接地与接零的详细说明

合集下载

电气设备接零、接地管理规定(4篇)

电气设备接零、接地管理规定(4篇)

电气设备接零、接地管理规定一、概述电气设备的接零、接地是保障电气设备正常运行和人身安全的重要环节。

为了确保电气设备的使用安全,需要制定科学合理的管理规定来规范电气设备的接零、接地操作。

本文将对电气设备接零、接地管理规定进行详细阐述。

二、接零管理规定1. 接零原则(1)电气设备的接零应符合国家电气设备安全规范的要求,确保接零标准的合理性和科学性。

(2)接零操作必须按照相应的安全操作规程进行,确保工作人员的人身安全。

2. 接零标准(1)接零应在设备的主要金属外壳以及导电部件上进行,确保接零的可靠性。

(2)接零应符合电气设备的设计要求和标准,确保设备的正常使用。

3. 接零装置(1)接零装置应符合国家标准的要求,确保装置的质量和可靠性。

(2)接零装置的安装、使用和维护必须符合相关规范的要求,确保装置的正常运行。

4. 接零操作流程(1)接零操作前,必须认真检查接零装置是否正常。

(2)接零操作必须由具备相应资质和培训合格的电工进行,确保操作的准确性。

(3)接零操作期间必须严格遵守相关操作规程,防止误操作导致事故的发生。

(4)接零操作完成后,必须及时检查接零效果是否符合要求,确保设备的安全运行。

5. 接零检查和评估(1)定期对电气设备的接零进行检查和评估,确保设备的接零状态良好。

(2)接零检查和评估必须由经过培训合格的电气专业人员进行,确保评估结果的准确性。

三、接地管理规定1. 接地原则(1)电气设备的接地应符合国家电气设备安全规范的要求,确保接地的标准合理和科学。

(2)接地操作必须按照相应的安全操作规程进行,确保工作人员的人身安全。

2. 接地标准(1)接地应在电气设备的金属壳体或导电部件上进行,确保接地的可靠性。

(2)接地应符合电气设备的设计要求和标准,确保设备的正常使用。

3. 接地装置(1)接地装置应符合国家标准的要求,确保装置的质量和可靠性。

(2)接地装置的安装、使用和维护必须符合相关规范的要求,确保装置的正常运行。

接地与接零的作用

接地与接零的作用

接地与接零的作用接地和接零的目的,一是为了电气设备的正常工作,例如工作性接地;二是为了人身和设备安全,如保护性接地和接零。

接地:在电力系统中,将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接叫做接地。

接地分为工作接地、保护接地和重复接地。

电力系统用变压器的中性点直接接地;以及电器设备在正常工作情况下,不带电的金属部分与接地体之间作良好的金属连接,都称为接地,前者为工作接地(即常说的中性点不接地系统:中性点间接接地系统;中性点不接地系统),后者为保护接地。

工作接地:电气设备因正常工作或排除故障的需要,将电路中的某一点如中性点用金属与接地体连接起来,称为工作接地。

保护接地:将电气设备正常情况下不带电的金属部分用金属与接地体连接起来,称为保护接地。

重复接地:在采用保护接零的低压电网中,除在中性点接地以外,还必须在零线上的一处或多处开展接地,这叫做重复接地。

低压配电线路的“零线”必须重复接地。

在低压配电线路较长或用电负荷较集中的配电线路上,都要隔段在“零线”上做重复接地保护,以防零线断线三相负荷不平衡中性线零位电压中心点位移,使相线电压升高或降低过大而烧坏220伏的用电设备。

重复接地的目的是:①当电气设备发生接地短路时,可以降低零线的对地电压;②当零线断线时,可以继续使零线保持接地状态,减轻了触电的危害。

在没有采用重复接地的情况下,当零线发生断线时,接在断线点后面只要有一台设备发生接地短路,其他设备外壳的对地电压都接近于相电压。

防雷接地:把防雷设备(如避雷器、击穿保险等)用金属与接地体连接起来称为防雷接地。

防雷接地的作用是将雷电流通过接地装置泄入大地中,使电气设备免遭受雷电的损坏。

接零:将电气设备和用电装置的金属外壳与系统零线相接叫做接零。

零线包括工作零线,保护零线。

一般在交流系统中,零线由中性点引出;工作零线:电气设备因运行需要而引接的零线,称为工作零线。

如在380V∕220v系统中,常说的“零线”;此时,“零线”和“火线”经负载共同构成工作回路。

接地保护与接零保护的区别

接地保护与接零保护的区别

接地保护与接零保护接地保护:为防止因电气设备绝缘损坏而遭受触电危险,将电气设备得金属外壳与接地体相连,称为接地保护。

接零保护:为防止因电气设备绝缘损坏而使人身遭受触电危险,将电气设备得金属外壳与变电器中性线相连接就称为接零保护。

接地:在电力系统中,将电气设备与用电装置得中性点、外壳或支架与接地装置,用导体作良好得电气联接叫接地。

接零:将电气设备与用电装置得金属外壳与系统零线相连接叫做接零。

接地与接零得目得:一就是为了电气设备得正常工作(工作性接地),另一目得就是为了人身与设备得安全(保护性接地与接零)接地保护适用于三相三线或三相四线制得电力系统。

在这种电网中,凡由于绝缘破坏或其它原因而可能呈现危险电压得金属部份,例如变压器、电动机以及其它电器等得金属外壳与底座均可采用接地保护。

(一般电厂均采用三相四线制系统)接零保护适用于三相四线制中性点直接接地得低压电力系统中,电气设备外壳可采用接零保护。

当采用接零保护时,除电源变压器得中性点必须采取工作接地以外,同时对零线要在规定得地点采取重复接地。

中性点:发电机、变压器与电动机得三相绕组星形联接得公共点称为中性点,如果三相绕组平衡,由中性点到各相外部接线端子间得电压绝对值必然相等.零点:如果中性点就是接地得则该点又称为零点。

中性线:从中性点引出得导线称作中性线;而从零点引出得导线称作零线。

三相五线制系统:三相四线制系统中,除中性线之外,再从电源中性点单独引出一根保护线(PE线)所形成得系统,称为三相五线制系统。

,通常用在低压配电系统中。

中性线具有如下功能:用来接使用相电压得设备;用来传导三相不平衡电流与单相电流;用来减少负荷中性点得电压偏移。

PE线功能:保障人身安全,防止发生触电及带电外壳时得触电事故.通过保护线(PE),将设备得外露可导电部份得金属外壳接到电源中性点得接地点去。

当电气设备发生单相接地时,即形成单相短路,使设备或系统得保护装置动作,切除故障设备,防止人身触电。

建筑施工临时用电的接地与接零

建筑施工临时用电的接地与接零

建筑施工临时用电的接地与接零是确保施工现场电力供应安全的重要环节。

接地和接零都是为了保护人身安全和电气设备的完好运行而设计的。

下面将详细介绍建筑施工临时用电的接地与接零。

一、建筑施工临时用电的接地接地是指将电气设备或系统与地面形成电气连接的一种安全措施。

合理的接地可以确保电气设备在运行时的安全性,防止电气设备的外壳带电,保护人身安全。

1.接地的原理接地的原理是通过将电气设备的金属外壳与地面形成接地线路,将电器故障所产生的漏电流迅速引向地面,确保人身安全和设备正常运行。

当设备产生漏电时,漏电流通过接地线路回流至地面,触发保护装置切断电源,避免电流通过人体,造成触电事故。

2.接地的具体方法(1)金属外壳接地:将设备的金属外壳和地面连接,形成接地线路。

(2)设备内部接地:将设备内部的导体和金属外壳相连接,形成接地线路。

(3)外部接地:在建筑施工现场的中性点进行接地,将电气设备的中性点和地面相连接,形成接地线路。

3.接地的操作步骤(1)选择合适位置:选择符合规范要求的接地位置,确保设备和接地之间的导线长度不超过规定范围。

(2)铺设接地导线:通过埋地或架空方式将导体与设备的金属外壳连接。

(3)接地导线的截面积:接地导线的截面积应根据电气设备的额定电流和接地电阻要求来确定。

(4)接地电阻的测量:使用万用表或专用接地电阻测试仪测量接地电阻,确保接地电阻符合规范要求。

二、建筑施工临时用电的接零接零是指将电气设备的中性点与地面形成电气连接的一种安全措施。

接零的主要目的是确保电气系统的中性点电位与大地的电位相等,避免电流通过人体和设备造成危害。

1.接零的原理接零的主要原理是通过将电气设备的中性点与接地线路连接,使中性点电势与大地电势相等,防止产生触电和漏电现象,确保人身安全和设备正常运行。

2.接零的具体方法(1)建立中性导线:建立中性导线,保证电气设备中性点电势稳定。

(2)中性线与地线连接:将中性导线与地线通过相配合的接触器连接,确保中性点与地的接地电位相等。

保护接地与保护接零知识图文解析(附注意事项)

保护接地与保护接零知识图文解析(附注意事项)

保护接地与保护接零知识图文解析(附注意事项)(1)保护接地:电气设备的导体部分或者外壳用足够容量的金属导线或导体可靠的与大地连接,当人体触及带电外壳时,人体相当于接地电阻的一条并联支路,由于人体电阻远远大于接地电阻,所以通过人体的电流将会很小,避免了人身触电事故。

(2)保护接零:电气设备在正常情况下,不带电的金属部分与零线做良好的金属或者导体连接。

当某一相绝缘损坏致使电源相线碰壳,电气设备的外壳及导体部分带电时,因为外壳及导体部分采取了接零措施,该相线和零线构成回路。

由于单相短路电流很大,使线路保护的熔断器熔断。

从而使设备与电源断开,避免了人身触电伤害的可能性。

适用范围(1)保护接地:适用于中性点不接地的三相电源系统中。

(2)保护接零:适用于中性点接地的三相电源系统中(一些民用三相四线中性点接地系统也采用保护接地,但必须是配合带有漏电保护的开关使用)。

保护原理及危害分析(1)在中性点不接地系统中:当人体触及电气设备的导体部分或者外壳时,人体相当于一个与接地电阻并联支路的一个大电阻。

若按人体电阻值1000Ω(通常人体电阻值为1000~2000Ω)计算,设备外壳所带电压为220V时,那么无保护接地时流经人体的电流为:Ir=220/Rr=220mA(人体可以承受的最大交流电流/交流摆脱电流为10mA)。

(2)在中性点接地系统中:在380V/220V三相四线制电源中性点直接接地的配电系统中,只能采用保护接零,采用保护接地则不能有效地防止人身触电事故的发生。

若采用保护接地,电流中性点接地电阻按4Ω考虑,而电源电压为220V,那么当电气设备的绝缘损坏使电气设备的外壳带电时,则中性点接地电阻与接地电阻之间的电流为:Ir=220/(R0+Rd)=220/(4+4)=27.5A。

熔断器的额定电流是根据电气设备的要求选定的,如果设备的容量较大,为了保证设备在正常情况下的运行。

所选熔体的额定电流将会随之增大。

如果在27.5A的接地短路电流作用下保护不动作,外壳带电的电气设备不能立即脱离电源,设备导体或者金属外壳会长期存在对地电压Ud=27.5×4=110V。

接地与接零安全课程

接地与接零安全课程

02 接地与接零的安装与维护
CHAPTER
接地装置的安装
接地装置的安装应遵循相关标准 和规范,确保接地电阻值符合要
求。
接地装置的安装位置应选择在土 壤电阻率较低的地方,以减小接
地电阻。
接地装置的安装应考虑到环境因 素,如土壤湿度、酸碱度等,以
确保接地效果。
接零线的安装
接零线的安装应使用 符合规格的导线,确 保导线的截面积足够。
操作后进行安全检查
在操作完成后,应再次进行安全检查,确保设备工作正常,无安全 隐患。
安全防护措施
使用安全防护用品
在进行接地与接零操作时,应佩 戴必要的安全防护用品,如绝缘
手套、绝缘鞋等。
设立安全警示标识
在进行接地与接零操作时,应在现 场设立明显的安全警示标识,提醒 其他人员注意安全。
定期维护与检查
测量步骤
将测试电极插入土壤中, 确保电极与土壤紧密接触, 然后进行测量。
测量结果分析
根据测量结果判断接地是 否良好,如果接地电阻过 大,需要采取措施降低电 阻。
接地故障的定位
故障现象观察
观察电气设备是否出现异 常现象,如外壳带电、漏 电保护器动作等。
故障范围确定
通过测量接地电阻的方法 确定故障范围,缩小排查 范围。
接地与接零安全课程
目录
CONTENTS
• 接地与接零的基本概念 • 接地与接零的安装与维护 • 接地与接零的安全应用 • 接地与接零的故障排除 • 接地与接零的安全规范与注意事项
01 接地与接零的基本概念
CHAPTER
定义与作用
定义
接地是将电气设备和接地体通过导体 连接起来,使电流经过接地体流入大 地,而接零是将电气设备的金属外壳 与零线连接,以保护人员安全。

接地和接零

接地和接零

接地与接零电气设备的任何部分与大地作良好的电气连接,称为接地。

接地按其作用不同,分为工作接地、保护接地、重复接地、防静电接地和防雷接地。

电气设备金属外壳或构架,与中性点直接接地系统中的零线相连接,称为接零,也叫保护接零。

接地和接零的作用有两个:一是为了保证电气设备的正常运行;二是为了安全,避免因电气设备绝缘损坏时使人员遭受触电危险,同时也防止雷电等对电气设备和生产场所的危害。

一、相关知识1、什么是电气上的“地”?当架空电力线路或电气设备接地体或接地点向大地作半球形分散,距接地体或接地点越近,半球的面积越小;距接地体或接地点越远,半球的面积越大。

由于电阻与面积成反比,所以距接地体或接地点越近电阻越大;距接地体或接地点越远电阻越小。

实验证明当距接地体或接地点20米以外时,半球形的面积也经很大,电阻已近于零,电压降也近于零,也就说该处的电位近于零。

这个零电位叫做电气上的"地"。

但理论上的零电位点将是距接地体无穷远处,如图1、图2所示。

图1-1 图1-22、接地电阻概念电气设备接地引下导线和埋入地中的金属接地体组的总和称为接地装置。

接地装置的接地电阻包括接地线电阻、接地体电阻、接地体和土壤的接触电阻以及接地散流电流途径的土壤电阻等。

所以,人工接地体或自然接地体的对地电阻加上接地线的电阻叫做接地装置的接地电阻。

在这些电阻中,接地线和接地体的电阻很小,常可略去不计,一般可以认为接地装置的接地电阻就等于接地体对地的电阻。

接地体又称为接地极,指埋入地中直接与土壤接触的金属导体或金属导体组,是接地电流流向土壤的散流件。

利用地下金属构件、管道等作为接地体的称自然接地体;按设计规范要求埋设的金属接地极称为人工接地体。

接地线指电气设备需要接地的部位用金属导体与接地体相连接的部分,是接地电流由接地部位传导至与在地的途径。

接地线中沿建筑物表面敷设的共用部分称为接地干线,电气设备金属外壳连接地干线部分称为接地支线。

接地与接零的技术要求

接地与接零的技术要求

接地与接零的技术要求1、引言接地与接零是电气工程中非常基础且重要的技术,它们在保证电气设备安全可靠运行方面起着至关重要的作用。

本文将从技术要求的角度,对接地与接零进行详细介绍。

2、接地技术要求(1) 接地电阻要求电气设备的接地电阻是衡量接地效果的重要指标之一,其大小对设备的安全性能有着直接的影响。

一般来说,接地系统的接地电阻应该控制在一定的范围内,如小于10欧姆,以确保接地效果良好。

同时,在接地电阻测试中还需要考虑测量仪器的精度和准确性,以减少测量误差。

(2) 接地极性要求接地系统的极性有正极性和负极性两种,正极性即将导体通过接地电极将电流引入地下,负极性即将导体通过接地电极将电流从地下排出。

在不同的应用场景中,选择适当的接地极性可以提高电气设备的安全性和可靠性。

(3) 接地布线要求接地系统的布线要求也是影响接地效果的重要因素之一。

在接地布线中应注意以下几个方面:- 接地线路应尽量短,避免过长的接地线路增加了接地电阻。

- 接地线路应经过合理的敷设,避免与其他电缆线路相互干扰,同时注意接地线的绝缘性能。

- 接地线应选用耐候性和耐腐蚀性好的导线材料,确保接地线寿命长且可靠。

(4) 接地连接要求接地连接的质量直接影响接地系统的可靠性。

在接地连接过程中应注意以下几个方面:- 接地导体应与地下接地电极之间建立良好的接触,接触面积足够大,接触面应清洁,并采取防腐措施,以保证接地导体与接地电极之间的接触电阻尽量小。

- 接地导体的连接采用牢固可靠的接地夹具或专用的接地连接器,避免松动或接触不良,以确保接地系统运行稳定可靠。

3、接零技术要求(1) 接零电阻要求接零系统的接零电阻是测试其接零效果的重要指标之一。

一般来说,接零电阻应该控制在较小的范围内,如小于5欧姆,以确保接零效果良好。

同时,在接零电阻测试中还需要注意使用精度较高的测量仪器,避免测量误差。

(2) 接零线路要求接零系统的线路布置也是影响接零效果的重要因素之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

接地和接零的基本目的有两条,一是按电路的工作要求需要接地;二是为了保障人身和设备安全的需要接地或接零。

按其作用可分为四种。

A.工作接地;b.保护接地;c.保护接零;d.重复接地。

那么什么是工作接地呢?在采用380/220V的低压电力系中,一般都从电力变压器引出四根线,即三根相线和一根中性线,这四根兼做动力和照明用。

动力用三根相线,照明用一根相线和中性线。

在这样的低压系统中,考虑当正常或故障的情况下,都能使电气设备可靠运行,并有利人身和设备的安全,一般把系统的中性点直接接地,如图-1中的R。

即为工作接地。

由变压器三线圈接出的也叫中性线即零线,该点就叫中性点。

工作接地的作用有两点,一是减轻一相接地的危险性;稳定系统的电位,限制电压不超过某一范围,减轻高压窜入低压的危险。

工作接地是如何减轻一相接地的危险性的呢?如图-2所示,如果电网的中性点不接地,当有一相碰地时,接地电流不大,设备仍可运行,故障可能长时间存在,但这时电流通过设备和人体回到零线而构成回路,这是很危险的。

应当看到,发生上述故障时,不只是某一接零设备处在危险状态,而是由该变压器供电的所。

有接零设备都处在危险状态中,同时,没有碰地的两相对地电压显著升高,大大增加触电的危险。

如果是如图-3那样,变压器的中性电直接接地,即变压器有工作接地,上述危险就可减轻或基本消除,时,接地电流ID主要通过碰地处接地电阻Rd和工作接地电阻Rd构成回路,接零设备对地电压为:Uo=IdR=U/Rd+Ro*R。

(式-1)由此可见,减少R。

可限制U。

在某一安全范围以内。

那么,工作接地是如何稳定系统电位的呢?如图-4所示,高压为10千伏电网,低压为380/220伏电网,当绝缘损坏时,高压电意外窜入低压边时,整个低压系统对地电压都将升高,如果低压系统不接地,其对地电压可升高到数千伏,这对大量接触低压设备的工作人员是非常危险的。

如果象图-4示那样,低压边中性点直接接地,则低压边对地电压将受到工作接地电阻的限制,不会太高。

这时,高压接地电流Icd通过低压工作接地和高压线路对地分布电容构成回路。

低压零线对地电压Uo=Idro(式-2)一般情况下,要求在发生高压窜入低压时U。

不得超过120伏,这就要求工作接地电阻:ro≤120/Icd(式-3),对于中、小容量的10千伏电网,高压接地电流一般不超过30安,r。

≤4欧姆是能满足上述要求的。

说完了工作接地,说说保护接地,什么是保护接地呢?保护接地就是电气设备在正常运行的情况下,将不带电的金属外壳或构架用足够粗的金属线与接地体可靠地连接起来,以达到在相线碰壳时保护人身安全,这种接地方式就叫保护接地,对于保护接地电阻值的要求是:R。

<4欧姆。

该接地方式适用于三相电源中性点不接地的供电系统和单相安全电压的悬浮供电系统的一种安全保护方式。

这种系统必须有独立的变压器供电,具体的应用场合,矿山地下作业,有爆炸危险的化工单位,以及其他高度危险环境的供电场所。

图-5即为保护接地的示意图。

保护接地的工作原理是什么?如图-6所示,在不接地的低压系统种,当一相碰壳时,接地电阻Id通过人体和电网对地绝缘阻抗形成回路。

如各相对地绝缘阻抗相等,运用电工学的方法,可求得漏电设备的对地电压:Ud=3URr/3Rr+Z(式-4)。

式中:U --电网电压地Rr--人体电阻;Z--电网每相对地绝缘阻抗。

电网对地绝缘阻抗Z由电网对地分布电容和对地绝缘电阻组成,并可看作式二者的并联。

一般情况下,绝缘电阻大于分布电容的容抗,如果把绝缘电阻看作式无限大,则对地电压:(式-5)式中:C--每相对地分布电容;Xc=1/wc;ω=2лƒ电源角频率。

当电网对地绝缘正常时漏电的设备对地电压很低,但当电网绝缘性能显著下降,或电网分布很广时,对地电压可能就会上升到危险的程度。

这就由必要采取图-7所示的保护接地措施。

有了保护接地以后,漏电设备对地电压主要决定于保护接地电阻Rb的大小。

由于Rb和Rr并联,且Rb﹤Rr,可以近似的认为对地电压:Ud=3URb/3Rb+Z(式-6)。

又因Rb﹤Z,所以设备对地电压大大降低。

只要适当控制Rb 的大小,即可限制漏电设备对地电压在安全范围内。

例如,对于长度1KM的380V电缆电网,如人体电阻为1500欧姆,当发生漏电且人体触及设备时,人体承受的电压约为127V,通过人体的电流约为84.5MA,这对人体时很危险的。

这种情况下,如果加上保护接地,且接地电阻Rb=4欧姆,则人体承受的电压降低为0.415V,通过人体的电流降低为0.277MA,对人体就没有危险了。

在不接地的电网中,单相接地电流的大小主要取决于电网的特征,如电压的高低、范围的大小、敷设的方式等。

一般情况下,由线路对地分布电容决定的电抗都比较大,而绝缘电阻还要大得多,数以兆欧计,计算时可看作时无限大。

因此,单相接地电流一般都很小,这就有可能采用保护接地把漏电设备对地电压限制在安全电压以下。

但重要的一条是----在有接地的电网中,这以规律是不一定成立的。

那么,保护接地的应用范围有哪些呢?保护接地的适用于不接地的电网。

在这种电网中,无论环境如何,凡由于绝缘破坏或其他原因而可能呈现危险电压的金属部分,除另有规定外,都应采取保护接地措施,主要包括:(1).电机、变压器、开关设备、照明器具及其它电气设备的金属外壳、底座及与其相连的传动装置;(2).户内外配电装置的金属构架或钢筋混凝土构架,以及靠近带电部分的金属遮拦或围栏;(3).配电屏、控制台、保护屏及配电柜(箱)的金属框架或外壳;(4)电缆接头盒的金属外壳、电缆的金属外皮和配线的钢管;此外,某些架空电力线路的金属杆塔和钢筋混凝土杆塔、互感器的二次线圈等,也应予以接地。

另以种接地方式---保护接零什么是保护接零呢?保护接零就是电气设备在正常运行的情况下,将不带电的金属外壳或构架与电网的零线紧密地连接起来,这种接线方式就叫保护接零。

如图—8所示。

从图-8中可知,万一某一相线碰壳时,短路电流要比Id 保护接地时大得多,使相线的熔丝熔断,以达到保护人身的安全。

在中性点接地的系统系统中宜采用该接地方式。

保护接零的工作原理使怎样的呢?图-9为保护接零的原理图,从图中可以看出,当有某一相带电的相线碰连上外壳时,通过设备外壳形成该相线对零线的单相短路(即碰壳短路),短路电流Id总是比较大,这样促使安装在相线线路上的保护装置,如熔断器Rd 迅速动作,从而把故障部分与电源分断开来,消除隐患保障了人身的安全。

我们再进一步地来分析不采用该接地方式会出现怎样情况。

在三相四线制变压器中性点直接接地的电网中,如果用电设备不采取任何的安全措施,则设备漏电时,触及工作接地地设备的人体将承受近220V的相电压,这样的情况显然是非常危险的。

如图-10所示,当有一相带电部分碰连设备外壳时,事故电流经过人体和变压器的工作接地构成回路,其大小为:IR=U/Rr+Ro(式-7)式中的U为220V相电压;Rr为人体电阻;R。

为工作接地电阻。

这样一来,工作接地电阻R。

通常在4欧姆以下,比人体电阻Rr要小得多,可以忽略不计。

而人体的电阻如果按1000欧姆考虑的话,则通过人体的电流就为IR=220/1000=0.22安=220毫安。

已知20-25毫安以上的工频电流对人体就有危险了,而100毫安的电流就足以使人致命,这里的220毫安的电流给人带来的危险就更可想而知了,所以,在变压器的中性点直接接地的系统中,没有安全装置是绝对不允许的。

在变压器中性点直接接地的系统中,如果不采用保护接零而采用保护接地,情况又会怎样呢?我们也可以来分析一下,在变压器中性点直接接地的系统中,不采用保护接零而采用保护接地所出现的情况是什么。

如图-11中电动机设有保护接地装置,接地电阻为Rd,当一相带电部分碰连外壳时,人体处在和保护接地装置并联的位置,其简化电路图如图-10所示。

这时,事故电流大部分经过保护接地电阻Rd和工作接地电阻R。

形成回路,只有很少一部分通过人体。

通过人体的电流决定于人体电阻和人体的接触电压。

图-12 采用保护接地的简化电路图按照图-12的情况,人体接触电压即电动机的外壳对地电压亦即降在接地电阻Rd上的电压,为了要知道人体承受的电压,壳先求出事故电流。

因为Rr比Rd要大得多,所以能近似地认为事故电流为:ID=U/Ro+Rd(式-8),根据规定,R。

和Rd都不得超过4欧姆。

如果都按4欧姆考虑,可以得到:ID=220/4+4=27.5(A)从这里可以近似求出人体承受得电压:UR=IDRd=27.5 *4=110(V),如果人体电阻按1000欧姆考虑,则通过人体得电流为:IR=UR/Rr=110/1000=0.11(A)=110(MA) 这个数值对人来说还是非常危险的,另一方面,这27.5安的事故电流不足以引起中等容量以上的线路的保护装置动作,设备上的危险电压就会长期存在,一般采用自动开关作保护装置的线路,要求事故电流大于其整定电流的1.25倍;采用熔断器作保护装置的线路,要求事故电流大于其额定电流的4倍。

只有这样,才能保证在发生事故时,保护装置迅速切断电源。

因此。

从安全角度考虑,对于上述27.5安的电流,只能使用整定电流为27.5/1.25=22安以下的自动开关或27.5/4=6.9安以下的熔断器。

这在实际当中显然是不能让人满意的。

那么,能不能用降低接地电阻R。

和Rd的办法来增加事故电流,以使保护装置迅速动作呢?理论上是可以的,但在实际上却是困难重重的。

例如,对于100A的熔断器,事故电流应大于400A,要求接地电阻为:Ro+Rd≤U/ID=220/400=0.55欧姆,要求达到这样小的接地电阻,不但不经济在土壤电阻较高的地方,简直就是不可能的事。

因此,这个办法也是难以行通的。

类似地,采用降低保护接地电阻YD以降低事故设备对地电压的办法也是难以行通的。

假如限制事故设备对地电压UD=36V,则降在工作接地电阻上的电压U。

=U-UD=220-36=184V,若工作接地电阻R。

仍按4欧姆考虑,可求得:RD=UD/U。

*R。

=36/184*4=0.78欧姆。

显然,这样的做法也是不合适的。

由以上的分析可知:①在变压器中性点直接接地的三相四线系统中,电器设备不接地是很危险的。

②在这样接地的配电系统中,单纯采用保护接地也不能保证安全的。

所以,在这种系统中必须采用保护接零作为安全措施。

保护接零的适用范围。

该接地方式的应用范围可以说是十分的广泛。

在220/380V三相四线制、且中性点直接接地的电网中,不论环境如何,凡由绝缘损坏而可能呈现对地电压的金属外壳部分均应采用接零保护。

例如,电动机的外壳、与电动机相连的金属构架和机器、车间的配电箱、配电室的开关柜、穿有电线的金属管、电缆的金属外皮等等,都必须要有可靠的接零保护。

相关文档
最新文档