2016届高三数学一轮复习(知识点归纳与总结):直线、平面平行的判定及其性质
高考数学一轮总复习课件:直线、平面平行的判定及性质

∴平面MNP∥平面AA1B1B.
又∵MN⊂平面MNP,∴MN∥平面AA1B1B.
【答案】 略
(2)如图所示,四边形ABCD是平行四边形,点P是平面 ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作 平面交平面BDM于GH,求证:AP∥GH.
【证明】 如图所示,连接AC交BD于点O,连接MO, 因为四边形ABCD是平行四边形,
5.已知正方体ABCD-A1B1C1D1,下列结论中,正确的是 __①_②__④___.
①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1; ④AD1∥平面BDC1.
解析 连接AD1,BC1,
因为AB綊C1D1,所以四边形AD1C1B为平行四边形,
故AD1∥BC1,从而①正确; 易证BD∥B1D1,AB1∥DC1, 又AB1∩B1D1=B1,BD∩DC1=D, 故平面AB1D1∥平面BDC1,从而②正确; 由图易知AD1与DC1异面,故③错误; 因AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平
因为A1G与EB平行且相等, 所以四边形A1EBG是平行四边形.所以A1E∥GB. 因为A1E⊄平面BCHG,GB⊂平面BCHG, 所以A1E∥平面BCHG. 因为A1E∩EF=E,所以平面EFA1∥平面BCHG. 【答案】 (1)略 (2)略
【讲评】 要证四点共面,只需证GH∥BC即可;要证面面 平行,可证一个平面内的两条相交直线和另一个平面平行,注 意“线线平行”“线面平行”“面面平行”之间的相互转化.
∵BD=B1C,DN=CM, ∴B1M=BN.
∵△MEB1∽△CBB1,∴
ME CB
=
B1M B1C
,又
∵△NFB∽△DAB,DNAF =BBND,
高考数学第一轮知识点总复习 第四节 直线、平面平行的判定及其性质

基础梳理
1. 平行直线 (1)定义:同一平面内不相交的两条直线叫做平行线. (2)公理4:平行于同一条直线的两条直线互相平行. (3)线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线 的平面和这个平面相交,那么这条直线就和两平面的交线平行. (4)面面平行的性质定理:如果两个平行平面同时与第三个平面相交,那 么它们的交线平行. (5)线面垂直的性质定理:如果两条直线垂直于同一平面,那么这两条直 线平行.
错解 如图,连接C1E,并延长至G点,使GE= C1E,, 连接在 C1D1G 中,F是 D1C1 的中点,E是 C1G 的中点,
所以EF∥ ,D1而G EF 平面 BB1D1D,
D1G 平面 BB1D1D, 故EF∥平面 BB1D1D.
错解 分析上述证明中,“D1G 平面BB1D1D ”这一结论没有根据,只是主
平面A1C1 / /平面AC
A1C1 / / AC A1C1 / /平面AB1C
A1C1 平面AB1C 同理A1D//平面AB1C
AC 平面AB1C
A1C1 A1D A1
平面AB1C//平面A1C1D
学后反思 证明平面与平面相互平行,一般利用面面平行的判定定理或其 推论,将面面平行转化为线面平行或线线平行来证明.具体方法有: (1)面面平行的定义; (2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另 一个平面,那么这两个平面平行; (3)利用垂直于同一条直线的两个平面平行; (4)两个平面同时平行于第三个平面,那么这两个平面平行; (5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.
又∵c β,b β,∴b∥β.(线面平行的判定定理)……………..8′
高三第一轮复习 空间直线与平面的平行关系

空间直线与平面的平行关系【提纲挈领】主干知识归纳1. 直线与平面平行的判定定理和性质定理2.平面与平面平行的判定定理和性质定理规律方法总结:1.平行问题中的转化关系2.判断线面平行的两种常用方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的两种方法:(1)利用线面平行的判定定理;(2)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.【指点迷津】【类型一】线面平行、面面平行的基本问题【例1】有互不相同的直线m ,n ,l 和平面α,β,给出下列四个命题: ①若m ⊂α,l ∩α=A ,A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若m ,n 是相交直线,m ⊂α,m ∥β,n ⊂α,n ∥β,则α∥β; ④若l ∥α,m ∥β,α∥β,则l ∥m. 其中真命题有( )A .4个B .3个C .2个D .1个解析:选B 由异面直线的判定定理,易知①是真命题;由线面平行的性质知,存在直线l ′⊂α,m ′⊂α,使得l ∥l ′,m ∥m ′,∵m ,l 是异面直线,∴l ′与m ′是相交直线,又n ⊥l ,n ⊥m ,∴n ⊥l ′,n ⊥m ′,故n ⊥α,②是真命题;由线面平行的性质和判定知③是真命题;满足条件l ∥α,m ∥β,α∥β的直线m ,l 或相交或平行或异面,故④是假命题,于是选B.【例2】过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1 平行的直线共有________条.解析:过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.答案:6【类型二】直线与平面平行的判定与性质【例2】如图,直三棱柱ABC -A1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1)证明:BC 1∥平面A 1CD ;(2)设AA 1=AC =CB =2,AB =22,求三棱锥C -A 1DE 的体积. [解] (1)证明:连接AC 1交A 1C 于点F ,则F 为AC 1中点. 又D 是AB 中点,连接DF ,则BC 1∥DF.因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD.(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD.由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB.又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D. 所以VC -A 1DE =13×12×6×3×2=1.思考:在本例条件下,线段BC 1上是否存在一点M 使得DM ∥平面A 1ACC 1? 解:存在.当M 为BC 1的中点时成立. 证明如下:连接DM ,在△ABC 1中, D ,M 分别为AB ,BC 1的中点 ∵DM 綊12AC 1,又DM ⊄平面A 1ACC 1AC1⊂平面A1ACC1,∴DM∥平面A1ACC1.【类型三】平面与平面平行的判定与性质【例1】如图,四棱柱ABCD -A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD -A1B1D1的体积.[解](1)证明:由题设知,BB1∥DD1且BB1=DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊆平面CD1B1,∴BD∥平面CD1B1.∵A1D1∥B1C1∥BC且A1D1=B1C1=BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊆平面CD1B1,∴A1B∥平面CD1B1.又∵BD∩A1B=B,∴平面A1BD∥平面CD1B1.(2)∵A1O⊥平面ABCD,∴A1O是三棱柱ABD -A1B1D1的高.又∵AO=12AC=1,AA1=2,∴A1O=AA21-OA2=1.又∵S△ABD=12×2×2=1,∴V ABD -A1B1D1=S△ABD×A1O=1.【例2】如图,在直四棱柱ABCD -A1B1C1D1中,底面是正方形,E,F,G分别是棱B1B,D1D,DA的中点.求证:平面AD1E∥平面BGF证明:∵E,F分别是B1B和D1D的中点,∴D1F綊BE.∴四边形BED1F是平行四边形,∴D1E∥BF;又∵D1E⊄平面BGF,BF⊂平面BGF,∴D1E∥平面BGF.∵FG是△DAD1的中位线,∴FG∥AD1;又AD1⊄平面BGF,FG⊂平面BGF,∴AD1∥平面BGF.又∵AD1∩D1E=D1,∴平面AD1E∥平面BGF.【例3】如图1,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上一点,设Q 为PA 的中点,G 为ΔAOC 的重心,求证:QG//平面PBC解:如图2连接OG 交AC 于点E ,连接QE ∵点G 为ΔAOC 的重心 ∴点E 为AC 的中点 又点Q 为PA 的中点 ∴QE 为ΔPAC 的中位线 ∴QE ∥PCPBC PC PBC QE 平面,平面⊆⊄∴QE ∥平面PBC 同理OE ∥平面PBC 由E OEQE =⋂得平面QEO//平面PBCQEO QG 平面⊂∴QG//平面PBC【同步训练】【一级目标】基础巩固组1.已知直线a ,b ,平面α,则以下三个命题:①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b. 其中真命题的个数是( )A .0B .1C .2D .3解析:选A 对于①,若a ∥b ,b ⊂α,则应有a ∥α或a ⊂α,所以①不正确;对于②,若a ∥b ,a ∥α,则应有b ∥α或b ⊂α,因此②不正确;对于③,若a ∥α,b ∥α,则应有a ∥b 或a 与b 相交或a 与b 异面,因此③是假命题.综上,在空间中,以上三个命题都是假命题.2.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是( )E图2图1A .①③B .②③C .①④D .②④解析:选C 对于图形①,平面MNP 与AB 所在的对角面平行,即可得到AB ∥平面MNP ;对于图形④,AB ∥PN ,即可得到AB ∥平面MNP ;图形②③无论用定义还是判定定理都无法证明线面平行,故选C.3.(2014·济南模拟)平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥αD .存在两条异面直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α解析:选D 若α∩β=l ,a ∥l ,a ⊄α,a ⊄β,则a ∥α,a ∥β,故排除A.若α∩β=l ,a ⊂α,a ∥l ,则a ∥β,故排除B.若α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l ,则a ∥β,b ∥α,故排除C.故选D.4.a 、b 、c 为三条不重合的直线,α、β、γ为三个不重合的平面,现给出四个命题 ①⎭⎬⎫α∥c β∥c ⇒α∥β ②⎭⎬⎫α∥γβ∥γ⇒α∥β ③⎭⎬⎫α∥c a ∥c ⇒a ∥α ④⎭⎬⎫a ∥γα∥γ⇒α∥a 其中正确的命题是( )A .①②③B .①④C .②D .①③④解析:选C ②正确.①错在α与β可能相交.③④错在a 可能在α内.5.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足条件______时,有MN ∥平面B 1BDD 1.解析:由平面HNF ∥平面B 1BDD 1知,当M 点满足在线段FH 上有MN ∥平面B 1BDD 1.答案:M ∈线段FH6.如图所示,在四面体ABCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.解析:连接AM 并延长,交CD 于E ,连接BN ,并延长交CD 于F ,由重心性质可知,E ,F 重合为一点,且该点为CD 的中点E ,由EM MA =EN NB =12,得MN ∥AB.因此,MN ∥平面ABC 且MN ∥平面ABD.答案:平面ABC 、平面ABD7.(2016江苏.16,节选(1))如图,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证:⑴ 直线//DE 平面11A C F ;⑵ 平面1B DE ⊥平面11A C F .解:,D E 为中点,DE ∴为ABC ∆的中位线 //DE AC ∴又111ABC A B C -为棱柱,11//AC AC ∴ 11//DE AC ∴又11AC ⊂平面11A C F ,且11DE AC F ⊄//DE ∴平面11A C F ;8. 如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点, 求证: (1)B ,C ,H ,G 四点共面;(2)平面EFA 1∥平面BCHG . 证明:(1)∵GH 是△A 1B 1C 1的中位线, ∴GH ∥B 1C 1.又∵B 1C 1∥BC ,∴GH ∥BC. ∴B ,C ,H ,G 四点共面. (2)∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC.∵EF ⊄平面BCHG ,BC ⊂平面BCHG , ∴EF ∥平面BCHG . ∵A 1G ∥EB 且A 1G ∥EB ∴四边形A 1EBG 是平行四边形. ∴A 1E ∥GB.∵A 1E ⊄平面BCHG ,GB ⊂平面BCHG . ∴A 1E ∥平面BCHG . ∵A 1E ∩EF =E∴平面EFA 1∥平面BCHG .【二级目标】能力提升题组1.若平面α∥平面β,直线a ∥平面α,点B ∈β,则在平面β内且过B 点的所有直线中( )A .不一定存在与a 平行的直线FEC BAC 1B 1A 1B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线解析:选A当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.2.已知α,β是两个不同的平面,给出下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.可以推出α∥β的是()A.①③B.②④C.①④D.②③解析:选C对于②,平面α与β还可以相交;对于③,当a∥b时,不一定能推出α∥β,所以②③是错误的,易知①④正确,故选C.3.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线()A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内解析:选B由直线l与点P可确定一个平面β,则平面α,β有公共点,因此它们有一条公共直线,设该公共直线为m,因为l∥α,所以l∥m,故过点P且平行于直线l的直线只有一条,且在平面α内,选B.4.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,则下列命题中,错误的是()A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°解析:选C由题意可知PQ∥AC,QM∥BD,PQ⊥QM,所以AC⊥BD,故A正确;由PQ∥AC可得AC∥截面PQMN,故B正确;由PN∥BD可知,异面直线PM与BD所成的角等于PM与PN所成的角,又四边形PQMN为正方形,所以∠MPN=45°,故D正确;而AC=BD不确定,故选C.5.如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,G为MC的中点.则下列结论中不正确的是()A.MC⊥ANB.GB∥平面AMNC.平面CMN⊥平面AMND.平面DCM∥平面ABN解析:选C显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),作AN的中点H,连接HB,MH,GB,则MC∥HB,又HB⊥AN,所以MC⊥AN,所以A正确;由题意易得GB∥MH,又GB⊂平面AMN ,MH ⊂平面AMN ,所以GB ∥平面AMN ,所以B 正确;因为AB ∥CD ,DM ∥BN ,且AB∩BN =B ,CD∩DM =D ,所以平面DCM ∥平面ABN ,所以D 正确.6.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有________. ①若m ∥α,n ∥α,则m ∥n ;②若α⊥γ,β⊥γ,则α∥β; ③若m ∥α,m ∥β,则α∥β;④若m ⊥α,n ⊥α,则m ∥n.解析:若m ∥α,n ∥α,m ,n 可以平行,可以相交,也可以异面,故①不正确;若α⊥γ,β⊥γ,α,β可以相交,故②不正确;若m ∥α,m ∥β,α,β可以相交,故③不正确;若m ⊥α,n ⊥α,则m ∥n ,④正确.答案:④7.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面PAO.解析:假设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥PA.连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面PAO ,QB ⊄平面PAO ,所以D 1B ∥平面PAO ,QB ∥平面PAO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面PAO.故Q 满足条件Q 为CC 1的中点时,有平面D 1BQ ∥平面PAO.答案:Q 为CC 1的中点8.设α,β,γ为三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ. 可以填入的条件有________.解析:由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.答案:①或③9.已知直三棱柱ABC -A ′B ′C ′满足∠BAC =90°,AB =AC =12AA ′=2,点M ,N 分别为A ′B ,B ′C ′的中点.(1)求证:MN ∥平面A ′ACC ′; (2)求三棱锥C -MNB 的体积.解:(1)证明:如图,连接AB ′,AC ′, ∵四边形ABB ′A ′为矩形,M 为A ′B 的中点,∴AB ′与A ′B 交于点M ,且M 为AB ′的中点,又点N 为B ′C ′的中点, ∴MN ∥AC ′,又MN ⊄平面A ′ACC ′,且AC ′⊂平面A ′ACC ′, ∴MN ∥平面A ′ACC ′. (2)由图可知V C -MNB =V M -BCN ,∵∠BAC =90°,∴BC =AB 2+AC 2=22,又三棱柱ABC -A ′B ′C ′为直三棱柱,且AA ′=4, ∴S △BCN =12×22×4=4 2.∵A ′B ′=A ′C ′=2,∠B ′A ′C ′=90°,点N 为B ′C ′的中点,∴A ′N ⊥B ′C ′,A ′N = 2.又BB ′⊥平面A ′B ′C ′, ∴A ′N ⊥BB ′, ∴A ′N ⊥平面BCN. 又M 为A ′B 的中点, ∴M 到平面BCN 的距离为22, ∴V C -MNB =V M -BCN =13×42×22=43.10.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB.过A作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ; (2)BC ⊥SA.证明:(1)因为AS =AB ,AF ⊥SB ,垂足为F ,所以F 是SB 的中点.又因为E 是SA 的中点,所以EF ∥AB.因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC.同理EG ∥平面ABC.又EF ∩EG =E , 所以平面EFG ∥平面ABC.(2)因为平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF ⊥SB ,所以AF ⊥平面SBC.因为BC ⊂平面SBC ,所以AF ⊥BC.又因为AB ⊥BC ,AF ∩AB =A ,AF ⊂平面SAB ,AB ⊂平面SAB ,所以BC ⊥平面SAB. 因为SA ⊂平面SAB ,所以BC ⊥SA.【高考链接】1.(2016北京理.17),14分,节选(3)) 如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值; (3)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.解:设M 是棱PA 上一点,则存在]1,0[∈λ使得λ=.因此点),,1(),,1,0(λλλλ--=-M .因为⊄BM平面PCD ,所以∥BM 平面PCD 当且仅当0=⋅BM ,∵平面PCD 的一个法向量)2,2,1(-=n即0)2,2,1(),,1(=-⋅--λλ,解得41=λ. 所以在棱PA 上存在点M 使得BM ∥平面PCD ,此时41=AP AM .2.(2016新课标Ⅲ.文19,12分)如图,四棱锥P-ABCD 中,PA ⊥地面ABCD ,AD ∥BC ,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD ,N 为PC 的中点.(I )证明MN ∥平面PAB; (II )求四面体N-BCM 的体积.【解析】 (1)取PB 中点Q ,连接AQ 、NQ , ∵N 是PC 中点,NQ//BC ,且NQ=12BC ,又22313342AM AD BC BC ==⨯=,且//AM BC , ∴//QN AM ,且QNAM=.∴AQNM是平行四边形.∴//MN AQ .又MN ⊄平面PAB ,AQ ⊂平面PAB ,∴//MN平面PAB .(2)由(1)//QN平面ABCD.∴1122N BCM Q BCM P BCM P BCA V V V V ----===.∴11142363N BCM ABCV PA S-∆=⨯⋅=⨯⨯=.。
高考数学导与练一轮复习(浙江版)知识梳理第十章第四节直线平面平行的判定及其性质

第四节直线、平面平行的判定及其性质复习目标学法指导1.与平行有关命题真假判定.2.锥体、柱体中线面平行证明.3.折叠问题中证明线面平行. 1.立体几何有三大关系即线线关系、线面关系、面面关系.要搞清楚由低到高(即线线⇒线面⇒面面)叫判定,由高到低(即面面⇒线面⇒线线)叫性质.2.证明线面、面面的平行是高考的重点.3.会结合三种语言即文字、图形、符号语言搞清楚判定和性质定理.一、线面平行的判定和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)lal aαα⊄⎫⎪⊂⎬⎪⎭∥⇒l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)aabαβαβ⎫⎪⊂⎬⎪=⎭∥⇒a∥b(1)线面平行的判定往往需要借助线线平行关系,但要注意条件缺一不可,即“一内一外一平行”.(2)线面平行也可由面面平行的性质得到.(1)α∥β,a⊂α,则有a∥β.(2)α∥β,a⊄β,a∥α,则有a∥β.二、平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)abba b Pααβ⊂⎫⎪⊂⎪⎬⎪⎪=⎭∥⇒α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行abαββγβγ⎫⎪=⎬⎪=⎭∥⇒a∥b(1)判定定理借助了线线平行,但要注意是两相交线.(2)性质定理得到的是线线平行,应该是平面与平面的交线.(1)面面平行具有传递性,即α∥β,β∥γ,则α∥γ.(2)平面α,β,直线l,若l⊥α,l⊥β,则α∥β.α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的( B )(A)充分不必要条件 (B)必要不充分条件(C)充要条件(D)既不充分也不必要条件解析:当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βα∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要不充分条件.故选B.2.在空间四边形ABCD(A,B,C,D不共面)中,一个平面与边AB,BC,CD,DA 分别交于E,F,G,H(不含端点),则下列结论错误的是( C )(A)若AE∶BE=CF∶BF,则AC∥平面EFGH(B)若E,F,G,H分别为各边中点,则四边形EFGH为平行四边形(C)若E,F,G,H分别为各边中点且AC=BD,则四边形EFGH为矩形(D)若E,F,G,H分别为各边中点且AC⊥BD,则四边形EFGH为矩形解析:作出如图的空间四边形,连接AC,BD可得一个三棱锥,将四个中点连接,得到一个四边形EFGH,由中位线的性质知,EH∥FG,EF∥HG,故四边形EFGH是平行四边形,若AC=BD,则有HG=12AC=12BD=EH,故四边形EFGH是菱形.故选C.个.解析:分两类,一类是面的两侧分别是1个点和3个点,有4个,一类是面的两侧各两个点,有3个,共有7个.答案:7考点一与平行相关命题的判断[例1] 已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是( )(A)若α∥β,m⊂α,n⊂β,则m∥n(B)若m∥n,n⊂α,则m∥α(C)若m∥α,m∥β,则α∥β(D)若α∥β,α∥γ,则β∥γ解析:m与n可能平行也可能异面,故A选项错;在正方体中,AB∥A1B1,A1B1⊂平面A1B1BA,而AB不平行于平面A1B1BA,故选项B错;正方体的棱B1C1既平行于平面ADD1A1,又平行于平面ABCD,但这两个平面相交,故选项C不正确;由平面与平面平行的传递性,得选项D正确.故选D.(1)解决与平行相关命题的判断问题的依据是判定定理和性质定理,运用时注意定理成立的条件.(2)这类问题常常借助正(长)方体等特殊几何体构造反例判断命题错误.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( C )(A)m∥l (B)m∥n(C)n⊥l (D)n⊥m解析:因为互相垂直的平面α,β交于直线l,所以l⊂β,由n⊥β,可得n⊥l,因为直线m,满足m∥α,所以m∥β或m⊂β或m与β相交,所以直线m,l,直线n,m位置关系不确定,故选C.考点二线面平行的判定和性质[例2]如图,在三棱锥PABC中,D,E分别为PA,AC的中点.(1)求证:DE∥平面PBC;(2)试问在线段AB上是否存在点F,使得过D,E,F三点的平面内的任一条直线都与平面PBC平行?若存在,指出点F的位置并证明;若不存在,请说明理由.(1)证明:因为E为AC的中点,D为PA的中点,所以DE∥PC.又DE⊄平面PBC,PC⊂平面PBC,所以DE∥平面PBC.(2)解:存在,当点F是线段AB的中点时,过D,E,F三点的平面内的任一条直线都与平面PBC平行.证明如下:如图,取AB的中点F,连接EF,DF.由(1)可知,DE∥平面PBC.因为E是AC的中点,F为AB的中点,所以EF∥BC.又EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC.又DE∩EF=E,所以平面DEF∥平面PBC,所以平面DEF内的任一条直线都与平面PBC平行.故当点F是线段AB的中点时,过D,E,F三点的平面内的任一条直线都与平面PBC平行.判断或证明线面平行的常用方法:(1)利用线面平行的定义,一般用反证法;(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α),其关键是在平面内找(或作)一条直线与已知直线平行,证明时注意符号语言的叙述;(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β). (2019·暨阳联考)在四棱锥PABCD中,PC⊥平面ABCD,BC∥AD,BC⊥AB,PB=AD=2,AB=BC=1,E为棱PD上的点.(1)若PE=13PD,求证:PB∥平面ACE;(2)若E是PD的中点,求直线PB与平面ACE所成角的正弦值.(1)证明:法一连接BD,令AC∩BD=F,连接EF,因为BC∥AD,BC=1,AD=2,所以BFFD =BCAD=12,又PE=13PD,所以PEED =12=BFFD,所以PB∥EF,且PB⊄平面ACE,EF⊂平面ACE,所以PB∥平面ACE.法二以A为原点,如图建立空间直角坐标系.由题意求得3,所以),C(1,1,0),D(0,2,0),所以BPPD),由PE =13PD ,得E(23,43令平面ACE 的一个法向量为n=(x,y,z),则0,0,n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩即0,240,33x y x y +=⎧⎪⎨+=⎪⎩所以,,y x z =-⎧⎪⎨⎪⎩令,则所以所以BP ·n=0且PB ⊄平面ACE, 所以PB ∥平面ACE. (2)解:(空间向量坐标法)以A 为原点,如图建立空间直角坐标系,由题意求得所以),所以BP所以E(12,32令平面ACE 的一个法向量为n=(x,y,z),则0,0,n AC n AE ⎧⋅=⎪⎨⋅=⎪⎩即0,130,22x y x y +=⎧⎪⎨+=⎪⎩所以,,y x z =-⎧⎪⎨⎪⎩令,则所以,2).设直线PB与平面ACE所成的角为θ,所以直线PB与平面ACE所成角的正弦值为sin θ=|cos<BP,n>|=3210=3020.考点三面面平行的判定与性质[例3] 如图,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明:(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1.又在三棱柱中,B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.证明:(2)因为G,E分别是A1B1,AB的中点,所以A1G BE,所以四边形A1GBE为平行四边形,A1E∥BG.又A1E⊄平面BCHG,BG⊂平面BCHG,所以A1E∥平面BCHG,同理A1F∥平面BCHG,又A1E∩A1F=A1,所以平面EFA1∥平面BCHG.(1)判定面面平行的方法①定义法:即证两个平面没有公共点;②面面平行的判定定理;③垂直于同一条直线的两平面平行;④平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行.(2)面面平行的性质①若两平面平行,则一个平面内的直线平行于另一平面.②若一平面与两平行平面相交,则交线平行.(3)平行间的转化关系(2019·浙江十校联盟)如图,在四棱锥PABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,AD=1,PA=AB=BC=2,M是棱PB的中点. (1)已知点E在棱BC上,且平面AME∥平面PCD,试确定点E的位置,并说明理由;(2)设点N是线段CD上的动点,当点N在何处时,直线MN与平面PAB所成角最大?并求最大角的正弦值.解:(1)E为BC的中点,理由如下:因为M,E分别为PB,BC的中点,所以ME∥PC又因为ME⊄平面PDC,PC⊂平面PDC,所以ME∥平面PDC,又因为EC AD,所以四边形EADC 为平行四边形, 所以AE ∥DC, 同理,AE ∥平面PDC. 又因为AE ∩ME=E, 所以平面AME ∥平面PDC.解:(2)以A 为原点,分别以AD,AB,AP 所在直线为x,y,z 轴建立空间直角坐标系(图略),则A(0,0,0),B(0,2,0),C(2,2,0),D(1,0,0),P(0,0,2),M(0,1,1),设直线MN 与平面PAB 所成角为θ,DN =λDC , 则MN =MA +AD +DN =(λ+1,2λ1,1) 取平面PAB 的法向量为n=(1,0,0), 则sin θ=|cos <MN ,n>|.令λ+1=t ∈[1,2], 则()221523λλλ+-+=2251210t tt -+ =211110125t t ⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭≤57,所以sin ,当t=53⇔λ=23时,等号成立. 即当点N 在线段DC 靠近C 的三等分点时,直线MN 与平面PAB 所成角最大,考点四易错辨析[例4] 如图,在三棱锥ABOC中,AO⊥平面COB,∠OAB=∠OAC=π分别为AB,OB的中点.(1)求证:CO⊥平面AOB;(2)在线段CB上是否存在一点F,使得平面DEF∥平面AOC,若存在,试确定F的位置,并证明;若不存在,请说明理由.(1)证明:因为AO⊥平面COB,所以AO⊥CO,AO⊥BO,即△AOC与△AOB为直角三角形.,AB=AC=2,又因为∠OAB=∠OAC=π6所以OB=OC=1.由OB2+OC2=1+1=2=BC2,可知△BOC为直角三角形.所以CO⊥BO,又因为AO∩BO=O,所以CO⊥平面AOB.(2)解:在线段CB上存在一点F,使得平面DEF∥平面AOC,此时F为线段CB的中点.证明如下:如图,连接DF,EF,因为D,E分别为AB,OB的中点,所以DE∥OA.又DE⊄平面AOC,AO⊂平面AOC,所以DE∥平面AOC.因为E,F分别为OB,BC的中点,所以EF∥OC.又EF⊄平面AOC,OC⊂平面AOC,所以EF∥平面AOC,又EF∩DE=E,EF⊂平面DEF,DE⊂平面DEF,所以平面DEF∥平面AOC.本题第二问属探索性问题,所要探求的点往往出现在特殊点上,可以先特殊后一般的方法解决.如图,在四棱锥PABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E点满足PE=13PD.(1)证明:PA⊥平面ABCD;(2)在线段BC上是否存在点F,使得PF∥平面EAC?若存在,确定点F的位置,若不存在请说明理由.(1)证明:BC PBBC PAB BC PABC ABCD PDCD PAD CD PACD DA⎫⎫⇒⇒⎬⎪⎭⎪⎬⎫⎪⇒⇒⎬⎪⎭⎭⊥⊥平面⊥⊥⊥⊥平面⊥⊥⇒PA⊥平面ABCD.(2)解:当F为BC的中点时,PF∥平面EAC. 设AC,FD交于点S,连接ES,因为AD∥FC,所以FSSD =FCAD=12,又因为PE=13PD,所以PEED =12,所以PF∥ES,易证PF∥平面EAC.平行关系的证明[例题] 如图,三棱柱ABC 1B 1C 1的各棱长都相等,且∠BAA 1=∠CAA 1=60°,D,E 分别为AB,B 1C 1的中点. (1)证明:DE ∥平面A 1ACC 1;(2)求直线AE 与平面BB 1C 1C 所成角的余弦值. (1)证明:取BC 的中点F,连接DF,EF, 因为点D,E 分别为AB,B 1C 1的中点, 所以DF ∥AC,EF ∥CC 1, 又DF ∩EF=F,AC ∩CC 1=C, 所以平面DEF ∥平面A 1ACC 1, 因为DE ⊂平面DEF, 所以DE ∥平面A 1ACC 1. (2)解:由(1)连接AF,A 1E,由各棱长都相等,得AF ⊥BC,又∠BAA 1=∠CAA 1=60°,可得点A 1在平面ABC 上的射影M 必在AF 上, 故以M 为原点,过点M 且平行于CB 的直线为x 轴,MF,MA 1所在直线分别为y,z 轴,建立空间直角坐标系如图, 设AB=1,此时A(0,,0),E(0,,),B(12,,0),F(0,,0),则AE),BF =(12,0,0), FE)设平面BB 1C 1C 的法向量为n=(x,y,z),由10,230,3n BF x n FE y ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩令z=1,解得设直线AE与平面BB1C1C所成的角为θ, 则sin θ=|cos<n,AE>|故cos θ,即直线AE与平面BB1C1C.规范要求:证明线面平行方法有二:一是可以利用线面平行的判定定理;二是可以利用面面平行的性质定理,但无论哪一种方法都要注意条件的全面性.[规范训练] 如图所示,四边形ABCD与四边形ADEF都为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)如图所示,设DF与GN交于点O,连接AE,则AE必过点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.证明: (2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.类型一与平行相关命题的判断⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( D ) (A)充分不必要条件 (B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( D )(A)b⊂α(B)b∥α(C)b⊂α或b∥α(D)b与α相交或b⊂α或b∥α解析:可以构造一草图来表示位置关系,经验证,当b与α相交或b⊂α或b∥α时,均能满足直线a⊥b,且直线a∥平面α的情况,故选D.3.(2019·宁波模拟)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件解析:本题主要考查点、直线、平面的位置关系和充分条件与必要条件.①充分性:若直线m⊄α,n⊂α,则当m∥n时,m∥α,即充分性成立.②必要性:若直线m⊄α,n⊂α,当m∥α⊄α,n⊂α时,“m∥n”是“m∥α”的充分不必要条件.故本题正确答案为A.α,β,γ和直线a,b,m,n,下列命题中是真命题的是( D )(A)若a⊥m,a⊥n,m⊂α,n⊂α,则a⊥α(B)若a∥b,b⊂α,则a∥α(C)若a⊂β,b⊂β,a∥α,b∥α,则β∥α(D)若α∥β,α∩γ=a,β∩γ=b,则a∥b解析:A中只有当m与n相交时才有a⊥α;B中若a⊂α,则结论不成立;C中a与b平行时结论不成立;D正确.类型二线面平行的判定和性质5.如图,透明塑料制成的长方体容器ABCDA1B1C1D1内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下面四个命题:①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③棱A1D1始终与水面所在平面平行;④当容器倾斜如图所示时,BE·BF是定值.其中正确命题的个数是( C )(A)1 (B)2 (C)3 (D)4解析:由题图,显然①是正确的,②是错误的;对于③,因为A1D1∥BC,BC∥FG,所以A1D1∥FG且A1D1⊄平面EFGH,FG⊂平面EFGH,所以A1D1∥平面EFGH(水面).所以③是正确的;对于④,因为水是定量的(定体积V),所以S△BEF·BC=V,BE·BF·BC=V.即12所以BE·BF=2V(定值),即④是正确的,故选C.BC6.如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n等于( A )(A)8 (B)9 (C)10 (D)11⊥底面CED,一定有平面EOF平行于正方体的左、右侧面,即FE平行于正方体的左、右侧面,所以n=4,m+n=8.故选A.类型三面面平行的判定和性质α,β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l⊂α,m⊂β,使得l∥m;④存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β.其中可以判定α,β平行的条件有( B )(A)①③(B)②④(C)② (D)①④解析:存在平面γ,使得α,β都垂直于γ,则α,β平行或相交,①错误;存在平面γ,使得α,β都平行于γ,则α,β一定互相平行,②正确;存在直线l⊂α,m⊂β,使得l∥m,则α,β平行或相交,③错误;存在异面直线l,m,使得l∥α,l∥β,m∥α,m∥β,则α,β一定互相平行,④正确,所以可以判定α,β平行的条件有②④,故选B.8.如图,在直三棱柱ABCA′B′C′中,△ABC是边长为2的等边三角形,AA′=4,E,F,G,H,M分别是边AA′,AB,BB′,A′B′,BC的中点,动点P在四边形EFGH内部运动,并且始终有MP∥平面ACC′A′,则动点P 的轨迹长度为( D )(A)2 (B)2π(D)4解析:连接MF,FH,MH,因为M,F,H分别为BC,AB,A′B′的中点,所以MF∥AC,FH∥AA′,所以MF∥平面AA′C′C,FH∥平面AA′C′C,因为MF∩FH=F,所以平面MFH∥平面AA′C′C,所以M与线段FH上任意一点的连线都平行于平面AA′C′C,所以点P的运动轨迹是线段FH,其长度为4,故选D.。
高考数学一轮复习直线、平面平行的判定及其性质

第四节直线、平面平行的判定及其性质[考纲传真](教师用书独具)1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.(对应学生用书第99页)[基础知识填充]1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行?线面平行”)∵l∥a,a?α,l?α,∴l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行?线线平行”)∵l∥α,l?β,α∩β=b,∴l∥b2. 面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行?面面平行”)∵a∥β,b∥β,a∩b=P,a?α,b?α,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a,β∩γ=b,∴a∥b[知识拓展](1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(4)两个平面平行,则其中任意一个平面内的直线与另一个平面平行,即α∥β,m?α,则m∥β.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.()(3)若一个平面内有无数条直线与另一个平面平行,则这两个平面平行.()(4)若两个平面平行,则一个平面内的直线与另一个平面平行.()[答案](1)×(2)×(3)×(4)√2.(教材改编)下列命题中,正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.若直线a,b和平面α满足a∥α,b∥α,那么a∥bD.若直线a,b和平面α满足a∥b,a∥α,b?α,则b∥αD[根据线面平行的判定与性质定理知,选 D.]3.(2015·北京高考)设α,β是两个不同的平面,m是直线且m?α,“m∥β”是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件B[当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βα∥β;当α∥β时,α内任一直线与β平行,因为m?α,所以m∥β.综上知,“m∥β”是“α∥β”的必要而不充分条件.]4.在正方体ABCD-A1B1C1D1中,E是DD1的中点,则BD1与平面ACE的位置关系是________.平行[如图所示,连接BD交AC于F,连接EF,则EF是△BDD1的中位线,∴EF∥BD1,又EF?平面ACE,BD1?平面ACE,∴BD1∥平面ACE.]5.(2017·河北石家庄质检)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m?α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若α⊥γ,β⊥γ,则α∥β.其中是真命题的是________(填上序号).【导学号:79170247】②[①,m∥n或m,n异面,故①错误;易知②正确;③,m∥β或m?β,故③错误;④,α∥β或α与β相交,故④错误.](对应学生用书第100页)与线、面平行相关命题真假的判断(2017·全国卷Ⅰ)在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A[A项,作如图①所示的辅助线,其中D为BC的中点,则QD∥AB.∵QD∩平面MNQ=Q,∴QD与平面MNQ相交,∴直线AB与平面MNQ相交.B项,作如图②所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ.又AB?平面MNQ,MQ?平面MNQ,∴AB∥平面MNQ.C项,作如图③所示的辅助线,则AB∥CD,CD∥MQ,∴AB∥MQ.又AB?平面MNQ,MQ?平面MNQ,∴AB∥平面MNQ.D项,作如图④所示的辅助线,则AB∥CD,CD∥NQ,∴AB∥NQ.又AB?平面MNQ,NQ?平面MNQ,∴AB∥平面MNQ.故选A.][规律方法] 1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情形,通过举反例否定结论或用反证法推断命题是否正确.唐山模拟)若m,n表示不同的直线,α,β表示不同的平[变式训练1](1)(2018·面,则下列结论中正确的是() 【导学号:79170248】A.若m∥α,m∥n,则n∥αB.若m?α,n?β,m∥β,n∥α,则α∥βC.若α⊥β,m∥α,n∥β,则m∥nD.若α∥β,m∥α,n∥m,n?β,则n∥β(2)在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,给出下列四个推断:①FG∥平面AA1D1D;②EF∥平面BC1D1;③FG∥平面BC1D1;④平面EFG∥平面BC1D1其中推断正确的序号是()A.①③B.①④C.②③D.②④(1)D(2)A[(1)在A中,若m∥α,m∥n,则n∥α或n?α,故A错误.在B中,若m?α,n?β,m∥β,n∥α,则α与β相交或平行,故B错误.在C中,若α⊥β,m∥α,n∥β,则m与n相交、平行或异面,故C错误.在D中,若α∥β,m∥α,n∥m,n?β,则由线面平行的判定定理得n∥β,故D正确.(2)∵在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1,∵BC1∥AD1,∴FG∥AD1,∵FG?平面AA1D1D,AD1?平面AA1D1D,∴FG∥平面AA1D1D,故①正确;∵EF∥A1C1,A1C1与平面BC1D1相交,∴EF与平面BC1D1相交,故②错误;∵E,F,G分别是A1B1,B1C1,BB1的中点,∴FG∥BC1,∵FG?平面BC1D1,BC1?平面BC1D1,∴FG∥平面BC1D1,故③正确;∵EF与平面BC1D1相交,∴平面EFG与平面BC1D1相交,故④错误.]直线与平面平行的判定与性质(2016·南通模拟)如图7-4-2所示,斜三棱柱ABC-A1B1C1中,点D,D1分别为AC,A1C1上的点.(1)当A1D1D1C1等于何值时,BC1∥平面AB1D1;(2)若平面BC1D∥平面AB1D1,求ADDC的值.[解](1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1.2分连接A 1B ,交AB 1于点O ,连接OD 1. 由棱柱的性质知,四边形A 1ABB 1为平行四边形,∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点,∴OD 1∥BC 1.4分又∵OD 1?平面AB 1D 1,BC 1?平面AB 1D 1,∴BC 1∥平面AB 1D 1.∴当A 1D 1D 1C 1=1时,BC1∥平面AB 1D 1. 6分(2)由平面BC 1D ∥平面AB 1D 1,且平面A 1BC 1∩平面BC 1D =BC 1,平面A 1BC 1∩平面AB 1D 1=D 1O 得BC 1∥D 1O ,8分同理AD 1∥DC 1,∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD ,又∵A 1OOB =1,∴DC AD =1,即AD DC =1. 12分[规律方法]1.判断或证明线面平行的常用方法有:(1)利用反证法(线面平行的定义);(2)利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);(3)利用面面平行的性质定理(α∥β,a?α?a∥β);(4)利用面面平行的性质(α∥β,a?β,a∥α?a∥β).2.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.[变式训练2](2018·西安模拟)如图7-4-3,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,CD=2,E,E1分别是棱AD,AA1的中点,设F是棱AB的中点,证明:直线EE1∥平面FCC1;【导学号:79170249】图7-4-3[证明]法一:取A1B1的中点为F1,连接FF1,C1F1,由于FF1∥BB1∥CC1,所以F1∈平面FCC1,因此平面FCC1即为平面C1CFF1.连接A1D,F1C,由于A1F1綊D1C1綊CD,所以四边形A1DCF1为平行四边形,因此A1D∥F1C.又EE1∥A1D,得EE1∥F1C,而EE1?平面FCC1,F1C?平面FCC1,故EE1∥平面FCC1.法二:因为F为AB的中点,CD=2,AB=4,AB∥CD,所以CD綊AF,因此四边形AFCD为平行四边形,所以AD∥FC.又CC1∥DD1,FC∩CC1=C,FC?平面FCC1,CC1?平面FCC1,所以平面ADD1A1∥平面FCC1,又EE1?平面ADD1A1,所以EE1∥平面FCC1.平面与平面平行的判定与性质如图7-4-4所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:图7-4-4(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.[证明](1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,GH∥B1C1. 2分又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面. 5分(2)在△ABC中,E,F分别为AB,AC的中点,∴EF∥BC.∵EF?平面BCHG,BC?平面BCHG,∴EF∥平面BCHG. 7分∵A1G綊EB,∴四边形A1EBG是平行四边形,则A1E∥GB.∵A1E?平面BCHG,GB?平面BCHG,∴A1E∥平面BCHG. 10分∵A1E∩EF=E,∴平面EFA1∥平面BCHG. 12分[母题探究]在本例条件下,若点D为BC1的中点,求证:HD∥平面A1B1BA.[证明]如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B.5分又HD?平面A1B1BA,A1B?平面A1B1BA,∴HD∥平面A1B1BA.12分[规律方法] 1.判定面面平行的主要方法:(1)面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行).2.面面平行的性质定理的作用:(1)判定线面平行;(2)判断线线平行.线线、线面、面面平行的相互转化是解决与平行有关的问题的指导思想.解题时要看清题目的具体条件,选择正确的转化方向.线线平行判定定理性质定理线面平行判定定理性质定理面面判定定理性质定理平行易错警示:利用面面平行的判定定理证明两平面平行时,需要说明是一个平面内的两条相交直线与另一个平面平行.山东高考)在如图7-4-5所示的几何体中,D是AC的中点,[变式训练3](2016·EF∥DB.(1)已知AB=BC,AE=EC,求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点,求证:GH∥平面ABC.图7-4-5[证明](1)因为EF∥DB,所以EF与DB确定平面BDEF. 2分如图①,连接DE.①因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF. 4分因为FB?平面BDEF,所以AC⊥FB.5分(2)如图②,设FC的中点为I,连接GI,HI.11。
高考数学一轮复习考点知识专题讲解52---直线、平面平行的判定与性质

高考数学一轮复习考点知识专题讲解直线、平面平行的判定与性质考点要求1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.(×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.(×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.(×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(√)教材改编题1.下列说法中,与“直线a∥平面α”等价的是()A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是()A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一直线与平面平行的判定与性质命题点1直线与平面平行的判定例1如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,E,F分别是BC,PD的中点,求证:(1)PB∥平面ACF;(2)EF∥平面PAB.证明(1)如图,连接BD交AC于O,连接OF,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点, 又∵F 是PD 的中点, ∴OF ∥PB ,又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2直线与平面平行的性质例2如图所示,在四棱锥P -ABCD 中,四边形ABCD 是平行四边形,M 是PC 的中点,在DM上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A 1E ∩EF =E ,A 1E ,EF ⊂平面EFA 1, ∴平面EFA 1∥平面BCHG .延伸探究 在本例中,若将条件“E ,F ,G 分别是AB ,AC ,A 1B 1的中点”变为“点D ,D 1分别是AC ,A 1C 1上的点,且平面BC 1D ∥平面AB 1D 1”,试求ADDC的值. 解如图,连接A 1B 交AB 1于O ,连接OD 1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O ,所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB =1.又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即ADDC=1.如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A1C1G∩BC=H,求证:H为BC的中点.证明(1)∵E,F分别为B1C1,A1B1的中点,∴EF∥A1C1,∵A1C1⊂平面A1C1G,EF⊄平面A1C1G,∴EF∥平面A1C1G,又F,G分别为A1B1,AB的中点,∴A1F=BG,又A1F∥BG,∴四边形A1GBF为平行四边形,则BF∥A1G,∵A1G⊂平面A1C1G,BF⊄平面A1C1G,∴BF∥平面A1C1G,又EF∩BF=F,EF,BF⊂平面BEF,∴平面A1C1G∥平面BEF.(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B1D1∥BD,所以B1D1∥l.题型三平行关系的综合应用例4如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点.(1)求证:BD1∥平面AEC;(2)CC1上是否存在一点F,使得平面AEC∥平面BFD1,若存在,请说明理由.(1)证明如图,连接BD交AC于O,连接EO.因为ABCD-A1B1C1D1为正方体,底面ABCD为正方形,对角线AC,BD交于O点,所以O为BD的中点,又因为E为DD1的中点,所以在△DBD1中,OE是△DBD1的中位线,所以OE∥BD1.又因为OE⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.(2)解当CC1上的点F为中点时,即满足平面AEC∥平面BFD1.连接BF,D1F,因为F为CC1的中点,E为DD1的中点,所以CF綉ED1,所以四边形CFD1E为平行四边形,所以D1F∥EC,又因为EC⊂平面AEC,D1F⊄平面AEC,所以D1F∥平面AEC.由(1)知BD1∥平面AEC,又因为BD1∩D1F=D1,BD1,D1F⊂平面BFD1,所以平面AEC∥平面BFD1.教师备选如图,四边形ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明(1)如图,连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO.又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.思维升华证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH;(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.(1)证明∵四边形EFGH为平行四边形,∴EF∥HG.∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x 4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC =BC -CF BC =1-x 4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝ ⎛⎭⎪⎫x +6-32x =12-x . 又∵0<x <4, ∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.设l是直线,α,β是两个不同的平面,则下列能判断l∥α的是()A.l∥β,α∥βB.l与平面α内无数条直线平行C.l⊂β,α∥βD.l⊥β,α⊥β答案C解析对于A,l可能在α内,故不能判断l∥α,故A不正确;对于B,l可能在α内,故不能判断l∥α,故B不正确;对于C,因为l⊂β,α∥β,由面面平行的定义得l∥α,故C正确;对于D,l可能在α内,故不能判断l∥α,故D不正确.3.(2022·成都模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则()A.MF∥EB B.A1B1∥NEC.四边形MNEF为平行四边形 D.四边形MNEF为梯形答案D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB,1∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S∶S△ABC等于()△A′B′C′A.2∶3 B.2∶5C.4∶9 D.4∶25答案D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()答案D解析A项,由正方体性质可知AB∥NQ,NQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;B,C项,由正方体性质可知AB∥MQ,MQ⊂平面MNQ,AB⊄平面MNQ,AB∥平面MNQ,排除;D项,由正方体性质易知,直线AB与平面MNQ不平行,满足题意.6.如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是()①没有水的部分始终呈棱柱形;②水面EFGH所在四边形的面积为定值;③随着容器倾斜程度的不同,A1C1始终与水面所在平面平行;④当容器倾斜如图(3)所示时,AE·AH为定值.A.①② B.①④C.②③ D.③④答案B解析根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行),结合题中图形易知①正确;由题图可知水面EFGH的边EF的长保持不变,但邻边的长却随倾斜程度而改变,可知②错误;因为A1C1∥AC,AC⊂平面ABCD,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故③错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故④正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案l ⊄α解析①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案点M 在线段FH 上(或点M 与点H 重合) 解析连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH ,则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE綉D1G.∴四边形OEGD1是平行四边形,∴EG∥D1O.又D1O⊂平面BB1D1D,EG⊄平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知BF∥HD1,由题意易证B1D1∥BD.又B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,∴平面BDF∥平面B1D1H.10.如图,在四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP∥平面BEF;(2)求证:GH∥平面PAD.证明(1)如图,连接EC,因为AD∥BC,BC=12 AD,所以BC∥AE,BC=AE,所以四边形ABCE是平行四边形,所以O为AC的中点.又因为F是PC的中点,所以FO ∥AP ,因为FO ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(2022·福州检测)如图所示,正方体ABCD -A 1B 1C 1D 1中,点E ,F ,G ,P ,Q 分别为棱AB ,C 1D 1,D 1A 1,D 1D ,C 1C 的中点,则下列叙述中正确的是()A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.12.如图所示,正方体ABCD-A1B1C1D1的棱长为3,M,N分别是棱A1B1,B1C1的中点,P是棱AD上的一点,AP=1,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案2 2解析因为平面ABCD∥平面A1B1C1D1,平面ABCD∩平面PQNM=PQ,平面A1B1C1D1∩平面PQNM=MN,所以MN∥PQ,又因为MN∥AC,所以PQ∥AC.又因为AP=1,所以PDAD=DQCD=PQAC=23,所以PQ=23AC=23×32=2 2.13.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件________时,有平面D1BQ∥平面PAO.答案Q为CC1的中点解析如图所示,设Q为CC1的中点,因为P为DD1的中点,所以QB∥PA.连接DB,因为P,O分别是DD1,DB的中点,所以D1B∥PO,又D1B⊄平面PAO,QB⊄平面PAO,PO⊂平面PAO,PA⊂平面PAO,所以D1B∥平面PAO,QB∥平面PAO,又D1B∩QB=B,D1B,QB⊂平面D1BQ,所以平面D 1BQ ∥平面PAO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面PAO .14.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________. 答案8解析如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为()A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案B解析取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN , ∴点P 的轨迹是线段EF , ∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22, ∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O ,A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.(2022·郑州模拟)如图,在三棱锥P -ABC 中,AC ,BC ,PC 两两垂直,AC =BC ,E ,F 分别是AC ,BC 的中点,△ABC 的面积为8,四棱锥P -ABFE 的体积为4.(1)若平面PEF ∩平面PAB =l ,求证:EF ∥l ; (2)求三棱锥P -ABC 的表面积. (1)证明∵E ,F 分别是AC ,BC 的中点, ∴EF ∥AB ,∵AB ⊂平面PAB ,EF ⊄平面PAB , ∴EF ∥平面PAB .又平面PEF ∩平面PAB =l ,EF ⊂平面PEF , ∴EF ∥l .(2)解∵AC ,BC ,PC 两两垂直,AC ∩BC =C ,AC ,BC ⊂平面ABC , ∴PC ⊥平面ABC ,即PC 是四棱锥P -ABFE 的高. ∵S △ABC =8,AC =BC ,AC ⊥BC , ∴AC =BC =4.∵E ,F 分别是AC ,BC 的中点,V P -ABFE =4, ∴13×34×12AC ×BC ×PC =4,即PC =2. ∴PA =42+22=25,PB =42+22=25,AB =42+42=4 2.∴△PAB的面积为12×42×(25)2-⎝⎛⎭⎪⎫4222=4 6.∴三棱锥P-ABC的表面积S=2×12×4×2+8+46=16+4 6.。
高中数学高考总复习---直线、平面平行的判定和性质知识讲解及考点梳理

例 1、【高清课堂:直线、平面平行的判定与性质例 1】 如图所示,已知 P、Q 是单位正方体 ABCD-A1B1C1D1 的面 A1B1BA 和面 ABCD 的中心。 证明:PQ//平面 BCC1B1
【证明】方法一:如图,取 B1B 中点 E,BC 中点 F,连接 PE、QF、EF, 因为在三角形 A1B1B 中,P、E 分别是 A1B 和 B1B 的中点,
举一反三: 【变式】(2015 春 澄城县期末)如图所示的多面体中,ABCD 是菱形,BDEF 是矩形, ED⊥面 ABCD,连结 AC,AC∩BD=O, (Ⅰ)求证:面 BCF∥面 AED; (Ⅱ)求证:AO 是四棱锥 A﹣BDEF 的高.
【证明】(Ⅰ)在矩形 BDEF 中,FB∥ED, ∵FB 不包含于平面 AED,ED 平面 AED, ∴FB∥平面 AED, 同理,BC∥平面 AED, 又 FB∩BC=B, ∴平面 FBC∥平面 EDA. (Ⅱ)解:∵ABCD 是菱形,∴AC⊥BD, ∵ED⊥面 ABCD,AC 面 ABCD,
2
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
2、 符号语言: 3、 面面平行的另一性质: 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.
符号语言:
.
要点诠释:
平面与平面平行的判定与性质,同直线与平面平行的判定与性质一样,体现了转化与化
归的思想。三种平行关系如图:
性质过程的转化实施,关键是作辅助平面,通过作辅助平面得到交线,就可把面面平行 化为线面平行并进而化为线线平行,注意作平面时要有确定平面的依据。 【典型例题】
。
考点四、平面与平面平行的性质 4、 平行平面的性质定理:
如果两个平行平面同时与第三个平面相交,那么它们的交线平行.
高考数学一轮复习 直线、平面平行的性质定理课件

若平面 内有无数条直线与 平行,则 与 可能相交,不一定平行,所以由不能推
出.故选A.
2.如图,在三棱锥S − ABC中,E,F分别是SB,SC上的点,且EF//平面ABC,
则( B )
A.EF与BC相交
B.EF//BC
C.EF与BC异面
D.以上均有可能
[解析] 因为平面 ∩ 平面 = ,//平面,所以//.
AF = 5,则EG
20
=___.
9
[解析] 因为// , ∩ 平面 = , ⊂ 平面,所以//,
即//,所以
=
=
,则
+
=
×
+
=
×
+
=
.
规律方法
在应用线面平行的性质定理进行平行转化时,常常将线面平行转化为该线与过该线的
的中点,在线段B1 C1 上是否存在点F,使得平面A1 AF//平面ECC1 ?若存
在,请加以证明;若不存在,请说明理由.
解 存在,当F为线段B1 C1 的中点时,平面A1 AF//平面ECC1 .
理由如下:如图,连接A1 F,AF,
在长方体ABCD − A1 B1 C1 D1 中,AA1 //CC1 ,AD//B1 C1 .
②
证明 ∵ G为BC的中点,E为PC的中点,∴ GE//BP.
∵ GE ⊄ 平面PAB,BP ⊂ 平面PAB,
∴ GE//平面PAB.
由F为PD的中点,得EF//DC.
∵ AB//DC,∴ EF//AB.
∵ EF ⊄ 平面PAB,AB ⊂ 平面PAB,
∴ EF//平面PAB. ∵ EF ∩ GE = E,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四节直线、平面平行的判定及其性质[备考方向要明了][归纳·知识整合]1.直线与平面平行的判定定理和性质定理[探究] 1.如果一条直线和平面内一条直线平行,那么这条直线和这个平面平行吗?提示:不一定.只有当此直线在平面外时才有线面平行.2.如果一条直线和一个平面平行,那么这条直线和这个平面的任意一条直线都平行吗?提示:不可以,对于任意一条直线而言,存在异面的情况.2.平面与平面平行的判定定理和性质定理[探究] 3.如果一个平面有无数条直线与另一个平面平行,那么这两个平面平行吗?提示:不一定.可能平行,也可能相交.4.如果两个平面平行,则一个平面内的直线与另一个平面有什么位置关系?答案:平行.[自测·牛刀小试]1.下列命题中,正确的是()A.若a∥b,b⊂α,则a∥αB.若a∥α,b⊂α,则a∥bC.若a∥α,b∥α,则a∥bD.若a∥b,b∥α,a⊄α,则a∥α解析:选D由直线与平面平行的判定定理知,三个条件缺一不可,只有选项D正确.2.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是()A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α解析:选D当直线l∥α或l⊂α时,满足条件.3.(教材习题改编)已知平面α∥β,直线a⊂α,有下列说法:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.解析:由面面平行的性质可知,过a与β相交的平面与β的交线才与a平行,故①错误;②正确;平面β内的直线与直线a平行,异面均可,其中包括异面垂直,故③错误.答案:②4.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND ,则直线MN 与平面BDC 的位置关系是________.解析:∵AM MB =ANND ,∴MN ∥BD ,又MN ⊄平面BCD ,BD ⊂平面BCD , ∴MN ∥平面BDC . 答案:平行5.(教材习题改编)过三棱柱ABC -A 1B 1C 1的棱A 1C 1,B 1C 1,BC ,AC 的中点E 、F 、G 、H 的平面与平面________平行.解析:如图所示,∵E 、F 、G 、H 分别为A1C 1、B 1C 1、BC 、AC 的中点, ∴EF ∥A 1B 1,FG ∥B 1B ,且EF ∩FG =F ,A 1B 1∩B 1B =B 1 ∴平面EFGH ∥平面ABB 1A 1. 答案:ABB 1A 1[例1] 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ .求证:PQ ∥平面BCE .[自主解答] 法一:如图所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又AP =DQ ,∴PE =QB , 又PM ∥AB ∥QN , ∴PM AB =PE AE =QB BD ,QN DC =BQBD , ∴PM AB =QN DC, ∴PM 綊QN ,即四边形PMNQ 为平行四边形, ∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE .法二:如图所示,作PH ∥EB 交AB 于H ,连接HQ ,则AH HB =APPE,∵AE =BD ,AP =DQ ,∴PE =BQ , ∴AH HB =AP PE =DQ BQ, ∴HQ ∥AD ,即HQ ∥BC . 又PH ∩HQ =H ,BC ∩EB =B , ∴平面PHQ ∥平面BCE , 而PQ ⊂平面PHQ , ∴PQ ∥平面BCE .本例若将条件“AP =DQ ”改为“AP PE =DQQB ”,则直线PQ 与平面BCE 还平行吗?解:平行.证明如下:如图所示,连接AQ ,并延长交BC 于K ,连接EK . ∵AD ∥BK ,∴DQ BQ =AQ QK .又AP PE =DQ QB , ∴AP PE =AQ QK, ∴PQ ∥EK .又PQ ⃘平面BEC ,EK ⊂平面BEC , ∴PQ ∥平面BEC . ——————————————————— 证明线面平行的关键点及探求线线平行的方法(1)证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线; (2)利用几何体的特征,合理利用中位线定理、线面平行的性质,或者构造平行四边形、寻找比例式证明两直线平行;(3)注意说明已知的直线不在平面内,即三个条件缺一不可.1.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ACD ,平面ACD ∩平面AB 1C =AC , ∴EF ∥AC ,又E 为AD 的中点,AB =2, ∴EF =12AC =12×22+22= 2.答案: 22.(2013·无锡模拟)如图,P A ⊥平面ABCD ,四边形ABCD 是矩形,E 、F 分别是AB 、PD 的中点,求证:AF ∥平面PCE .证明:如图,取PC 的中点M , 连接ME 、MF ,则FM ∥CD 且FM =12CD .又∵AE ∥CD 且AE =12CD ,∴FM 綊AE ,即四边形AFME 是平行四边形. ∴AF ∥ME ,又∵AF ⊄平面PCE ,EM ⊂平面PCE , ∴AF ∥平面PCE .[例2] 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面是正方形,E ,F ,G 分别是棱B 1B ,D 1D ,DA 的中点.求证:平面AD 1E ∥平面BGF .[自主解答] ∵E ,F 分别是B 1B 和D 1D 的中点,∴D 1F 綊BE , ∴四边形BED 1F 是平行四边形, ∴D 1E ∥BF .又∵D 1E ⊄平面BGF ,BF ⊂平面BGF , ∴D 1E ∥平面BGF .∵FG 是△DAD 1的中位线, ∴FG ∥AD 1.又AD 1⃘平面BGF ,FG ⊂平面BGF , ∴AD 1∥平面BGF . 又∵AD 1∩D 1E =D 1, ∴平面AD 1E ∥平面BGF . ———————————————————判定面面平行的方法(1)利用定义:即证两个平面没有公共点(不常用); (2)利用面面平行的判定定理(主要方法);(3)利用垂直于同一条直线的两平面平行(客观题可用);(4)利用平面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(客观题可用).3.如图所示,ABCD -A1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a 3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________. 解析:∵平面ABCD ∥平面A 1B 1C 1D 1,∴MN ∥PQ . ∵M 、N 分别是A 1B 1,B 1C 1的中点,AP =a3,∴CQ =a 3,从而DP =DQ =2a 3,∴PQ =223a .答案:223a4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 、P 分别为所在边的中点.求证:平面MNP ∥平面A 1C 1B .证明:如图所示,连接D 1C ,则MN 为△DD 1C 的中位线, ∴MN ∥D 1C .∵D 1C ∥A 1B ,∴MN ∥A 1B .同理可证,MP ∥C 1B .而MN 与MP 相交,MN ,MP 在平面MNP 内,A 1B ,C 1B 在平面A 1C 1B 内,∴平面MNP ∥平面A 1C 1B .[例3] (2013·徐州模拟)如图所示,在三棱柱ABC -A 1B 1C 1中,A 1A⊥平面ABC ,若D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.[自主解答] 存在点E ,且E 为AB 的中点. 下面给出证明:如图,取BB 1的中点F ,连接DF ,则DF∥B1C1,∵AB的中点为E,连接EF,则EF∥AB1.B1C1与AB1是相交直线,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.———————————————————破解探索性问题的方法解决探究性问题一般要采用执果索因的方法,假设求解的结果存在,从这个结果出发,寻找使这个结论成立的充分条件,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件(出现矛盾),则不存在.5.如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥平面ADD1A1?若存在,求点F的位置;若不存在,请说明理由.解:存在这样的点F,使平面C1CF∥平面ADD1A1,此时点F为AB的中点,证明如下:∵AB∥CD,AB=2CD,∴AF綊CD,∴四边形AFCD是平行四边形,∴AD∥CF,又AD⊂平面ADD1A1,CF⊄平面ADD1A1,∴CF∥平面ADD1A1.又CC1∥DD1,CC1⊄平面ADD1A1,DD1⊂平面ADD1A1,∴CC1∥平面ADD1A1,又CC1、CF⊂平面C1CF,CC1∩CF=C,∴平面C1CF∥平面ADD1A1.1个关系——三种平行间的转化关系线线平行、线面平行、面面平行的相互转化是解决与平行有关证明题的指导思想,解题中既要注意一般的转化规律,又要看清题目的具体条件,选择正确的转化方向. 2种性质——线面、面面平行的性质(1)线面平行的性质:①直线与平面平行,则该直线与平面无公共点.②由线面平行可得线线平行.(2)面面平行的性质:①两平面平行,则一个平面内的直线平行于另一平面.②若一平面与两平行平面相交,则交线平行.3种方法——判定线面平行的方法面面平行判定的落脚点是线面平行,因此掌握线面平行的判定方法是必要的,判定线面平行的三种方法:(1)利用定义:判定直线与平面没有公共点(一般结合反证法进行);(2)利用线面平行的判定定理;(3)利用面面平行的性质,即当两平面平行时,其中一平面内的任一直线平行于另一平面.数学思想——转化与化归思想在证明平行关系中的应用线线平行、线面平行和面面平行是空间中三种基本平行关系,它们之间可以相互转化,其转化关系如下:证明平行的一般思路是:欲证面面平行,可转化为证明线面平行,欲证线面平行,可转化为证明线线平行.[典例](2013·盐城模拟)如图,P为▱ABCD所在平面外一点,M,N分别为AB,PC的中点,平面P AD∩平面PBC=l.(1)判断BC与l的位置关系,并证明你的结论;(2)判断MN与平面P AD的位置关系,并证明你的结论.[解](1)结论:BC∥l,因为AD∥BC,BC⊄平面P AD,AD⊂平面P AD,所以BC∥平面P AD.又因为BC⊂平面PBC,平面P AD∩平面PBC=l,所以BC∥l.(2)结论:MN∥平面P AD.设Q为CD的中点,如右图所示,连接NQ,MQ,则NQ∥PD,MQ∥AD.又因为NQ∩MQ=Q,PD∩AD=D,所以平面MNQ∥平面P AD.又因为MN⊂平面MNQ,所以MN∥平面P AD.[题后悟道]1.本题(1)将线面平行的判定定理和性质定理交替使用,实现了线线平行的证明;本题(2)巧妙地将线面平行的证明转化为面面平行,进而由面面平行的性质,得到结论的证明.2.利用相关的平行判定定理和性质定理实现线线、线面、面面平行关系的转化,也要注意平面几何中一些平行的判断和性质的灵活应用,如中位线、平行线分线段成比例等,这些是空间线面平行关系证明的基础.[变式训练]如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;证明:(1)因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,PC⊂平面BCP,所以DE∥平面BCP.(2)因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF,所以四边形DEFG为平行四边形.又因为PC⊥AB,所以DE⊥DG,所以四边形DEFG为矩形.一、选择题(本大题共6小题,每小题5分,共30分)1.已知直线a∥平面α,P∈α,那么过点P且平行于直线a的直线()A.只有一条,不在平面α内B.有无数条,不一定在平面α内C.只有一条,在平面α内D.有无数条,一定在平面α内解析:选C由线面平行的性质可知C正确.2.下列命题中正确的个数是()①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若l与平面α平行,则l与α内任何一条直线都没有公共点;④平行于同一平面的两直线一定相交.A.1B.2C.3 D.4解析:选A对①,若a⊄α,则α与α相交或平行,故①错误;对②,当直线l与α相交时,也有直线l上的无数个点不在平面α内,故②错误;③正确;对④,平行于同一平面的两直线相交、平行或异面,故④错误.3.(2013·江西九校联考)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α解析:选D根据两平面平行的条件,可得选项D符合.4.如图,在正方体中,A、B为正方体的两个顶点,M、N、P为所在棱的中点,则异面直线MP、AB在正方体以平面PBM为正面的正视图中的位置关系是()A.相交B.平行C.异面D.不确定解析:选B在正视图中AB是正方形的对角线,MP是平行于对角线的三角形的中位线,所以两直线平行,故选B.5.设α、β、γ为三个不同的平面,m 、n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ.可以填入的条件有( )A .①或②B .②或③C .①或③D .①或②或③解析:选C 由面面平行的性质定理可知,①正确;当n ∥β,m ⊂γ时,n 和m 在同一平面内,且没有公共点,所以平行,③正确.6.下列四个正方体图形中,A ,B 为正方体的两个顶点,M ,N ,P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形的序号是()A .①③B .①④C .②③D .②④解析:选B ①由平面ABC ∥平面MNP ,可得AB ∥平面MNP.④由AB ∥CD ,CD ∥NP ,得AB ∥NP ,所以AB ∥平面MNP .二、填空题(本大题共3小题,每小题5分,共15分) 7.考察下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l ,m 为不同直线,α、β为不重合平面),则此条件为________.①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;② ⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α; ③ ⎭⎪⎬⎪⎫l ⊥βα⊥β ⇒l ∥α.解析:线面平行的判定中指的是平面外的一条直线和平面内的一条直线平行,故此条件为:l ⊄α.答案:l ⊄α8.(2013·济宁模拟)过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.解析:过三棱柱ABC -A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,E 1F 1,EE 1,FF 1,E 1F ,EF 1均与平面ABB 1A 1平行,故符合题意的直线共6条.答案:69.(2013·南京模拟)已知l ,m 是两条不同的直线,α,β是两个不同的平面,下列命题: ①若l ⊂α,m ⊂α,l ∥β,m ∥β,则α∥β;②若l ⊂α,l ∥β,α∩β=m ,则l ∥m ;③若α∥β,l ∥α,则l ∥β;④若l ⊥α,m ∥l ,α∥β,则m ⊥β.其中真命题是________(写出所有真命题的序号).解析:当l ∥m 时,平面α与平面β不一定平行,①错误;由直线与平面平行的性质定理,知②正确;若α∥β,l ∥α,则l ⊂β或l ∥β,③错误;∵l ⊥α,l ∥m ,∴m ⊥α,又α∥β,∴m ⊥β,④正确,故填②④.答案:②④三、解答题(本大题共3小题,每小题12分,共36分)10.如图,一直空间四边形ABCD 中,E 是AB 上一点,G 是三角形ADC 的重心,试在线段AE 上确定一点F ,使得GF ∥平面CDE .解:如图,连接AG 并延长,交CD 于点H ,则AG GH =21,连接EH .在AE 上取一点F ,使得AF FE =21,连接GF ,则GF ∥EH ,又EH ⊂平面CDE ,∴C 1F ∥平面CDE .易知当AF =2FE 时,GF ∥平面CDE .11.(2013·连云港模拟)如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC=5,BB 1=BC =6,D ,E 分别是AA 1和B 1C 的中点.(1)求证:DE ∥平面ABC ;(2)求三棱锥E -BCD 的体积.解:(1)证明:取BC 中点G ,连接AG ,EG ,因为E 是B 1C 的中点,所以EG ∥BB 1,且EG =12BB 1. 由直棱柱知,AA 1綊BB 1,而D 是AA 1的中点,所以EG 綊AD ,所以四边形EGAD 是平行四边形,所以ED ∥AG ,又DE ⊄平面ABC ,AG ⊂平面ABC所以DE ∥平面ABC .(2)因为AD ∥BB 1,所以AD ∥平面BCE ,所以V E -BCD =V D -BCE =V A -BCE =V E -ABC ,由(1)知,DE ∥平面ABC ,所以V E -ABC =V D -ABC =13AD ·12BC ·AG =16×3×6×4=12.12.(2013·黄山模拟)如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,PB =PD =2a ,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.证明:存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD .设BD ∩AC =O .连接BF ,MF ,BM ,OE .∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD的中点,∴MF ∥EC ,BM ∥OE .∵MF ⊄平面AEC ,CE ⊂平面AEC ,BM ⊄平面AEC ,OE ⊂平面AEC ,∴MF ∥平面AEC ,BM ∥平面AEC .∵MF ∩BM =M ,∴平面BMF ∥平面AEC .又BF ⊂平面BMF ,∴BF ∥平面AEC .1.P 为矩形ABCD 所在平面外一点,矩形对角线交点为O ,M 为PB 的中点,给出四个结论:①OM ∥PD ;②OM ∥平面PCD ;③OM ∥平面PDA ;④OM ∥平面PBA ,⑤OM ∥平面PCB .其中正确的个数有( )A .1B .2C .3D .4解析:选C 由题意知,OM ∥PD ,则OM ∥平面PCD ,且OM ∥平面PDA .2.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C ,过点P 的直线n 与α,β分别交于B ,D ,且P A =6,AC =9,PD =8,则BD 的长为________.解析:分点P 在两个平面的一侧或在两个平面之间两种情况,由两平面平行得AB ∥CD ,截面图如图,由相似比得BD =245或24.答案:245或24 3.如图所示,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM于GH .求证:AP ∥GH .证明:如图所示,连接AC 交BD 于点O ,连接MO .∵四边形ABCD 是平行四边形.∴O 是AC 的中点.又M 是PC 的中点,∴AP ∥OM .又AP ⊄平面BMD ,OM ⊂平面BMD ,∴AP ∥平面BMD .又AP ⊂平面P AHG ,平面P AHG ∩平面BMD =GH ,∴AP ∥GH .。