π12]∴−π3≤2x −π6≤2π3,∴2sin(2x −π6)∈[−√3,2]. 即函数f(x)在区间[−π12,5π12]上的最大值为2,最小值为−√3.【解析】本题考查三角函数的化简与求值,考查三角函数的性质,属基础题. (Ⅰ)将代入化简即可;(Ⅱ)利用辅助角公式化简得到f(x),由x 的取值范围得出2x −π6的范围,再由正弦函数的性质得出最值即可.24.【答案】解:(1)函数y =12sin (2x +π6)的振幅为12,周期为π,初相为π6.(2)列表:描点画图(如图所示):(3)函数y =sinx 的图象向左平移π6个单位长度,得到函数y =sin (x +π6)的图象, 再保持纵坐标不变,把横坐标缩短为原来的12倍,得到函数y =sin (2x +π6)的图象, 再保持横坐标不变,把纵坐标缩短为原来的12倍,得到函数y =12sin (2x +π6)的图象.【解析】本题主要考查了三角函数的图象和性质以及“五点法”作图和图象的平移和伸缩变换,属于基础题.(1)结合振幅、周期、初相的定义可得; (2)按照列表、描点、连线的步骤求解画图;(3)由y =sinx (x ∈R )的图象左移π6个单位得到数y =sin (x +π6),x ∈R 的图象,然后横坐标再伸缩得到y =sin (2x +π6),x ∈R 的图象,最后纵坐标再伸缩得到y =12sin (2x +π6),x ∈R 的图象.25.【答案】解:(1)如图可知,A =2,T =4×[π12−(−π6)]=π,∴ω=2πT=2.∵{2sin (2×π12+φ)=2|φ|<π2,∴φ=π3,即函数解析式为;(2)根据图象平移原则得g (x )=2sin (4x +π3), ∵x ∈[0,π4],∴4x +π3∈[π3,4π3],∴2sin (4x +π3)∈[−√3,2], 当,即x =π24时,函数g(x)在区间[0,π4]上的最大值为2.【解析】本题考查了三角函数的图象与性质的应用,求出函数f(x)的解析式是关键,属于中档题.(1)利用三角函数的图象,得出振幅A 与周期T ,代入特殊点求出φ,即可求出函数解析式;(2)根据图像平移,得到函数g(x)的解析式,最后利用正弦型函数的性质求出结果.26.【答案】解:(Ⅰ)函数f(x)=cos2x +sin(2x −π6)=cos2x +√32sin2x −12cos2x =sin(2x +π6),故它的最小正周期为2π2=π.(Ⅱ)令2kπ−π2≤2x +π6≤2kπ+π2,k ∈Z , 得kπ−π3≤x ≤2kπ+π6,k ∈Z ,∴函数的增区间为[kπ−π3,2kπ+π6],k∈Z,∵x∈[0,π],∴函数的增区间为[0,π6]、[2π3,π].【解析】本题主要考查两角和差的三角公式,正弦函数的周期性和单调性,属于基础题.(Ⅰ)由题意利用两角和差的三角公式化简函数f(x)的解析式,可得它的最小正周期.(Ⅱ)由题意利用正弦函数的单调性,求出函数f(x)的单调递增区间.27.【答案】解:f(x)=2cosxcosπ3+2sinxsinπ3−2cosx=cosx+√3sinx−2cosx=√3sinx−cosx=2sin(x−π6 ).(1)令2kπ+π2≤x−π6≤2kπ+32π(k∈Z),∴2kπ+2π3≤x≤2kπ+5π3(k∈Z),∴f(x)的单调递减区间为[2kπ+2π3,2kπ+5π3](k∈Z).(2)f(x)取最大值2时,x−π6=2kπ+π2(k∈Z),则x=2kπ+2π3(k∈Z).∴f(x)的最大值是2,取得最大值时的x的取值集合是{x|x=2kπ+2π3,k∈Z}.(3)∵f(x)=65,∴2sin(x−π6)=65,∴sin(x−π6)=35.∴cos(2x−π3)=1−2sin2(x−π6)=1−2×(35)2=725.【解析】本题考查了函数y=Asin(ωx+φ)的图象与性质,诱导公式,两角和与差的三角函数公式和二倍角公式,属于中档题.利用诱导公式和两角差的余弦函数公式得f(x)=√3sinx−cosx,即.(1)利用函数y=Asin(ωx+φ)的单调性,计算得结论;(2)利用函数y=Asin(ωx+φ)的最值,计算得结论;(3)利用题目条件得,再利用余弦的二倍角公式,计算得结论.28.【答案】解:(1)由最值可确定A=2,周期T=2×(π3+π6)=π⇒ω=2,又f(π3)=2,即,,即,∵|φ|<π,∴φ=−π6,所以f(x)=2sin (2x−π6);(2)f(A)=2sin (2A−π6)=1⇒sin (2A−π6)=12⇒2A−π6=π6或5π6,故A=π6或π2,当A=π2时,三角形为直角三角形,此时a>c,这与题目条件a=1,c=2矛盾,所以舍掉;当A=π6时,由余弦定理得:a2=b2+c2−2bccos A⇒b2−2√3b+3=0,解得b=√3.【解析】本题考查函数y=Asin(ωx+φ)的图象与性质,余弦定理,考查运算化简的能力,属于中档题.(1)由图可得A=2,,可得ω=2,再由f(π3)=2,结合|φ|<π可得φ,从而可得f(x)的解析式;(2)由(1)及f(A)=1,求得A=π6或π2,按A讨论结合余弦定理可得.29.【答案】解:(1)f(x)=√3sinxcosx+sin2x−12=√32sin2x+1−cos2x2−12=sin(2x−π6 ),令−π2+2kπ≤2x−π6≤π2+2kπ,k∈Z.解得,k∈Z.所以f(x)的单调增区间为[−π6+kπ,π3+kπ](k∈Z).(2)由(1)得f(x)=sin(2x−π6),所以f(A)=sin(2A−π6)=13,令θ=2A−π6,则0<θ<π2,所以sinθ=13,cosθ=2√23,则cos(2A−56π)=cos(θ−23π)=cosθcos23π+sinθsin23π=2√23×(−12)+13×√32=√3−2√26.【解析】本题考查了函数y=Asin(ωx+φ)的图象与性质和三角恒等变换,是中档题。
【高考专题】2019年 高考数学 函数图像 专项练习32题(含答案)

2019年 高考数学 函数图像 专项练习32题一、选择题1.函数y=5-|x|的图象是( )2.函数的图象可能是( ).3.函数y=2x -x 2的图像大致是( )4.函数的图像大致为( )5.函数)1(>=a xxa y x 的图象的大致形状是( )6.函数)1ln(23x x x y -++=的图象大致为( )7.函数y=e ∣x ∣-4cosx(e 为自然对数的底数)的图象可能是( )8.函数的图象大致为( )9.函数的图像大致为( )10.函数,则y=f(x+1)的图象大致是( )11.已知函数f(x)=4-x2,y=g(x)是定义在R上的奇函数,当x>0时,g(x)=logx,则函数f(x)·g(x)的大致2图象为( )12.函数y=-x4+x2+2的图像大致为( )13.已知a是常数,函数的导函数的图像如图所示,则函数的图像可能是( )14.已知lga+lgb=0,则函数y=a x与函数y=-logx的图象可能是( )b15.已知函数,则函数的大致图象是( )16.函数的大致图象为( )17.函数y=2x+1-2x2的图象大致是( )18.函数的部分图象大致为( )19.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是 ( )20.设函数f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能为( )21.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是( )22.设函数y=f(x)在定义域内可导,其图象如图所示,则导函数y=f′(x)的大致图象为( )23.函数f(x)在其定义域内可导,其图象如图所示,则导函数y=f′(x)的图象可能为( )24.已知函数f(x)=0.25x2+cosx,f/(x)是函数f(x)的导函数,则f/(x)的图象大致是( )25.函数y=sinx2的图象是( )26.函数的图象大致是( )27.函数f(x)=log∣2x-1∣的图象大致是( )228.幂函数f(x)=x a满足f(2)=4,那么函数g(x)=∣log(x+1)∣的图象大致为( )a29.函数y=e-∣x-1∣的图象大致形状是 ( )30.函数f(x)=-e-ln∣x∣+x的大致图象为( )31.函数f(x)=2-∣x∣+1的图像大致为 ( )32.函数在同一平面直角坐标系内的大致图象为 ( )参考答案1.D2.D3.A4.B5.B6.B7.C8.D9.C10.B11.D12.D13.D14.D15.A16.D17.B18.A19.C20.D21.C.22.D.23.C.24.A25.D26.D27.A28.C29.B30.B31.A32.C。
高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数在上的图像大致为()【答案】A【解析】函数是奇函数,所以C,D被排除;当时,,,由此判断,函数原点右侧开始时应该是正数,所以选A.【考点】函数的图像与性质2.如图,已知l1⊥l2,圆心在l1上、半径为1 m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cos x,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为( )【答案】B【解析】通过圆心角α将弧长x与时间t联系起来.圆半径为1,设弧长x所对的圆心角为α,则α=x,如图所示,cos=1-t,即cos=1-t,则y=cos x=2cos2-1=2(1-t)2-1=2(t-1)2-1(0≤t≤1).其图象为开口向上,在[0,1]上的一段抛物线.3.若函数的图像如右图所示,则下列函数图像正确的是()【答案】B【解析】由题意可得.所以函数是递减的即A选项不正确.B正确. 是递减,所以C不正确. 图象与关于y轴对称,所以D不正确.故选B.【考点】函数的图象.4.已知函数f(x)=|lgx|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【答案】C【解析】函数f(x)=|lgx|的图象如图所示,由图象知a,b一个大于1,一个小于1,不妨设a>1,0<b<1.∵f(a)=f(b),∴f(a)=|lga|=lga=f(b)=|lgb|=-lgb=lg.∴a=.∴a+b=b+>2=2.5.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为________.【答案】【解析】由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图像如图所示,结合图像可知,当x∈[2,3]时,y=x2-5x+4∈,故当m∈时,函数y=m与y=x2-5x+4(x∈[0,3])的图像有两个交点.6.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.7.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.8.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.9.已知,则函数的零点个数为()A.1B.2C.3D.4【答案】D【解析】由题意可知,要研究函数的零点,只要研究函数与函数的交点个数,画出两个函数的图象,如图,很明显是4个交点.【考点】1.函数的零点;2.函数的图象.10.函数的图象大致是().【答案】C【解析】不难知道,函数是奇函数,故排除A;又,令得,而此方程有无穷个解,且在每个解的两边函数值不同号,所以函数有无穷多个极值点,故可排除B,D.11.已知,点在曲线上,若线段与曲线相交且交点恰为线段的中点,则称为曲线关于曲线的一个关联点.记曲线关于曲线的关联点的个数为,则( ) A.B.C.D.【答案】B【解析】设则的中点为所以有,因此关联点的个数就为方程解得个数,由于函数在区间上分别单调增及单调减,所以只有一个交点,即.【考点】函数图像12.如图,不规则四边形ABCD中,AB和CD是线段,AD和BC是圆弧,直线于E,当从左至右移动(与线段AB有公共点)时,把四边形ABCD分成两部分,设,左侧部分面积为,则关于的图像大致为( )【答案】C【解析】由直线的变化可知,开始时圆弧那段变化较慢,所以排除A,B选项,由于左边的面积始终在增大,所以D选项不正确.【考点】1.图形的变化规律.2.关注局部图形的变化.13.已知函数y=f(x)的图象如图所示,请根据已知图象作出下列函数的图象:①y=f(x+1);②y=f(x)+2;【答案】【解析】(1)将函数y=f(x)的图象向左平移一个单位得到y=f(x+1)的图象(如图①所示),将函数y=f(x)的图象向上平移两个单位得到y=f(x)+2的图象(如图②所示).14.已知函数,,若在区间内,函数与轴有3个不同的交点,则实数的取值范围是()A.B.C.D.【答案】C【解析】∵,∴,∴,∴,∴,∴当时,,∵函数与x轴有3个不同交点,∴函数与有3个不同的交点,函数的图像如图所示,直线与相切是一个边界情况,直线过时是一个边界情况,符合题意的直线需要在这2条直线之间,∵,∴,∴,所以切线方程为,与相同,即,当过点时,,综上可得:,故选C.【考点】1.导数的运算;2.函数图像;3.曲线的切线.15.函数y=lnx-1的图象关于直线y=x对称的图象大致是 ( )A. B. C. D.【答案】A【解析】因为关于直线y=x对称点的关系为,所以函数y=lnx-1的关于直线y=x对称的函数的解析式为.即相当于将函数的图像向左平移一个单位,显然B,D不正确,C 选项中的图像在y轴的交点过低,所以不正确.故选A.【考点】1.函数的对称性.2.指数函数的图像.3.函数图像的平移知识.16.下列函数图象与x轴均有公共点,其中能用二分法求零点的是().【答案】C【解析】只有零点两侧的函数值符号相反且在零点附近连续时才可用二分法.17.函数y=的图象大致是().【答案】D【解析】由y=知为奇函数,排除A,B.根据函数有两个零点x=±1,排除C.18.函数y=-2sin x的图象大致是 ().【答案】C【解析】当x=0时,y=0-2sin 0=0,故函数图象过原点,可排除A.又∵y′=-2cos x,当x在y轴右侧趋向0时,f′(x)<0,此时函数为减函数;当x=2 π时,f′(2 π)=-2 cos 2 π=-<0,所以x=2 π应在函数的减区间上,故选C19.函数的图象大致是( )【答案】D【解析】因为的定义域为,且,故可排除,所以应选D.【考点】1、函数的定义域;2、函数的性质;函数的图象.20.函数的图象大致是( )【答案】A【解析】,故此函数在上为增函数,在为减函数;且只有一个根,故只有一个零点.所以选A.【考点】函数的性质与图像.21.随着生活水平的提高,私家车已成为许多人的代步工具。
高考专题 《函数图像问题》考题归纳及详解

高考专题《函数图像问题》考题归纳及详解一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.2.函数y=x+cosx的大致图象是()A.B.C.D.3.函数y=的图象大致是()A. B.C.D.4.函数y=xln|x|的大致图象是()A.B.C.D.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.8.函数y=xln|x|的图象大致是()A.B.C.D.9.f(x)=的部分图象大致是()A.B.C. D.10.函数的图象大致为()A. B. C. D.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.13.函数的部分图象大致为()A.B.C.D.14.函数f(x)=的部分图象大致为()A.B.C.D.15.函数的部分图象大致为()A.B.C.D.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.18.函数f(x)=的部分图象大致是()A.. B..C..D..19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.20.函数的图象大致是()A.B.C.D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.22.函数的图象大致是()A.B.C.D.23.函数y=的大致图象是()A.B.C.D.24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.27.函数y=1+x+的部分图象大致为()A.B.C.D.28.函数y=的部分图象大致为()A.B.C.D.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.31.函数y=的一段大致图象是()A. B.C.D.32.函数的图象大致是()A.B.C.D.33.函数的大致图象是()A.B.C.D.34.函数的图象大致为()A.B.C.D.二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.函数图像问题高考试题精选参考答案与试题解析一.选择题(共34小题)1.函数f(x)=(x2﹣2x)e x的图象大致是()A. B.C.D.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)e x,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.2.函数y=x+cosx的大致图象是()A.B.C.D.【解答】解:由于f(x)=x+cosx,∴f(﹣x)=﹣x+cosx,∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A、C;又当x=时,x+cosx=x,即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除D.故选:B.3.函数y=的图象大致是()A. B.C.D.【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D4.函数y=xln|x|的大致图象是()A.B.C.D.【解答】解:令f(x)=xln|x|,易知f(﹣x)=﹣xln|﹣x|=﹣xln|x|=﹣f(x),所以该函数是奇函数,排除选项B;又x>0时,f(x)=xlnx,容易判断,当x→+∞时,xlnx→+∞,排除D选项;令f(x)=0,得xlnx=0,所以x=1,即x>0时,函数图象与x轴只有一个交点,所以C选项满足题意.故选:C.5.函数f(x)=x2﹣2|x|的图象大致是()A. B.C.D.【解答】解:∵函数f(x)=x2﹣2|x|,∴f(3)=9﹣8=1>0,故排除C,D,∵f(0)=﹣1,f()=﹣2=0.25﹣<﹣1,故排除A,故选:B当x>0时,f(x)=x2﹣2x,∴f′(x)=2x﹣2x ln2,故选:B6.函数f(x)=+ln|x|的图象大致为()A.B.C.D.【解答】解:当x<0时,函数f(x)=,由函数y=、y=ln(﹣x)递减知函数f(x)=递减,排除CD;当x>0时,函数f(x)=,此时,f(1)==1,而选项A的最小值为2,故可排除A,只有B正确,故选:B.7.在下列图象中,二次函数y=ax2+bx及指数函数y=()x的图象只可能是()A.B. C.D.【解答】解:根据指数函数y=()x可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C 不正确故选:A8.函数y=xln|x|的图象大致是()A.B.C.D.【解答】解:∵函数f(x)=xln|x|,可得f(﹣x)=﹣f(x),f(x)是奇函数,其图象关于原点对称,排除A,D,当x→0时,f(x)→0,故排除B又f′(x)=lnx+1,令f′(x)>0得:x>,得出函数f(x)在(,+∞)上是增函数,故选:C.9.f(x)=的部分图象大致是()A.B.C. D.【解答】解:∵f(﹣x)=f(x)∴函数f(x)为奇函数,排除A,∵x∈(0,1)时,x>sinx,x2+x﹣2<0,故f(x)<0,故排除B;当x→+∞时,f(x)→0,故排除C;故选:D10.函数的图象大致为()A. B. C. D.【解答】解:函数是非奇非偶函数,排除A、B,函数的零点是x=e﹣1,当x=e时,f(e)=,排除选项D.故选:C.11.函数f(x)=(其中e为自然对数的底数)的图象大致为()A. B.C.D.【解答】解:f(﹣x)====f(x),∴f(x)是偶函数,故f(x)图形关于y轴对称,排除B,D;又x→0时,e x+1→2,x(e x﹣1)→0,∴→+∞,排除C,故选A.12.函数f(x)=(2x﹣2﹣x)cosx在区间[﹣5,5]上的图象大致为()A. B.C.D.【解答】解:当x∈[0,5]时,f(x)=(2x﹣2﹣x)cosx=0,可得函数的零点为:0,,,排除A,B,当x=π时,f(π)=﹣2π+2﹣π,<0,对应点在x轴下方,排除选项C,故选:D.13.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.14.函数f(x)=的部分图象大致为()A.B.C.D.【解答】解:函数f(x)==﹣,当x=0时,可得f(0)=0,f(x)图象过原点,排除A.当﹣<x<0时;sin2x<0,而|x+1|>0,f(x)图象在上方,排除C.当x<﹣1,x→﹣1时,sin(﹣2)<0,|x+1|→0,那么f(x)→∞,当x=﹣时,sin2x=﹣,y=﹣=,对应点在第二象限,排除D,B满足题意.故选:B.15.函数的部分图象大致为()A.B.C.D.【解答】解:∵f(﹣x)=﹣f(x),可得f(x)为奇函数,排除B,∵<1,排除A.当x>0时,,,∴在区间(1,+∞)上f (x)单调递增,排除D,故选C.16.函数y=x(x2﹣1)的大致图象是()A.B. C. D.【解答】解:∵函数y=x(x2﹣1),令f(x)=x(x2﹣1),则f(﹣x)=﹣x(x2﹣1)=﹣f(x),故函数f(x)为奇函数,又当0<x<1时,f(x)<0,综上所述,函数y=x(x2﹣1)的大致图象是选项A.故选:A.17.函数y=x﹣2sinx,x∈[﹣,]的大致图象是()A.B.C.D.【解答】解:f(﹣x)=﹣x+2sinx=﹣(x﹣2sinx)=﹣f(x),所以函数为奇函数,故函数的图象关于原点对称,只有CD适合,y′=1﹣2cosx,由y′=0解得x=,∴当x=时,函数取极值,故D适合,故选:D.18.函数f(x)=的部分图象大致是()A.. B..C..D..【解答】解:由x2+|x|﹣2=0,解得x=﹣1或x=1,∴函数的定义域为(﹣∞,﹣1)∪(﹣1,1)∪(1,+∞),∵f(﹣x)==﹣f(x),∴f(x)为奇函数,∴f(x)的图象关于原点对称,故排除A,令f(x)=0,解得x=0,故排除C,当x=时,f()=<0,故排除B,故选:D19.函数y=﹣2x2+2|x|在[﹣2,2]的图象大致为()A.B.C.D.【解答】解:由y=﹣2x2+2|x|知函数为偶函数,即其图象关于y 轴对称,故可排除B,D.又当x=2时,y=﹣2•(﹣2)2+22=﹣4.所以,C是错误的,故选:A.20.函数的图象大致是()A.B.C.D.【解答】解:解:定义域为(﹣∞,0)∪(0,+∞),f(x)=)=﹣,∴f(﹣x)=f(x),f(x)为偶函数,.∴其图象关于y轴对称,可排除A、C,;又当x→0时,cos(πx)→1,x2→0,∴f(x)→﹣∞.故可排除B;而D均满足以上分析.故选:D.21.函数f(x)=(x∈[﹣2,2])的大致图象是()A.B.C.D.【解答】解:函数f(x)=(x∈[﹣2,2])满足f(﹣x)=﹣f(x)是奇函数,排除D,x=1时,f(1)=>0,对应点在第一象限,x=2时,f(2)=<0,对应点在第四象限;所以排除B,C;故选:A.22.函数的图象大致是()A.B.C.D.【解答】解:函数满足f(﹣x)=﹣f(x),故函数图象关于原点对称,排除A、B,当x∈(0,)时,,故排除D,故选:C23.函数y=的大致图象是()A.B.C.D.【解答】解:函数y=的导数为,令y′=0,得x=,时,y′<0,时,y′>0,时,y′<0.∴函数在(﹣),()递减,在()递增.且x=0时,y=0,故选:C24.函数y=sinx(1+cos2x)在区间[﹣2,2]上的图象大致为()A.B.C.D.【解答】解:函数y=sinx(1+cos2x),定义域为[﹣2,2]关于原点对称,且f(﹣x)=sin(﹣x)(1+cosx)=﹣sinx(1+cosx)=﹣f(x),则f(x)为奇函数,图象关于原点对称,排除D;由0<x<1时,y=sinx(1+cos2x)=2sinxcos2x>0,排除C;又2sinxcos2x=0,可得x=±(0<x≤2),则排除A,B正确.故选B.25.函数f(x)=(x2﹣3)•ln|x|的大致图象为()A. B. C. D.【解答】解:函数f(x)=(x2﹣3)•ln|x|是偶函数;排除选项A,D;当x→0时,f(x)→+∞,排除选项B,故选:C.26.函数f(x)=﹣e﹣ln|x|+x的大致图象为()A.B.C.D.【解答】解:函数f(x)=﹣e﹣ln|x|+x是非奇非偶函数,排除A,D;当x>0时,f(x)=﹣e﹣lnx+x=x﹣,函数是增函数,排除C;故选:B.27.函数y=1+x+的部分图象大致为()A.B.C.D.【解答】解:函数y=1+x+,可知:f(x)=x+是奇函数,所以函数的图象关于原点对称,则函数y=1+x+的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,点x=π时,y=1+π,排除B.故选:D.28.函数y=的部分图象大致为()A.B.C.D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.29.函数f(x)=x•ln|x|的图象可能是()A.B.C.D.【解答】解:函数f(x)=x•ln|x|是奇函数,排除选项A,C;当x=时,y=,对应点在x轴下方,排除B;故选:D.30.函数f(x)=e ln|x|+的大致图象为()A.B.C.D.【解答】解:∵f(x)=e ln|x|+∴f(﹣x)=e ln|x|﹣f(﹣x)与f(x)即不恒等,也不恒反,故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,可排除A,D,当x→0+时,y→+∞,故排除B故选:C.31.函数y=的一段大致图象是()A. B.C.D.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.32.函数的图象大致是()A.B.C.D.【解答】解:由题意,函数在(﹣1,1)上单调递减,在(﹣∞,﹣1),(1,+∞)上单调递减,故选A.33.函数的大致图象是()A.B.C.D.【解答】解:f(﹣x)===﹣f(x),∴f(x)是奇函数,图象关于原点对称,故A,C错误;又当x>1时,ln|x|=lnx>0,∴f(x)>0,故D错误,故选B.34.函数的图象大致为()A.B.C.D.【解答】解:f(﹣x)==﹣=﹣f(x),∴函数f(x)为奇函数,则图象关于原点对称,故排A,B,当x=时,f()==故选:D二.解答题(共6小题)35.在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρcosθ=4.(1)M为曲线C1上的动点,点P在线段OM上,且满足|OM|•|OP|=16,求点P的轨迹C2的直角坐标方程;(2)设点A的极坐标为(2,),点B在曲线C2上,求△OAB 面积的最大值.【解答】解:(1)曲线C1的直角坐标方程为:x=4,设P(x,y),M(4,y0),则,∴y0=,∵|OM||OP|=16,∴=16,即(x2+y2)(1+)=16,∴x4+2x2y2+y4=16x2,即(x2+y2)2=16x2,两边开方得:x2+y2=4x,整理得:(x﹣2)2+y2=4(x≠0),∴点P的轨迹C2的直角坐标方程:(x﹣2)2+y2=4(x≠0).(2)点A的直角坐标为A(1,),显然点A在曲线C2上,|OA|=2,∴曲线C2的圆心(2,0)到弦OA的距离d==,∴△AOB的最大面积S=|OA|•(2+)=2+.36.在直角坐标系xOy中,曲线C1的参数方程为(t 为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).37.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为ρsin(θ+)=2.(1)写出C1的普通方程和C2的直角坐标方程;(2)设点P在C1上,点Q在C2上,求|PQ|的最小值及此时P 的直角坐标.【解答】解:(1)曲线C1的参数方程为(α为参数),移项后两边平方可得+y2=cos2α+sin2α=1,即有椭圆C1:+y2=1;曲线C2的极坐标方程为ρsin(θ+)=2,即有ρ(sinθ+cosθ)=2,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,即有C2的直角坐标方程为直线x+y﹣4=0;(2)由题意可得当直线x+y﹣4=0的平行线与椭圆相切时,|PQ|取得最值.设与直线x+y﹣4=0平行的直线方程为x+y+t=0,联立可得4x2+6tx+3t2﹣3=0,由直线与椭圆相切,可得△=36t2﹣16(3t2﹣3)=0,解得t=±2,显然t=﹣2时,|PQ|取得最小值,即有|PQ|==,此时4x2﹣12x+9=0,解得x=,即为P(,).另解:设P(cosα,sinα),由P到直线的距离为d==,当sin(α+)=1时,|PQ|的最小值为,此时可取α=,即有P(,).38.在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a ﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,且的d 的最大值为.①当﹣a﹣4≤0时,即a≥﹣4时,|5sin(θ+4)﹣a﹣4|≤|﹣5﹣a﹣4|=5+a+4=17解得a=8≥﹣4,符合题意.②当﹣a﹣4>0时,即a<﹣4时|5sin(θ+4)﹣a﹣4|≤|5﹣a﹣4|=5﹣a﹣4=1﹣a=17解得a=﹣16<﹣4,符合题意.39.在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),曲线C的参数方程为(s为参数).设P为曲线C上的动点,求点P到直线l的距离的最小值.【解答】解:直线l的直角坐标方程为x﹣2y+8=0,∴P到直线l的距离d==,∴当s=时,d取得最小值=.40.在直角坐标系xOy中,直线l1的参数方程为,(t为参数),直线l2的参数方程为,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣=0,M为l3与C的交点,求M的极径.【解答】解:(1)∵直线l1的参数方程为,(t为参数),∴消掉参数t得:直线l1的普通方程为:y=k(x﹣2)①;又直线l2的参数方程为,(m为参数),同理可得,直线l2的普通方程为:x=﹣2+ky②;联立①②,消去k得:x2﹣y2=4,即C的普通方程为x2﹣y2=4;(2)∵l3的极坐标方程为ρ(cosθ+sinθ)﹣=0,∴其普通方程为:x+y﹣=0,联立得:,∴ρ2=x2+y2=+=5.∴l3与C的交点M的极径为ρ=.。
高中数学函数的图象与性质考试题(含答案解析)

函数的图象与性质试题课程名称高考数学二轮复习模拟考试教研室___________________ 高三数学组_________________复习时间年月日时分至适用专业班级成绩开卷A卷闭卷_±B卷班级_______________________ 姓名______________________ 学号___________________ 考生注童:舞弊万莫償,那祥要退学,自爱当守诺,最怕錯上第,若真不及格,努力下次过。
答案耳在答题娥上,耳在试题妖上无效。
一、选择题一、选择题1. (2017-高考山东卷)设函数y=\/4二x2的定义域为A,函数y=\n(\~x)的定义域为b则AHB=()A・(1, 2) B. (1, 2C・(一2, 1) D. -2, 1)[log4 工.工>0 •2・(2017-沈阳模拟)已知函数f(x)= \则师4))的值为()A. —£B. —99D.3. (2017-湖南东部六校联考)函数y=\M()A・是偶函数,在区间0)上单调递增B.是偶函数,在区间(一8, 0)上单调递减C.是奇函数,在区间(0, +8)上单调递增 D ・是奇函数,在区间(0, +8)上单调递减5. (2017-西安模拟)对于函数y=f(x),部分x 与y 的对应关系如下表:上,则 Xl+X2~\ ----- X2 017 = ( ) A. 7 554B. 7 540C. 7 561D. 7 5646. 已知/(x)是定义在R 上的奇函数,且在[0, +8)上单调递增,若/(lgx)<0, 则x 的取值范围是() A. (0, 1) B ・(1, 10) C. (1, +8)D. (10, +8)7. (2016-福州质检)已知偶函数/⑴满足:当xi, x 2e(0, +8)时,(x!-x2)[/(xi) -Ax2)]>0 恒成立.设 “=/(一4), b=/(l), c=/(3),则 d, h, c 的大小关系为( ) A. a<b<c B ・ h<a<c C. b<c<aD. c<b<a8. 函数/W 的定义域为R.若/(x+2)为偶函数,且血)=1,则/⑻+/(9)=( )A. —2B. —1C. 0试 题 共页 第页.V1 2 3 4 5 6 7 8 9 y375961824D. 1数列{忌}满足:xi = 1,且对于任B 点3,亦1)都在函数y=f(x)的图象9. (2017-高考山东卷)设/⑴=心,0<x<l, 1 U H),Q.若何%+】)'©=()A. 2 C. 6B. 4 D. 810. (2017•山西四校联考)已知函数/W满足:①定义域为R;®VxeR,都有/U+2)=/U);③当A-G[-1, 1]时,/W=—Lrl+1.则方程/W=*log2lxl在区间[一3, 5]内解的个数是()A. 5 C. 7B. 6 D. 811.(2017.天津模拟)已知函数爪)的图象如图所示,则/⑴的解析式可能是()A. x2cos xC. xsin x12・已知定义在R上的奇函数几兀)满足/(A—4)=-/«,且在区间[0, 2]上是增函数,贝|J()A.X-25)<All)</(80)B./(80)</(ll)</(-25)C.几11)勺(80)勺(一25)D・人一25)彳80)今(11)二、填空题13. (2017-高考全国卷II)已知函数/(x)是定义在R上的奇函数,当兀丘(一8, 0)时,X A)=2A3+A2,则f(2)= _____________ ・试题共页第页14.若函数f(x) = 2x+a^x为奇函数,则实数4= ____________ ・215・已知函数几丫)=苑丁+sin卅则人一2 017)+几一2 016)+用))土A2 016)+/(2 017)= ________ .16.已知定义在R上的函数/U)满足:①函数y=f(x-V)的图象关于点(1, 0)对称;②VxeR,石一"=石+寸:③当炸(一扌,一弓时,_/W = log2( — 3卄1).则/(2 017)= _______ ・(-log., T>0,且何一厶则曲「) = ()B.-扌5C・-42.(2017-高考北京卷)已知函数妙=3'—(分,则金)()A. 是奇函数, 且在R上是增函数B. 是偶函数, 且在R上是增函数C.D.3.4.A.C.是奇函数,是偶函数,且在R上是减函数且在R上是减函数函数劝2站的图象大致是(函数y=kl(l—x)在区间4上是增函数,那么区间4是()B •卜 I](―°°,0)[0, +oo) D.伶 +8)A. — log377D・_4函数/(x)的上确界.则函数用・)=是奇函数,则实数。
高三数学函数图像试题答案及解析

高三数学函数图像试题答案及解析1.函数的图像大致是()【答案】A【解析】因为分子分母分别为奇函数,所以原函数为偶函数,排除C、D,而当x取很小的正数时,sin6x>0,2x-2-x>0,故y>0,排除B,选A【考点】函数的图象及其性质2.已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是()A.0<<b<1B.0<b<<1C.0<<a<1D.0<<<1【答案】A【解析】由图象知函数单调递增,所以a>1.又-1<f(0)<0,f(0)=loga (20+b-1)=logab,即-1<logab<0,所以0<<b<1,故选A.3.已知f(x)=x2+sin(+x),f′(x)为f(x)的导函数,则f′(x)的图象是()【答案】A【解析】f(x)=x2+sin(+x)=x2+cosx,f′(x)=x-sinx.易知该函数为奇函数,所以排除B、D.当x=时,f′()=×-sin=-<0,可排除C.选A.4.(2013•浙江)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()A.B.C.D.【答案】B【解析】由导数的图象可得,导函数f′(x)的值在[﹣1,0]上的逐渐增大,故函数f(x)在[﹣1,0]上增长速度逐渐变大,故函数f(x)的图象是下凹型的.导函数f′(x)的值在[0,1]上的逐渐减小,故函数f(x)在[0,1]上增长速度逐渐变小,图象是上凸型的,故选B.5.函数y=2a x﹣1(0<a<1)的图象一定过点()A.(1,1)B.(1,2)C.(2,0)D.(2,﹣1)【答案】B【解析】因为函数y=a x(0<a<1)的图象一定经过点(0,1),而函数y=2a x﹣1(0<a<1)的图象是由y=a x(0<a<1)的图象向右平移1个单位,然后把函数y=a x﹣1(0<a<1)的图象上所有点的横坐标不变,纵坐标扩大到原来的2倍得到的,所以函数y=2a x﹣1(0<a<1)的图象一定过点(1,2).故选B.6.函数y=2x﹣x2的图象大致是()【答案】A【解析】因为当x=2或4时,2x﹣x2=0,所以排除B、C;当x=﹣2时,2x﹣x2=,故排除D,所以选A.7.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x﹣1C.e﹣x+1D.e﹣x﹣1【答案】D【解析】函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.8.若函数满足,当x∈[0,1]时,,若在区间(-1,1]上,方程有两个实数解,则实数m的取值范围是A.0<m≤B.0<m<C.<m≤l D.<m<1【答案】【解析】有两个零点,即曲线有两个交点.令,则,所以.在同一坐标系中,画出的图象(如图所示):直线过定点,所以,满足即选.【考点】分段函数,函数的图象,函数的零点.9.如图:正方体的棱长为,分别是棱的中点,点是的动点,,过点、直线的平面将正方体分成上下两部分,记下面那部分的体积为,则函数的大致图像是()【答案】C【解析】由题意可得下面那部分的是一个高为AB的三棱柱或四棱柱,当时.所以函数在大致图像是C、D选项.当时,令.所以上面的体积为.所以下面体积.所以函数的图象大致为C所示.故选C.【考点】1.空间几何.2.函数及图象.3.函数与立几交汇.10.对实数a和b,定义运算“”:,设函数.若函数的图象与x轴恰好有两个共公点,则实数c的取值范围是()A.B.C.D.【答案】B【解析】若即时,.若即或时,.画出的图象(如图)∵函数的图象与x轴恰好有两个共公点方程有两解函数与函数有两个不同的交点∴由图象可知或.11.为了得到函数的图像,只需把函数的图像上所有的点()A.向左平移3个单位长度,再向上平移1个单位长度B.向右平移3个单位长度,再向上平移1个单位长度C.向左平移3个单位长度,再向下平移1个单位长度D.向右平移3个单位长度,再向下平移1个单位长度【答案】C【解析】A.,B.,C.,D..12.已知函数,若关于的方程有三个不同的实根,则实数的取值范围是_.【答案】【解析】如图,直线y=x-a与函数的图象在处有一个切点,切点坐标为(0,0),此时;直线与函数的图象在处有两个切点,切点坐标分别是和,此时相应的,,观察图象可知,方程有三个不同的实根时,实数的取值范围是。
高考函数图象试题以及解析(文数)

作函数的图象不仅依据函数的解析式,而且还依赖于它的定义, 用两个不同的函数解析式表示的函数,只有在对应法则相同、定义域 相同的条件下,才是相同函数,才有相同的图象,作函数图象,除了 运用描点法外,还常常利用平移变换、对称变换作函数图象.
【例1】 作思出维函点数拨y:=由基本函数的y图=象.图象进行变换.
本题是江苏版数学必修1第55页第9题“已知函数f(x)=
,试讨论函
数f(x)的单调性”的改编题.考题的函数变得复杂了,并且函数单调性
问题变成了利用函数单调性讨论函数图象问题,使得考题的能力要求提
高了.
有的考生取x=1,2,把函数近似值求出来,可看出y1>y2,从而选出答 案.这也是一种不错的解法,但要注意计算的准确性.
答案:A
变式2:已知有四个平面图形,分别是三角形、平行四边形、直角 梯形、圆.垂直于x轴的直线l:x=t(0≤t≤a)经过原点O向 右平行移动,l在移动过程中扫过平面图形的面积为y(图中 阴影部分),若函数y=f(t)的大致图象如图所示,那么平面 图形的形状不可能是( )
解析:观察函数图象可得函数y=f(t)在[0,a]上是增函数,即说明随着直 线l的右移,扫过图形的面积不断增大,从这个角度讲,四个图象都适 合.再对图象作进一步分析,图象首先是向下凸的,说明此时扫过图形 的面积增加得越来越快,然后是向上凸的,说明此时扫过图形的面积增 加得越来越慢.根据这一点很容易判定C项不适合.这是因为在C项中直 线l扫到矩形部分时,面积会呈直线上升. 答案:C
变式1:作出下列函数的图象.
(1)y= ;(2)y=
.
解:(1)因y=1+
,先作出y= 的图象,将其图象向右平移1
个
单位,再向上平移1个单位,即得y=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B 1 .函数 y = a | x | (a > 1)的图象是 (
y y
o
x
o
A
B
B
(
) y
o 1
x
-1
o
函数图象
)
y
1
1
x
o x
C
y
y
x
x
o
1
y
1
o x
D
y
-1 o
x
A B C
B 3.当 a>1 时,函数 y=log a x 和 y=(1 - a)x 的图象只可能是(
)
y
A4.已知 y=f(x) 与 y=g(x) 的图象如图所示
yf ( x )
x
O
则函数 F(x)=f(x)
·g(x) 的图象可以是 (A)
y y
y
O
x
O
x O
x
A
xa x
B
C
B 5.函数 y
(a 1) 的图像大致形状是 (
)
| x |
y
y y
O
f ( x)
2x
x O 1 O
x
(
D 6.已知函数 x
x
x 1 ,则 f x ( 1- x )的图象是 log 1
2
y
y y
A
B
C 2。
1。
- 1
D
y
y
g( x)
O
x
y
O
x
D
y
O
) x
y
D 2
O x
A
B
C
D
D 7.函数
y
x cosx
的部分图象是
(
)
A 8.若函数
f(x) =x 2 +bx+c
的图象的顶点在第四象限,则函数
f /(x)的图象是
( )
y
y
y
y
o
x
o x o x
o x
A
B
C
D
A 9.一给定函数 y f ( x) 的图象在下列图中,并且对任意
a 1 (0,1) ,由关系式 a n 1 f (a n )
得到的数列 { a n } 满足 a n 1 a n (n
N * ) ,则该函数的图象是 (
)
A
B C
D
C10.函数 y=kx+k 与 y= k
在同一坐标系是的大致图象是(
)
x
y
y y
y
O
x
O
x
O
x
O
x
A 11.设函数 f ( x ) =1- 1 x 2
(- 1≤ x ≤0)的图像是(
)
A
B
C
D
A 12.当 a>1 时,在同一坐标系中,函数-x
与 y=log a x 的图像()
y=a
1 B 13. 函数y 1
1 的图象是()
x
y y y
y 1 1
1
1
O 1 x O 1 x -1
O
-1 O x
x
(A) (B) (C)
(D)
D 14.函数f ( x) a x b的图象如图,其中a、b 为常数,则下列结论正确的是()
A .a 1, b 0
B .a 1,b 0
C.0 a 1,b 0
D.0 a 1,b 0
C15.设函数f (x)在定义域内可导,y f ( x) 的图象如图,
则导函数 f ' ( x) 的图象可能是()
( A )16.奇函数
(B )(C)
y=f(x)( x≠ 0),当 x∈( 0,+∞)时,f( x)=x- 1,则函数
( D)
f( x- 1)的图象为( D )
17.函数 f( x)=log 2 |x|, g( x) =- x2+2,则 f( x)· g(x)的图象只可能是(C) 18.已知函数 y=f( x)是偶函数, y=g( x)是奇函数,它们的定义域为[-π,π],且它们在
x∈[ 0,π]上的图象如下图所示,则不等式
f ( x)
> 0 的解集为 ( D) g( x)
A. (-,0)∪(,π)
B.(-π,-)∪(,π )
3 3 3 3
C.(-,0)∪(,π)
D.(-π,-)∪( 0,)
4 4 3 3。