高中数学常见函数图像

合集下载

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质 图像

初中高中数学七大函数的性质图像1.一次函数(包括正比例函数)最简单最常见的函数,在平面直角坐标系上的图象为直线。

定义域(下面没有说明的话,都是在无特殊要求情况下的定义域):R值域:R奇偶性:无周期性:无平面直角坐标系解析式(下简称解析式):①ax+by+c=0[一般式]②y=kx+b[斜截式](k为直线斜率,b为直线纵截距,正比例函数b=0)③y-y1=k(x-x1)[点斜式](k为直线斜率,(x1,y1)为该直线所过的一个点)④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]((x1,y1)与(x2,y2)为直线上的两点)⑤x/a-y/b=0[截距式](a、b分别为直线在x、y轴上的截距)解析式表达局限性:①所需条件较多(3个);②、③不能表达没有斜率的直线(平行于x轴的直线);④参数较多,计算过于烦琐;⑤不能表达平行于坐标轴的直线和过圆点的直线。

倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜角。

设一直线的倾斜角为a,则该直线的斜率k=tg(a)。

2.二次函数:题目中常见的函数,在平面直角坐标系上的图象是一条对称轴与y轴平行的抛物线。

定义域:R值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)奇偶性:偶函数周期性:无解析式:①y=ax^2+bx+c[一般式]⑴a≠0⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;⑶极值点:(-b/2a,(4ac-b^2)/4a);⑷Δ=b^2-4ac,Δ>0,图象与x轴交于两点:([-b+√Δ]/2a,0)和([-b+√Δ]/2a,0);Δ=0,图象与x轴交于一点:(-b/2a,0);Δ<0,图象与x轴无交点;②y=a(x-h)^2+t[配方式]此时,对应极值点为(h,t),其中h=-b/2a,t=(4ac-b^2)/4a);3.反比例函数在平面直角坐标系上的图象为双曲线。

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学 14种函数图像和性质知识解析 新人教A版必修1

高中数学14种函数图像和性质知识解析新人教A版必修1高中数学 14种函数图像和性质知识解析新人教A版必修1高中不得不掌握的函数图像与常用性质高中常用函数有14种,它们是:1.正比例函数;2.反比例函数;3.根式函数;4一次函数;5.二次函数;6双勾函数.;7..双抛函数;8.指数函数;9对数函数;10.三角函数;11分段函数.;12.绝对值函数;13.超越函数;14.抽象函数。

而函数的性质常见的有:1.定义域;2.值域;3.单调性;4.奇偶性;5.周期性;6.对称性;7.有界性;8.反函数;9.连续性.高中都是从函数解析式入手画出函数图像,再利用函数图像研究其性质,下面我们就函数的图像和性质做归纳总结。

1.正比例函数解析式图像定义域:值域:单调性:奇偶性:反函数:2.反比例函数解析式图像性质定义域:值域:单调性:奇偶性:反函数:对称性:定义域:值域:单调性:对称性:3根式函数解析式图像定义域:值域:单调性:奇偶性:反函数:4一次函数解析式图像定义域:值域:1 性质性质性质用心爱心专心单调性:反函数:5二次函数解析式图像定义域:值域:单调性:对称性:定义域:值域:单调性:对称性:6.双勾函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:值域:单调性:奇偶性:对称性:7.双抛函数解析式图像定义域:值域:单调性:奇偶性:对称性:定义域:性质性质性质用心爱心专心值域:单调性:奇偶性:对称性:8.指数函数解析式图像定义域:值域:单调性:9.对数函数解析式图像定义域:值域:单调性:10.三角函数解析式图像单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:定义域:值域:单调性:周期性:奇偶性:有界性:对称性:11.分段函数分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。

高中数学常见函数图像

高中数学常见函数图像

高中数学罕见函数图像之答禄夫天创作创作时间:二零二一年六月三十日1.指数函数:界说 函数(0xy a a =>且1)a ≠叫做指数函数 图象 1a >01a <<界说域 R值域 (0,)+∞过定点 图象过定点(0,1), 即那时0x =, 1y =.奇偶性 非奇非偶单调性在R 上是增函数 在R 上是减函数 2.对数函数:界说函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<界说域 (0,)+∞ 值域 R过定点 图象过定点(1,0), 即那时1x =, 0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数 在(0,)+∞上是减函数 3.幂函数:界说形如αx y =(x ∈R )的函数称为幂函数, 其中x 是自变量, α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有界说, 而且图象都通过点(1,1).xa y =xy(0,1)O 1y =xa y =xy(0,1)O 1y =x y O (1,0)1x =log a y x=x yO (1,0)1x =log a y x =单调性:如果0α>, 则幂函数的图象过原点, 而且在[0,)+∞上为增函数.如果0α<, 则幂函数的图象在(0,)+∞上为减函数, 在第一象限内, 图象无限接近x 轴与y 轴.4.函数sin y x =cos y x = tan y x =图象界说域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1- R最值那时22x k ππ=+()k ∈Z ,max 1y =;当22x k ππ=-()k ∈Z 时, min 1y =-.那时()2x k k π=∈Z ,max 1y =;当2x k ππ=+()k ∈Z 时, min 1y =-.既无最年夜值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ ()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭ ()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴创作时间:二零二一年六月三十日。

高中数学常见函数图像

高中数学常见函数图像

-高中数学常见函数图像1.指数函数:2.对数函数:过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性非奇非偶单调性@在(0,)+∞上是增函数在(0,)+∞上是减函数定义形如αx y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.图像性质【过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.。

#>4.函数sin y x =cos y x = tan y x =图象!定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域·[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,@max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π2ππ、奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ 在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+ ()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.。

《高中数学课件:几种常见函数的图像和性质》

《高中数学课件:几种常见函数的图像和性质》
高中数学课件:几种常见 函数的图像和性质
探索几种常见函数的图像和性质,包括一次函数、二次函数、反比例函数、 幂函数、指数函数、对数函数、三角函数和常函数。
一次函数
一次函数是指具有形式y = kx + b的函数,图像为一条直线,斜率k决定了直 线的倾斜程度,纵截距b决定了直线与y轴的交点。
二次函数
Step 3
根据底数a的不同,求解指数函 数的通式。
推导对数函数的通式
1
Step 2
2
代入任意一点的坐标和底数a到对数函数
的通式y = log_a(x)中。
3
Step 1
通过两个点的坐标(x1, y1)和(x2, y2)计算 底数a:a = 10^((y1 - y2) / (x1 - x2))。
Step 3
推导反比例函数的通式
1 Step 1
2 Step 2
通过两个点的坐标(x1, y1)和(x2, y2)计算比例 系数k:k = y1 * x1 = y2 * x2。
代入一个点的坐标(x, y)和比例系数k到反比例 函数的通式y = k/x中,得到反比例函数的通 式。
推导幂函数的通式
Step 1
取幂函数的对数y = log_a(x), 其中a为底数。
二次函数是指具有形式y = ax^2 + bx + c的函数,图像为一条开口向上或向下 的曲线,顶点坐标为(-b/2a, c-b^2/4a)。
反比例函数
反比例函数是指具有形式y = k/x的函数,图像为一条曲线,呈现出一个反比 例的关系,x越大,y越小。
幂函数
幂函数是指具有形式y = kx^n的函数,图像的形态取决于指数n的值,n为正 偶数时,图像在原点右侧上升,n为正奇数时,则图像在全范围上升。

(完整版)高中数学常见函数图像

(完整版)高中数学常见函数图像

高中数学常见函数图像1.2.对数函数:3.幂函数:定义形如αxy=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.图像性质过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.4.函数sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =; 当22xk ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数 奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。

(新)高中数学函数图像大全汇总

(新)高中数学函数图像大全汇总

高中必考函数大全指数函数概念:一般地,函数y=a^x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R。

注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。

⒉指数函数的定义仅是形式定义。

指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。

在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。

即:当a>1时,图像在R上是增函数;当0<a<1时,图像在R上是减函数。

4. 指数函数既不是奇函数也不是偶函数。

比较幂式大小的方法:1.当底数相同时,则利用指数函数的单调性进行比较;2.当底数中含有字母时要注意分类讨论;3.当底数不同,指数也不同时,则需要引入中间量进行比较;4.对多个数进行比较,可用0或1作为中间量进行比较底数的平移:在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。

在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

对数函数1.对数函数的概念由于指数函数y=a x在定义域(-∞,+∞)上是单调函数,所以它存在反函数,我们把指数函数y=a x(a>0,a≠1)的反函数称为对数函数,并记为y=log a x(a>0,a≠1).因为指数函数y=a x的定义域为(-∞,+∞),值域为(0,+∞),所以对数函数y=log a x的定义域为(0,+∞),值域为(-∞,+∞).2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质.为了研究对数函数y=log a x(a >0,a ≠1)的性质,我们在同一直角坐标系中作出函数y=log 2x ,y=log 10x ,y=log 10x,y=log 21x,y=log 101x 的草图由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=log a x(a >0,a ≠1)的图像的特征和性质.见下表. 图 象 a >1a <1性 (1)x >0(2)当x=1时,y=0比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助1、0、-1等中间量进行比较.3.指数函数与对数函数对比幂函数幂函数的图像与性质幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当112,1,,,323n =±±±的图像和性质,列表如下. 从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数.③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点.n y x =奇函数偶函数非奇非偶函数1n >01n <<0n <定义域 R R R奇偶性奇奇奇非奇非偶奇在第Ⅰ象限的增减性在第Ⅰ象限单在第Ⅰ象限单在第Ⅰ象限单在第Ⅰ象限单在第Ⅰ象限单OxyOxyOxyOxyOxyOx yOxyOxyOxy调递增调递增 调递增 调递增 调递减幂函数y x α=(x ∈R ,α是常数)的图像在第一象限的分布规律是:①所有幂函数y x α=(x ∈R ,α是常数)的图像都过点)1,1(; ②当21,3,2,1=α时函数y x α=的图像都过原点)0,0(;③当1=α时,y x α=的的图像在第一象限是第一象限的平分线(如2c );④当3,2=α时,y x α=的的图像在第一象限是“凹型”曲线(如1c )⑤当21=α时,y x α=的的图像在第一象限是“凸型”曲线(如3c )⑥当1-=α时,y x α=的的图像不过原点)0,0(,且在第一象限是“下滑”曲线(如4c )当0>α时,幂函数y x α=有下列性质: (1)图象都通过点)1,1(),0,0(; (2)在第一象限内都是增函数;(3)在第一象限内,1>α时,图象是向下凸的;10<<α时,图象是向上凸的;(4)在第一象限内,过点)1,1(后,图象向右上方无限伸展。

高中数学常见函数图像(2020年8月整理).pdf

高中数学常见函数图像(2020年8月整理).pdf

高中数学常见函数图像1.指数函数:定义函数(0x y a a =>且1)a ≠叫做指数函数图象1a >01a <<定义域 R值域(0,)+∞过定点 图象过定点(0,1),即当0x=时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数2.对数函数:定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a >01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =. 奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数3.幂函数:定义形如αx y =(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.xa y =xy(0,1)O1y =xa y =xy (0,1)O1y =xyO(1,0)1x =log a y x=xyO(1,0)1x =log a y x=图像性质过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). 单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.4.函数sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =; 当22xk ππ=−当()2x k k π=∈Z 时,max 1y =;当2xk ππ=+既无最大值也无最小值()k ∈Z 时,min 1y =−.()k ∈Z 时,min 1y =−.周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭ 对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭无对称轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学常见函数图像1.
2.对数函数:
3.幂函数:
定义形如αx
y=(x∈R)的函数称为幂函数,其中x是自变量,α是常数.
图像
性质过定点:所有的幂函数在(0,)
+∞都有定义,并且图象都通过点(1,1).单调性:如果0
α>,则幂函数的图象过原点,并且在[0,)
+∞上为增函数.如果0
α<,则幂函数的图象在(0,)
+∞上为减函数,在第一象限内,图象无限接近x轴与y轴.
函数
sin y x =
cos y x =
tan y x =
图象
定义域
R R
,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭
值域
[]1,1-
[]1,1-
R
最值

22
x k π
π=+
()
k ∈Z 时,
max 1y =; 当22
x
k π
π=-
()k ∈Z 时,min 1y =-.
当()2x k k π
=∈Z 时,
max 1y =;
当2x k π
π=+
()k ∈Z 时,min 1y =-.
既无最大值也无最小值
周期性 2π

π
奇偶性
奇函数 偶函数 奇函数
单调性

2,222k k ππππ⎡
⎤-+⎢⎥⎣⎦
()k ∈Z 上是增函数;在
32,222k k π
πππ⎡⎤++⎢⎥⎣⎦
()k ∈Z 上是减函数.
在[]()
2,2k k k πππ-∈Z 上






[]2,2k k πππ+
()k ∈Z 上是减函数.
在,2
2k k π
ππ
π⎛

-
+
⎪⎝

()k ∈Z 上是增函数.
对称性
对称中心
()(),0k k π∈Z
对称轴
()2
x k k π
π=+
∈Z
对称中心
(),02k k ππ⎛⎫+∈Z
⎪⎝
⎭ 对称轴()x k k π
=∈Z
对称中心(),02k k π⎛⎫
∈Z ⎪⎝⎭
无对称轴。

相关文档
最新文档