中职数学模拟试题

合集下载

中职数学学业水平考试仿真模拟试题(五)

中职数学学业水平考试仿真模拟试题(五)

1中职数学学业水平考试仿真模拟试题(五)合格性考试(试卷满分60分,考试时间30分钟)一、单项选择题(本大题共8小题,每小题5分,共计40分)1.集合}1|{≤=x x A ,则A 的补集为( )A .}1|{≥x x B. }1|{>x x C. }1|{≤x x D. }1|{<x x 2.不等式03≤-x 的解集( )A .),3(∞B .]3,(-∞C .),3[∞ D. )3,(-∞ 3.求)3,2(-P 关于x 轴的对称点( )A .)3,2(B .)3,2(--C .)3,2(- D. )3,2(- 4.已知0tan cos >⋅θθ,则θ 是第几象限角( )A . 一、四B .一、二C .三、四 D.二、三 5. 32)(a - 的运算结果( )A .6a -B .6aC .5a - D. 5a 6.已知等比数列}{n a 中,有1091=⋅a a ,则5a 的值( ) A .5 B .10 C .20 D.30 7.求01:,03:21=+-=-+y x l y x l 的交点坐标为( ) A .)2,1(- B .)2,1( C .)1,2( D. )1,2(- 8.不能确定一个平面的条件( ) A .空间任意三个点 B .两条相交直线 C .两条平行直线D. 一条直线和直线外的一个点二、填空题(本大题共2小题,每小题5分,共计10分)9.样本3、5、7、9、11的平均值为:210.不等式1lg >x 的解集:三、解答题(本大题1小题,每小题10分,共计10分)11.已知向量)4,3(),1,2(=-=b a ρρ(1)求:)()(b a b a ρρρρ+⋅-(2)当k 为何值时,a b a k ρρρ⊥-)(3等级性考试(试卷满分30分,考试时间20分钟)题型 单选题 填空题 解答题 总分 得分一、单项选择题(本大题共3小题,每小题4分,共计12分)1. ),(y x P 为422=+y x 上任意一点,且)3,4(M ,则||PM 最大值为( ) A .3 B .5 C .7 D. 92.直线02:,022:21=-+=+-ty x l y x l 垂直,则t 的值( ) A .2 B .-2 C .4 D. -43.在边长为a 正方体中,则异面直线AC 与1BC 的距离为( ) A .a B .a 3 C .a 22D. a 2二、填空题(本大题共2小题,每小题4分,共计8分)4.向量)2,1(b ),3(-==ρρ,x a ,且b a ρρ//,则x 值为 5.试求样本1、2、3、4、5的方差 三、解答题(本大题1小题,每小题10分,共计10分)6.已知圆25)6()2(:22=-+-y x O ,02:=-y l 相交于B A ,两点,求: (1)求圆心坐标、半径; (2)求B A ,两点的坐标; (3)过圆上A 点的切线方程。

2020年福建省中职数学学业水平考试模拟试题(一)

2020年福建省中职数学学业水平考试模拟试题(一)

2020年福建省中职数学学业水平考试模拟试题(一)一、选择题(10小题,每小题5分,计50分)1.下列命题正确的是( )A.0Φ∈B.0{}2,0⊆C. {}{}2,00⊆D. {}{}2,00⊇2.不等式()()012≤+-x x 的解集是( )A.{}2,1-B.[-1,2]C. {}21|≥-≤x x x 或D. Φ3.已知函数12)(-=x x f ,则)2(f 的值是( )A.1B.2C. 3D.44.式子362log 2log -的值是( )A.1B.-1C.2D.-25.若0sin >θ,且0cos <θ,则θ所在的象限是( )A.一B.二C.三D.四6.等差数列14-=n a n ,则该数列的公差为( )A.3B.-4C.-2D.47.已知点)0,3(),4,1(-B A ,则线段AB 的中点坐标是( )A. )2,2(-B. )2,1(-C. )2,1(-D. )2,2( 8. o 60cos 的值为( ) A. 21 B.3 C. 23D. 19. 空间中垂直于同一条直线的两条直线( )A.平行B.垂直C. 异面或相交D. 平行或异面或相交10.直线0132:=-+y x l ,与圆1)2()4(:22=-+-y x O 3的关系是()A.相交B.相切C.相离D.都不是二、选择题(4小题,每小题5分,计20分)9.等差数列{}n a 中,,81-=a ,1210=a 求=10S 。

10.向量()),2,2(,2,1-==b a 则=•b a 。

11. 求01:1=-+y x l ,03:2=--y x l 的交点坐标是: 。

12.抛掷两枚硬币,都正面朝上的概率是: 。

三、解答题(3小题,每小题10分,计30分)13.已知全集求R U =,集合求{}{},2|,31|>=≤<=x x B x x A 求B A ⋂、B A ⋃. 14.正项等比数列{}n a 中,11=a ,,93=a 求公比q 及n S 的值。

中职升学数学模拟试题二(含答案)

中职升学数学模拟试题二(含答案)

中职升学数学模拟试题(含答案)中职升学数学模拟试题(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.2012201311i i +=-()(A)1i--(B)1i-+(C)1i-(D)1i+2.如下图,矩形ABCD 中,点E 为边CD 上的任意一点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于()(A )14(B )13(C )12(D )233.20.34log 4,log 3,0.3a b c -===,则()(A)a c b<<(B)c b a<<(C)a b c <<(D)b a c<<4.过点(1,3)P 且在x 轴上的截距和在y 轴上的截距相等的直线方程为()(A )40x y +-=(B )30x y -=(C )40x y +-=或30x y +=(D )40x y +-=或30x y -=5.某几何体的三视图如右图所示,则它的体积是()(A )283π-(B )83π-(C )82π-(D )23π6.(82展开式中不含..4x 项的系数的和为()(A )-1(B )0(C )1(D )27.已知向量(2,1)a =r ,(1,)b k =r,且a r 与b r 的夹角为锐角,则实数k 的取值范围是()(A )()2,-+∞(B )11(2,(,)22-+∞ (C )(,2)-∞-(D )(2,2)-8.已知函数()sin()f x A x ωϕ=+(其中π0,2A ϕ><)的部分图象如右图所示,为了得到x x g 2sin )(=将()f x 的图象()(A )向右平移π6个长度单位(B )向右平移π12个长度单位(C )向左平移π6个长度单位(D )向左平移π12个长度单位9.过点(2,2)P -且与曲线33y x x =-相切的直线方程是()(A )916y x =-+(B )920y x =-(C )2y =-(D )916y x =-+或2y =-10.下列命题:①在ABC ∆中,若B A >,则B A sin sin >;②已知)1,2(),4,3(--==CD AB ,则AB 在CD 上的投影为2-;③已知1cos ,:=∈∃x R x p ,01,:2>+-∈∀x x R x q ,则“q p ⌝∧”为假命题;④已知函数26sin()(-π+ω=x x f )0(>ω的导函数的最大值为3,则函数)(x f 的图象关于3π=x 对称.其中真命题的个数为()(A )1(B )2(C )3(D )411.设圆锥曲线C 的两个焦点分别为1F 、2F ,若曲线C 上存在点P 满足1PF :12F F :2PF =4:3:2,则曲线C 的离心率等于()(A )2332或(B )223或(C )122或(D )1322或12.对于三次函数32()f x ax bx cx d =+++(0a ≠),定义:设()f x ''是函数()y f x ='的导数,若方程()0f x ''=有实数解x 0,则称点(x 0,f (x 0))为函数()y f x =的“拐点”.有同学发现:“任何一个三次函数都有‘拐点’;任何一个三次函数都有对称中心;且‘拐点’就是对称中心.”请你将这一发现为条件,若函数321151()3132122g x x x x x =-+-+-,则12342010()(()(()20112011201120112011g g g g g +++++ =()(A)2010(B)2011(C)2012(D)2013二、填空题:把答案填在答题卡相应题号后的横线上(本大题共4小题,每小题5分,共20分)13.执行右侧的程序框图,输出的结果S 的值为.14.已知α、(0,)βπ∈,且1tan()2αβ-=,1tan 7β=-,O BA DC 2αβ-=.15.等差数列{}n a 的前n 项和为n S ,且936S =-,13104S =-,等比数列{}n b 中,55b a =,77b a =,则6b =.16.如右图,设A 、B 、C 、D 为球O 上四点,若AB 、AC 、AD 两两互相垂直,且AB AC ==,2AD =,则A 、D 两点间的球面距离.三、解答题:共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(满分12分)设数列{}n a 的前n 项和为n S .已知11a =,131n n a S +=+,n *∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n T 为数列{}n na 的前n 项和,求n T.18.(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(Ⅰ)如果8X =,求乙组同学植树棵树的平均数和方差;(Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望.19.(满分12分)如右图,在正三棱柱ABC —A 1B 1C 1中,AA 1=AB ,D 是AC 的中点.(Ⅰ)求证:B 1C//平面A 1BD ;(Ⅰ)求二面角A —A 1B —D 的余弦值.20.(满分12分)已知椭圆22221y x ab+=(0)a b >>的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M 、N 两点.(Ⅰ)若直线l 的方程为4y x =-,求弦MN 的长;(II )如果ΔBMN 的重心恰好为椭圆的右焦点F ,求直线l 的方程.21.(满分12分)设函数()()2()2ln 11f x x x =---.(Ⅰ)求函数)(x f 的单调递增区间;(II )若关于x 的方程()230f x x x a +--=在区间[]2,4内恰有两个相异的实根,求实数a 的取值范围.22.(满分10分)如下图,AB 、CD 是圆的两条平行弦,BE //AC ,BE 交CD 于E 、交圆于F ,过A 点的切线交DC 的延长线于P ,PC =ED =1,PA =2.(I )求AC 的长;(II )求证:BE =EF .23.(满分10分)在直角坐标系xOy 中,曲线C 的参数方程为2(1x tt y t =+⎧⎨=+⎩为参数),以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴的极坐标系下,曲线P 的方程为24cos 30p p θ-+=.(Ⅰ)求曲线C 的普通方程和曲线P 的直角坐标方程;(Ⅱ)设曲线C 和曲线P 的交点为A 、B ,求||AB .24.(满分10分)已知函数()|2||5|f x x x =---.(I )证明:3-≤)(x f ≤3;(II )求不等式)(x f ≥2815x x -+的解集.参考答案一、选择题(每小题5分,共60分)1~5DCCD A 6~10BBADB 11~12DA二、填空题(每小题5分,共20分)13.;14.34π-;15.±;16.23π。

中职数学学业水平考试仿真模拟试题(三)

中职数学学业水平考试仿真模拟试题(三)

中职数学学业水平考试仿真模拟试题(三)合格性考试(试卷满分60分,考试时间30分钟)一、单项选择题(本大题共8小题,每小题5分,共计40分)1.集合}321{,,的真子集数为( ) A . 3 B. 6 C. 7 D.82.不等式042≤-x 的解集( )A .)2,2(-B .),2[]2,(∞⋃--∞C .]2,2[- D. ),2()2,(∞⋃--∞ 3.求函数)1lg()(-=x x f 的定义域( )A . RB .]1,(-∞C .),1()1,(∞⋃-∞ D. ),1[∞ 4. 函数x x f cos )(=的增区间 ( ) A .),0(π B .)0,2(π-C .)2,0(π D. ),2(ππ5.已知等差数列}{n a 中,有357=S ,则4a 的值( ) A .2 B .3 C .4 D.56.向量),0(),2,1(m b a ==ρρ,且)2,1(-=+b a ρρ,则m ( ) A .-5 B .-4 C .-3 D. -2 7.过点),0,1(-A 且斜率2的直线方程为( )A .12-=x yB .12+=x yC .12--=x y D. 12+-=x y 8.从5本语文书,6本不同的数学书中,任语文和数学书各一本,则有( ) A .5 B .6 C .30 D. 11二、填空题(本大题共2小题,每小题5分,共计10分)9.函数542+-=x x y 的最小值为:10.不等式2.02 3.02,(填>或<号)三、解答题(本大题1小题,每小题10分,共计10分)11.化简)2(cos )tan()cos()sin(2απαπααπ---+等级性考试(试卷满分30分,考试时间20分钟)题型 单选题 填空题 解答题 总分 得分一、单项选择题(本大题共3小题,每小题4分,共计12分)1. 函数⎪⎩⎪⎨⎧∞∈∈=),2[,1)2,0(,2)(x x x x f ,则函数)(x f 的定义域为( )A .)∞,0(B .)∞,2(C .)∞,2[ D. )∞,0[ 2.直线03=+-y x 必过第几象限( )A .Ⅰ、Ⅲ、ⅣB .Ⅰ、Ⅱ、ⅢC .Ⅱ、Ⅲ、Ⅳ D. Ⅰ、Ⅱ、Ⅳ 3.在正方体中,直线AC 与1BC 所成的角为( ) A .030 B .045 C .060 D. 090二、填空题(本大题共2小题,每小题4分,共计8分)4.向量)2,(b )6,3(-==m a ρρ,,且b a ρρ//,则m 的值:5.直线052:=--y x l 的横、纵截距分别为: 和 三、解答题(本大题1小题,每小题10分,共计10分)6.已知圆方程02422=-++y x y x ,试求: (1)求圆心坐标、半径;(2)求过点)0,2(M 作圆的切线方程?题3图。

中职高三数学模拟试题

中职高三数学模拟试题

高三数学模拟试题一、单项选择题:(本大题共15个小题,每小题3分,共45分,在每小题所给四个选项中,只有一个符合题目要求,不选、多选、错选均不得分)1.若集合M 满足{}{}c b a M a ,,⊆⊆,则满足条件的集合M 的个数是( )A .4B .3C .2D .12.下列命题正确的是( )A .若a b >,则ac bc >B .若a b >,则a b a b a b>-- C .若a b >,c d >,则a c b d ->- D .若,a b c d >>,则ac bd >3.函数y =) A .(0,)+∞ B .(,3][1,)-∞-+∞C .(3,1)-D .(,3)[1,)-∞-+∞ 4.下列函数既是奇函数又是增函数的是( )A .2y x =B .10x y =C .13y x = D .10sin y x =5.数列lg2,2lg 2,…,lg 2n ,…是( )A .等差数列B .等比数列C .既是等差数列又是等比数列D .不是等差数列也不是等比数列6.已知12tan 5α=,且32ππα<<,则的值为cos α=( ) A .512 B .125 C .513- D .5137.函数12sin()23πy x =+的图像可由函数12sin 2y x =的图像( ) A .向右平移3π个单位 B .向左平移3π个单位 C .向右平移23π个单位 D .向左平移23π个单位 8.已知集合212332y x +⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则y 的最大值是( )A .2-B .1-C .0D .19.常数列是0,0,0,( )A .首项为0,公差为1的等差数列B .首项为0,公差为0的等差数列C .首项为0,公比为1的等比数列D .首项为0,公比为0的等比数列10.函数sin y x =的图像向左平移6π后得到的图像解析式是:( ) A .sin 6y x π=+ B .sin 6y x π=- C .sin()6y x π=+ D .sin()6y x π=- 11.在ABC ∆中,若2,1a b c =,则ABC ∆ 是( )A .锐角三角形B .直角三角形C .钝角三角形D .无法确定12. 若1>a ,则函数x x f a log )(=和x a x g )1()(=在同一坐标系内的图象是(-1,1)A .1y x= B .2log x y = C .y=sinx D 2y x = 14.数列{}n a 中,如果11(1)2n n a a n +=≥且12a =,则该数列前5项之和等于( ) A 318 B -318 C 3132 D-313215.已知角θ的终边上一点P (-3m ,4 m ),m >0,则 cos θ ( )A . -45 B . 45 C . 35 D . -35二、填空题:(本大题15个小空,每空2分,共30分,请将正确的答案填在题中的横线上,不填、少填、错填均不得分)16、若2sin 3cos 1sin cos 3αααα-=+,则=⎪⎭⎫ ⎝⎛-4tan πα . 17.设0.320.32,log 2,0.3a b c ===,则,,a b c 从小到大的排列顺序是___________________。

广西中职对口升学《数学》模拟试卷及答案

广西中职对口升学《数学》模拟试卷及答案

中职升学文化素质模拟测试科目:数学1、设{}a M =,则下列写法正确的是( )A .M a = B.M a ∈ C.M a ⊆ D.a ⊂≠M 2、若a>b,则下列正确的是( )A .a-3>b+3 B.ac<bc C. b a 11< D.4a>4b3、x=2是x 2-x-2=0的( )条件.A .充分不必要 B. 必要不充分 C.充要 D.既不充分也不必要 4、函数)(x f =1-3x 是( )A. 奇函数B. 偶函数C .既是奇函数又是偶函数 D.既不是奇函数也不是偶函数 5、函数()1log 2-=x y 的定义域为( )A .()∞+,0 B .R C .()∞+,1 D .[)∞+,1 6、已知21sin -=α,⎪⎭⎫⎝⎛∈23ππα,,则=αcos ( ). A. 21 B.23- C.23 D. 21-7、已知向量),3(),2-,1(a b a ==,若a ∥b ,则a =( )A. 6B.-6 C .23 D. 23-8、一个盒子中装有黑球8个,红球12个,绿球20个,从中任取一球取到红球的 概率为( )A. 101B. 51 C .103D. 549、若2sin 3-=αy ,则函数的最大值为 ;10、过点(1,-2)且与直线0432=--y x 平行的直线方程是 ;11、圆042-422=-++y x y x 的圆心坐标是 ;12、如图,在正方体ABCD-A 1B 1C 1D 1中,直线A 1D 113、(8分)已知集合{}2>=x x A ,B={}71<<-x x ,求B A ,B A ;学校: 班级: 姓名:一、选择题(每小题5分,只有1个正确答案,共8题合计40分)(注意:请同学们把答案写到下面的表格里)二、填空题(每小题5分,4题,共20分) 三、解答题(共40分)14、(12分)有一个神秘的地方,那里有很多雕塑,每个雕塑都是由蝴蝶组成的,第一个雕塑有3只蝴蝶,第二个雕塑有5只蝴蝶,第三个雕塑有7只蝴蝶,第四个雕塑有9只蝴蝶,后面的雕塑按照这样的规律一直延伸到很远的地方,思思和乐乐看不到这排雕塑的尽头在哪里,请问第98个雕塑是由多少只蝴蝶组成?由999只蝴蝶组成的雕塑是第几个雕塑?15、(20分)某商店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件,调查表明,单价每上涨1元,该商品每月的销量就减少10件,(1)请写出每月销售该商品的利润y (元)与单价x (元)的函数关系(销售单价不低于80元); (2)该商品单价定为多少元时,每月的利润最大?最大利润是多少?学校: 班级: 姓名:中职升学《数学》统一测试 参考答案二、填空题(4小题,每小题5分,共20分)9、1 10、0832=--y x 11、(-2,1) 12、45o 三、解答题(40分): 13、(8分){}{}71,2<<-=>=x x B x x A 解:{}{}{}72712<<=<<->=∴x x x x x x B A (4分) {}{}{}1712->=<<->=∴x x x x x x B A (4分) 说明:不写过程直接写答案扣2分。

中职数学高考复习模拟试题

中职数学高考复习模拟试题

中职数学高考复习模拟试题:解答题解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知平面内两点A (-1,1),B (1,3).(Ⅰ)求过,A B 两点的直线方程;(Ⅱ)求过,A B 两点且圆心在y 轴上的圆的方程.18.(本小题满分12分)设函数1221(0)()log (0)x x f x x x ⎧-≤⎪=⎨>⎪⎩,如果0()1f x <,求0x 的取值范围.19.(本小题满分12分)如图4,已知AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上任一点,D 是线段PA 的中点,E 是线段AC 上的一点.求证: (Ⅰ)若E 为线段AC 中点,则DE ∥平面PBC ;(Ⅱ)无论E 在AC 何处,都有BC DE ⊥.图420.(本小题满分12分)已知关于,x y 的方程C :04222=+--+m y x y x ,m ∈R.(Ⅰ)若方程C 表示圆,求m 的取值范围;(Ⅱ)若圆C 与直线l :4370x y -+=相交于,M N 两点,且MN =23,求m 的值.21.(本小题满分12分)如图5,长方体1111ABCD A B C D -中,E 为线段BC 的中点,11,2,2AB AD AA ===. (Ⅰ)证明:DE ⊥平面1A AE ;(Ⅱ)求点A 到平面ED A 1的距离.图522.(本小题满分12分)已知点(1,2),(0,1),A B -动点P 满足2PA =.(Ⅰ)若点P 的轨迹为曲线C ,求此曲线的方程;(Ⅱ)若点Q 在直线1l :34120x y -+=上,直线2l 经过点Q 且与曲线C 有且只有一个公共点M ,求QM 的最小值.。

中职数学模拟试题

中职数学模拟试题

中职升学模拟试题一、选择题(本大题共15小题,每小题3分,共45分。

在每小题所给出的四个选项中,只有一个符合题目要求)1.已知集合{}1,2,3,4A =,{}1,3,5B =,C A B =,则集合C 的子集共有( ) A .2个B .4个C .6个D .8个【答案】B【分析】根据交集的概念求出C ,结合子集的计算公式即可得出结果. 【详解】由题意知,{13}C A B ==,,所以集合C 的子集有224=个. 2.设,,a b c ∈R ,且a b >,则下列不等式成立的是( )A .22a b >B .22ac bc >C .11≤a b D .a c b c +>+ 【答案】D【分析】取特殊值可判断ABC 错误,由不等式的性质可判断D 正确.【详解】对A ,取1,2a b ==-,则22a b <,故A 错误;对B ,取0c ,则22ac bc =,故B 错误;对C ,取1,2a b ==-,则11a b>,故C 错误; 对D ,由不等式的性质“在不等式两边同时加上或减去一个数,不等号方向不变”可知D 正确.3.在ABC 中,“cosA=cosB ”是“A=B ”的() A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【答案】C4.在同一直坐标系中,一次函数1y ax =+与二次函数2y x a =+的图像可能是( )A .B .C .D .【答案】B【详解】因为直线1y ax =+恒过点(0,1),所以舍去A;二次函数2y x a =+开口向上,所以舍去C;当0a >时,二次函数2y x a =+顶点在x 轴上方,所以舍去D.5.函数 y=|22cos sin x x - | 的最小正周期为( )A 、2π B 、 π C 、 2π D 、4π 【答案】A6.已知向量(4,2)a =,向量b (,1)x =-,若//a b ,则||b =( )A B .5 C D .54【答案】A 【分析】根据向量共线的坐标表示,求出x 的值,从而得到b 的坐标,然后由向量模长的坐标公式求出||b .【详解】向量a (4,2)=,向量b (,1)x =-,且//a b ,所以()4120x ⨯--=,解得2x =-,所以b ()2,1=--,所以||b =7.已知二次函数y =ax 2+bx +c 的图像顶点为(2,-1),与y 轴交点坐标为(0,11),则( )A .a =1,b =-4,c =-11B .a =3,b =12,c =11C .a =3,b =-6,c =-11D .a =3,b =-12,c =11【答案】D【分析】根据二次函数图象的顶点坐标与坐标轴的交点坐标特点,利用方程组可解答.【详解】∵二次函数f (x )=ax 2+bx+c 的图象与y 轴的交点坐标为(0,11),∵c=11,又∵图象的顶点坐标为(2,﹣1), ∵2b -=22a 4ac-b =-14a⎧⎪⎪⎨⎪⎪⎩ 解得a=3,b=﹣12,c=11 8.在等差数列{}n a 中,35a =,53a =,其前n 项和为n S ,则10S 的值为( )A .25B .55C .100D .55-【答案】A【分析】根据题意求出1,a d ,利用求和公式直接计算即可.【详解】设等差数列{}n a 的公差为d .等差数列{}n a 中,35a =,53a =,112453d d a a ⎧∴+=+=⎨⎩,171d a ⎩==-⎧∴⎨,()()11718n a a n d n n ∴=+-=--=-. ()()110101*********a a S +-∴===. 9.在各项均为正数的等比数列}{n a 中,若179a a =,则)(2264a a a -=( )A .6B .12C .56D .78【答案】D【分析】由等比数列的性质直接求得.【详解】在等比数列}{n a 中,由等比数列的性质可得:由24179a a a ==,解得:43a =;由2617+=+可得:26179a a a a ==,所以)(222649378a a a -=-=.10.下列函数图像相同的是( )A .sin y x =与()sin y x π=+B .sin 2y x π⎛⎫=- ⎪⎝⎭与sin 2y x π⎛⎫=+ ⎪⎝⎭ C .sin y x =与()sin y x =-D .()sin 2y x π=+与sin y x = 【答案】D【分析】A :化简()sin sin y x x π=+=-,可得sin y x =与()sin y x π=+的图象关于x 轴对称;B :化简sin cos 2y x x π⎛⎫=-=- ⎪⎝⎭,sin cos 2y x x π⎛⎫=+= ⎪⎝⎭,可得sin 2y x π⎛⎫=- ⎪⎝⎭与sin 2y x π⎛⎫=+ ⎪⎝⎭的图象关于x 轴对称;C :化简()sin sin y x x =-=-,可得sin y x =与()sin y x =-的图象关于x 轴对称;D :化简()sin 2sin y x x π=+=,可得()sin 2y x π=+()sin 2y x π=+与sin y x =的图象重合,【详解】A :因为()sin sin y x x π=+=-,所以sin y x =与()sin y x π=+的图象关于x 轴对称;B :因为sin cos 2y x x π⎛⎫=-=- ⎪⎝⎭,sin cos 2y x x π⎛⎫=+= ⎪⎝⎭,所以sin 2y x π⎛⎫=- ⎪⎝⎭与sin 2y x π⎛⎫=+ ⎪⎝⎭的图象关于x 轴对称;C :()sin sin y x x =-=-,所以sin y x =与()sin y x =-的图象关于x 轴对称;D :因为()sin 2sin y x x π=+=,所以()sin 2y x π=+()sin 2y x π=+与sin y x =的图象重合,11.过点()1,2-且与直线2340x y -+=平行的直线方程为( )A .3270x y ++=B .3210x y +-=C .2350x y -+=D .2380x y -+=【答案】D【分析】根据题意设线l 的方程为230(4)x y c c -+=≠,再根据经过点(1,2)-,待定系数即可得答案.【详解】由题可得,设平行于直线2340x y -+=的直线l 的方程为230(4)x y c c -+=≠,因为直线过点(1,2)-,所以260c --+=,解得8c =,所以直线l 的方程为2380x y -+=.12.在62x x ⎛⎫+ ⎪⎝⎭的二项式展开式中,常数项为( ) A .160B .-160C .60D .-60【答案】A 【分析】求出二项展开式的通项,令x 的指数等于零即可得出答案. 【详解】解:二项展开式的通项为662616622,0,1,2,3,4,5,6k kk k k k k T C x C x k x ---+⎛⎫=⋅⋅=⋅⋅= ⎪⎝⎭,令260k -=,则3k =,所以常数项为3636662160C x --⋅⋅=.13. 5个代表分4张同样的参观券,每人最多分一张,且全部分完,那么分法一共有( )A .A 45种B .45种C .54种D .C 45种【答案】D【详解】 由于4张同样的参观券分给5个代表,每人最多分一张,从5个代表中选4个即可满足,故有C 45种. 14.如图,在正方体1111ABCD A B C D -中,异面直线1D C 与BD 所成的角为( )A .30B .45C .60D .90【答案】C 【分析】作出辅助线,找到异面直线所成的角,利用几何性质进行求解.【详解】连接11B D 与1B C ,因为11//BD B D ,则11CD B ∠为所求,又11CD B △是正三角形,1160CD B ∠=.15. 双曲线y 24-x 2=1的渐近线方程为( ) A .y =±2xB .y =±2xC .y =±12x D .y =±22x 【答案】A【详解】 因为双曲线的标准方程为y 24-x 2=1,则它的渐近线方程为:y =±2x .故选A . 二、填空题(本大题有15个小题,每小题2分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年对口升学考试数学模拟试题(三)
一. 选择题(将正确答案的序号填入括号中;每小题3分,共24分)
1. 设全集}3, 2, 1, 0{U =,集合} 2, 1, 0{M =,} 3, 2, 0{N =;则M ∪(G U N)= ( ) A. Φ B. }1{ C. }2 , 1 , 0{ D. } 3 , 2{
2. 不等式3|14|≥-x 解集是 ( ) A }21|{-≤x x B }1|{≥x x C.}21|{-≥x x D.}12
1
|{≥-
≤x x x 或 3. 等差数列8,5,2,…;第20项是 ( ) A. -49 B. -50 C. -52 D. -55
4. 已知向量)3 , 1( =a 与) , 6( k b =共线,则实数k = ( ) A. 2 B. -2 C. 18 D. -18
5. 已知3
1
sin =
α且α为第二象限的角,则=αtan ( ) A.
42 B. 4
2- C. 22 D. 22-
6. 直角坐标系中)4 , 3(A ,)2 , 3(-B 则线段AB 的中点坐标是( ) A.)3 , 0( B.)3- , 0( C.)3 , 3( D.)3 , 3(-
7. 以下结论正确的是 ( ) A. 垂直于同一条直线的两条直线互相平行 B. 与同一个平面所成角相等的两条直线互相平行 C. 平行于同一个平面的两条直线互相平行 D. 垂直于同一个平面的两条直线互相平行
8 . 圆心为()2,3-且与y 轴相切的圆的标准方程是 ( )
A. ()()4232
2
=++-y x B. ()()9232
2
=++-y x
C. ()()4232
2
=-++y x D. ()()9232
2
=-++y x
二. 填空题:(每小题4分,共12分)
1. 过点(-3,4)且与直线016125=-+y x 平行的直线方程是
2. 等比数列{}n a 中,3 , 9
141==a a ,则其前10项的和为 3.任选一个不大于10的正整数,它恰好是3的整数倍的概率是
三. 解答题(共14分) 1. 计算: 8log )9
7
2()027.0(221
3
1++-
2. 解不等式: 0652
≥+--x x。

4. 已知两点A( 3 , 2 ) 、B( 1 , 2 ) ,求:以线段AB为直径的圆的方程。

相关文档
最新文档