期望与方差的性质
独立随机变量期望和方差的性质

独立随机变量乘积的期望的性质:
X , Y 独立,则 E XY E X E Y
以离散型随机变量为例, 设二元随机变量 X , Y 的联合分布列 P X xi , Y y j 已知, 则 P X xi , Y y j P X x i P Y y j ,
2 2 E X 2 2 XY Y 2 E X 2 E X Y 2 E Y 2 E XY 2 E X E Y
2 2
E X 2 E X E Y 2 E Y Var X Var Y
Var Y Var X 1 X 2
X r Var X 1
Var X r
r 1 p p2
*********************************************************************** 例 7.4.1 设随机变量 X , Y 相互独立,已知 它们的期望分别为 E X 和 E Y 。令
2
U max X , Y , V max X , Y ,求 E UV 。
解: 分别考虑 X Y 和 X Y 两种情况, 当 X Y 时, U X , V Y ; 当 X Y 时, U Y , V X ; 所以 UV XY ,
E UV E XY E X E Y 。
3
Var X Var X 1 X 2
X n Var X 1 Var X 2
*********************************************************************** 负二项分布随机变量
常用分布的数学期望及方差

方差的性质
方差具有可加性
对于两个独立的随机变量X和Y,有Var(X+Y) = Var(X) + Var(Y)。
方差具有对称性
对于一个常数a和随机变量X,有Var(aX) = |a|^2 * Var(X)。
方差具有非负性
对于随机变量X,有Var(X) >= 0,其中 Var(X) = 0当且仅当X是一个常数。
05 数学期望与方差的应用
在统计学中的应用
描述性统计
数学期望和方差用于描述一组数据的中心趋势和 离散程度,帮助我们了解数据的基本特征。
参数估计
通过样本数据的数学期望和方差,可以对总体参 数进行估计,如均值和方差的无偏估计。
假设检验
在假设检验中,数学期望和方差用于构建检验统 计量,判断原假设是否成立。
常见分布的数学期望
均匀分布的数学期望为
$E(X) = frac{a+b}{2}$,其中a和b是均匀分布的下限和上 限。
柯西分布的数学期望为
$E(X) = frac{pi}{beta} sinh(frac{1}{beta})$,其中β是柯西 分布的参数。
拉普拉斯分布的数学期望为
$E(X) = frac{beta}{pi} tan(frac{pi}{beta})$,其中β是拉普 拉斯分布的参数。
03
泊松分布
正态分布是一种常见的连续型随机变量 分布,其方差记作σ²。正态分布的方差 描述了随机变量取值的分散程度。
二项分布是一种离散型随机变量分布, 用于描述在n次独立重复的伯努利试验 中成功的次数。其方差记作σ²,且σ² = np(1-p),其中n是试验次数,p是单次 试验成功的概率。
泊松分布是一种离散型随机变量分布, 用于描述在一段时间内随机事件发生的 次数。其方差记作σ²,且σ² = λ,其中 λ是随机事件发生的平均速率。
数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。
即()1k k k E X x p ∞==∑。
设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。
即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。
性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。
2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。
概率的期望与方差

概率的期望与方差概率是概率论中的重要概念,它描述了某个事件发生的可能性。
在概率论中,期望与方差是两个与概率密切相关的重要概念。
本文将就概率的期望与方差进行探讨。
一、期望期望是概率论中描述随机变量平均数的指标。
它代表了随机事件在一次试验中发生的长期平均结果。
概率的期望可以以数学期望的方式进行计算。
对于一个离散型随机变量X,其概率质量函数可以表示为:P(X=x1)=p1, P(X=x2)=p2, ..., P(X=xn)=pn其期望E(X)可以通过以下公式计算:E(X)=x1*p1 + x2*p2 + ... + xn*pn对于一个连续型随机变量X,其概率密度函数可以表示为:f(x)其期望E(X)可以通过以下公式计算:E(X)=∫xf(x)dx二、方差方差是衡量随机变量离散程度的指标。
它是随机变量与其期望的差值的平方的期望,用来描述随机事件的波动程度。
对于一个离散型随机变量X,其方差Var(X)可以通过以下公式计算:Var(X)=E[(X-E(X))^2]=∑(xi-E(X))^2 * P(X=xi)对于一个连续型随机变量X,其方差Var(X)可以通过以下公式计算:Var(X)=E[(X-E(X))^2]=∫(x-E(X))^2 * f(x)dx三、概率的期望与方差的意义1. 期望表示了一次试验中随机变量的平均结果,可以用来预测概率分布的中心位置。
2. 方差表示了一次试验中随机变量的波动程度,用来衡量随机事件的不确定性。
3. 期望和方差是概率分布的两个基本性质,可以通过它们来描绘随机事件的特征。
四、概率的期望与方差的应用1. 期望和方差在金融学中有着广泛的应用,用来衡量金融资产的收益和风险。
2. 在统计学中,期望和方差是估计参数和检验假设的重要工具。
3. 期望和方差也在工程、物理等领域中有广泛的应用,用来分析实验数据和优化系统性能。
总结:概率的期望与方差是概率论中重要的概念,用来描述随机事件的平均结果和波动程度。
期望方差协方差

随机变量的数字特征一、数学期望E(x)的性质:性质一:常数C,E(C)=C;性质二:X为随机变量,C为常数,则E(CX)=CE(X);性质三:X,Y为随机变量,则E(X+Y)=E(X)+E(Y);性质三:X,Y为相互独立的随机变量时,E(XY)=E(X)E(Y)二、方差的性质:D(X)=E(X²)-[E(X)]²性质一:C为常数,则D(C)=0;性质二:X为随机变量,C为常数,则D(CX)=C²D(X)D(X±C)=D(X)性质三:X,Y为相互独立随机变量D(X±Y)=D(X)+D(Y)当X,Y不相互独立时:D(X±Y)=D(X)+D(Y)±2COV(X,Y);关于协方差COV(X+Y,X-Y)=D(X)-D(Y)的证明?证:由COV(X,Y)=E(XY)-E(X)E(Y) 得COV(X+Y,X-Y)=E[(X+Y)(X-Y)]-E(X+Y)E(X-Y) =E(X^2-Y^2)-{[E(X)+E(Y)][E(X)-E(Y)]}=E(X^2)-E(Y^2)-E(X)E(X)+E(Y)E(Y)=E(X^2)-E(X)E(X)-[E(Y^2)-E(Y)(Y)]=D(X)-D(Y)三、常用函数期望与方差:⑴(0-1)分布:①分布律:P{X=K}=p^k(1-p)^1-k,k=0,1,2...(0<p<1)②数学期望:p③方差:pq (q=1-p)⑵二项分布B(n,p):①分布律:P{X=K}=(n,k)p^k(1-p)n-k (k=0,1..n;n>=1,0<p<1,q=1-p)②数学期望:np③方差:npq⑶泊松分布π(λ):①分布律:P{X=k}=(λ^k *e^(-λ))/k! (k=0,1,2...;λ>0)②数学期望:λ③方差:λ⑷均匀分布U(a,b):①分布律:f(X)=1/(b-a), a<x<b; f(X)=0,x∈其他值时②数学期望:(a+b)/2③方差:(b-a)²/12⑸指数分布E(λ):①分布律:f(X)=λe^(-λ), X>0; f(X)=0, X≦0;②数学期望:1/λ③方差:1/λ²⑹正态分布N(μ,ρ²)①分布律:f(x)=1/﹙√2π *ρ)*e^(-(x-μ)²/(2ρ²)),(-∞<x<+∞,ρ>0)②数学期望:μ③方差:ρ²四、切比雪夫不等式:随机变量的数学期望E(x)与方差D(x)存在,则对于任意整数ε,不等式:P{|X-E(X)|≥ε}≤D(X)/ε²成立。
数学期望和方差

数学期望和方差
第四章 数学期望和方差
分布函数能够完整地描述随机变量的统计特 性,但在实际问题中,随机变量的分布函数较 难确定,而它的一些数字特征较易确定.并且 在很多实际问题中,只需知道随机变量的某些 数字特征也就够了.
另一方面,对于一些常用的重要分布,如二 项分布、泊松分布、指数分布、正态分布等, 只要知道了它们的某些数字特征,就能完全确 定其具体的分布.
8 8
9 10 11 12 7 15 10 10 50
则这 50 个零件的平均直径为
8 8 9 7 1015 1110 1210 50 10.14cm
第四章
数学期望和方差
换个角度看,从这50个零件中任取一个,它 的尺寸为随机变量X , 则X 的概率分布为 X P 8
x
| x| 但 | x | f ( x ) dx dx 发散. 2 (1 x )
它的数学期望不存在.
注:虽然f(x)是偶函数,但不能用定理1.1.
第四章
数学期望和方差
§4.2 数学期望的性质
设已知随机变量X的分布,我们需要计算的不 是X的数学期望, 而是X的某个函数的数学期望, 比如说g(X)的数学期望. 那么应该如何计算呢? 更一般的,已知随机向量(X1 , X2 …,Xn ) 的联合分布, Y= g(X1, X2 …,Xn ) 是 (X1 , X2 …,Xn ) 的函数, 需要计算Y 的数学期 望,应该如何计算呢? 我们下面就来处理这个 问题.
8 50
12
9
7 50
10
15 50
12
11
10 50
12
10 50
则这 50 个零件的平均直径为
离散型随机变量的期望和方差

离散型随机变量的期望和方差
离散型随机变量期望和方差是统计学中一个重要的知识点,也是概率论的基础知识。
期望和方差是离散随机变量可以推断出的一些重要数学性质,它们反映了离散随机变量的变化趋势。
在数学表述上,离散型随机变量的期望是指,取值不同的概率乘以该值的积分的平均值,用记号μ (mu)表示。
期望是离散型随机变量的基本特征,它描述了离散型随机变量中最有可能出现的值的程度,它的大小也反映了随机变量的中心位置。
离散型随机变量的方差是指期望和均值之差的平均平方值,用记号σ2 (sigma squared)表示,其中σ (sigma)是标准差。
方差反映了离散型随机变量取值之间的方差,它比较了每一个取值与离散型随机变量在期望上的偏差,表示了离散型随机变量取值分布情况。
运用离散型随机变量的期望和方差可以推断出更多的信息,即对离散随机变量要有更深入的了解,以便于更准确的预测。
可以利用期望和方差的知识来分析一个离散随机变量的发展趋势,以及在分析工具使用中的投资组合。
总之,离散型随机变量的期望和方差是随机变量分析的基础,也是揭示离散随机变量分布情况的重要工具,在众多领域都有重要的应用价值,如统计分析、投资组合设计等等。
以上就是关于离散型随机变量期望和方差的主要内容。
期望与方差的性质

例1.设 X~N(10,4),Y~U[1,5],且X与 Y相互独立,求 E(3X+2XY-Y+5)。
解: 由已知, 有 E(X)=10, E(Y)=3.
性质2和3 E(3X 2XY Y 5) 3E(X ) 2E(XY ) E(Y ) E(5)
性质4
310 2 E(X ) E(Y) 3 5 30 2103 3 5 92
由X ≥0 得:
f (x) 0, x 0 ,
所以
EX x f (x)dx x f (x)dx 0.
0
推论: 若 X ≤Y,则 EX ≤EY。
证明:由已知 Y - X≥0,则 E(Y - X) ≥0。 而E(Y - X) = E(Y)-E(X), 所以,E(X) ≤E(Y)。
第2页/共33页
44
4 44
24 144 84 4 81
E(X ) 0 44 1
44
2 44 3 44
64
第5页/共33页
5
解二: 再引入 X i , i = 1,2,3,4. 1, 第i盒空,
X i 0, 其它,
X X1 X2 X3 X4
Xi 1
0
P
34
4
1
3 4
4
E(X )
4
(6x2
6x)dx
3 10
E(Y 2 ) E( X 4 )
x4 f (x)dx Βιβλιοθήκη 1x4 0(6x2
6x)dx
1 7
D(Y ) E(Y 2 ) E2 (Y ) 37 700
第32页/共33页
32
概率密度为:f
(
x)
b
1
a
,
axb
0 , 其它.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性质4
310 2 E(X ) E(Y) 3 5
30 2103 3 5 92
5
例2.(二项分布 B(n,p)) 设单次实验成功的概率 是 p,问n次独立重复试验中,期望几次成功?
解: 引入
1, X i 0,
第i次试验成功, 第i次试验不成功。
则
X= X1+ X2 +…+ Xn
是n次试验中的成功次数。
1, 第k次生产的第i件产品是正品; X ki 0,否则. k 1,2,,10, i 1,2,,100, 则
10 100
X
X ki.
k 1 i1
12
例5.(续)
而X ki服从 p ek 的( 0 — 1)分布,E( X ki ) ek . i 1,2,,100, 所以
10 100
pij X -1
0
Y
-1
18
18
0
18
0
1
18
18
pi•
38 28
1 p• j
18 38 18 28 18 38
38
2
X Y -1
0
1
P
28 48
28
E(X ) E(Y ) 0; E( XY ) 0; E(XY ) E(X )E(Y )
但 P(X 0,Y 0) 0
P( X
0)P(Y
因此, EX E(X1) E(X 2 ) E(X n ) np.
这里, X~B(n,p)。
6
例3.将4 个可区分的球随机地放入4个盒子中,每 盒容纳的球数无限,求空着的盒子数的数学期望.
解一:设 X 为空着的盒子数, 则 X 的概率分布为
X0 4!
P 44
1
C41C31C42 44
2!
144 44
1 M
)n .
i 1 , 2 ,, M.
E( X i
)
1
(1
1 M
)n ,
i 1 , 2 ,, M.
10
E( X i
)
1
(1
1 M
)n ,
i 1 , 2 ,, M.
E( X ) E( X 1 X 2 X M ) E( X 1) E( X 2) E( X M)
M
1
(1
2
C42 (24 44
2)
84 44
3
C41 44
4 44
24 144 84 4 81
E(X ) 0 44 1
44
2 44 3 44
64
7
解二: 再引入 X i , i = 1,2,3,4. 1, 第i盒空,
X i 0, 其它,
X X1 X2 X3 X4
Xi 1
0
P
3 4
15
§4.2 随机变量的方差
前面我们介绍了随机变量的数学期望, 它体现了随机变量取值的平均,是随机变 量的一个重要的数字特征.
但是在一些场合,仅仅知道随机变量 取值的平均是不够的.
16
例如,甲、乙两门炮同时向一目标射击10发 炮弹,其落点距目标的位置如图:
• •
中•心 ••
•
•
•
••
••中•••心•• •••
每个随机变量Xi 都服从两点分布,i =1,2,…,M.
9
因为每个球落入每个盒子是等可能的均为1/M, 所以,对第i个盒子,没有一个球落入这个盒子 内的概率为(1-1/M).
故,n个球都不落入这个盒子内的概率为 (1-1/M)n ,即:
P{ Xi
0}
(1
1 M
)n
,
P{ Xi
1} 1 (1
4
1
3 4
4
E(X
)
4
3 4 4
81 64
E(
X
i
)
3 4
4
8
例4.将n个球放入M个盒子中,设每个球落入各 个盒子是等可能的,求有球的盒子数X的期望。
解: 引入随机变量:
1 X i 0
若第i个盒子中有球 若第i个盒子中无球
i 1 , 2 ,, M
则 X=X1+X2+…+XM , 于是 E(X) = E(X1)+E(X2)+ …+E(XM) .
14
解:设第j个产品的利润
Yj=
s-c,
-c,
第j个产品是正品, 第j个产品是次品。
j=1,2, ,N。
则 SN Y1+Y2+...+YN为N件产品的总利润。
由已知 Yj -c
s-c
Pq
p
由于 EYj=s-c p-cq=sp-c,j=1,2,...N, 因此,ESN=EY1+EY2+...+EYN N sp-c。
1 M
)n
.
注:129页4.27以此题为模型。
11
例5.用某台机器生产某种产品,已知正品率随 着该机器所用次数的增加而指数下降,即 P{第k次生产出的产品是正品}= ek ,k 1,2,, 0. 假设每次生产100件产品,试求这台机器前10 次生产中平均生产的正品总数。
解:设X是前10次生产的产品中的正品数,并设
10
E(X )
E( X ki ) 100ek
k 1 i1
k 1
10
100
k 1
ek
100e (1 e10 ) 1 e
13
例6. 某厂家的自动生产线, 生产一件正品的 概率为 p (0<p<1),生产一件次品的概率为 q=1-p。生产一件产品的成本为c元,正品的 价格为s元,次品不能出售。这样,厂家生产 一件正品获利s-c元, 生产一件次品亏损c 元(假定每个产品的生产过程是相互独立的 )。 若生产了N件产品,问厂家所获利润的 期望值是多少?
0)
2 2
8
3
若X ≥0,且EX 存在,则EX ≥0。
证明:设 X 为连续型,密度函数为f (x), 则
由≥0 得:
f (x) 0, x 0 ,
所以
EX x f (x)dx x f (x)dx 0.
0
推论: 若 X ≤Y,则 EX ≤EY。
证明:由已知 Y - X≥0,则 E(Y - X) ≥0。
乙炮
甲炮射击结果 乙炮射击结果
B. 数学期望的性质
E (C ) = C E (aX ) = a E (X )
E (X + Y ) = E (X ) + E (Y )
E
n i1
ai X i
C
n i1
ai E( X i )
C
当X ,Y 相互独立时,
E (X Y ) = E (X )E (Y ) .
1
注 性质 4 的逆命题不成立,即 若E (X Y) = E(X)E(Y),X ,Y 不一定相互独立. 反例
而E(Y - X) = E(Y)-E(X), 所以,E(X) ≤E(Y)。 4
例1.设 X~N(10,4),Y~U[1,5],且X与Y 相互独立,求 E(3X+2XY-Y+5)。
解: 由已知, 有 E(X)=10, E(Y)=3.
性质2和3 E(3X 2XY Y 5) 3E(X ) 2E(XY ) E(Y ) E(5)