最新-随机事件的概率轻松学习 精品
随机事件的概率课件

对于连续型随机变量X,其方差 D(X)表示X取值的离散程度,计算 公式为D(X)=∫(X−E(X))2f(x)dx, 其中f(x)是X的概率密度函数。
07
大数定律与中心极限定理
大数定律
大数定律定义
大数定律是指在大量重复实验中,某一事件发生的频率将 趋近于该事件发生的概率。
大数定律的数学表达
设随机事件A发生的概率为P,则当实验次数n趋于无穷时, 事件A发生的频率f趋近于概率P,即lim(n->∞) f(n)=P。
如果一个事件是完备的,那么它的概 率等于1,即$P(Omega) = 1$。
独立事件的概率乘法规则
如果两个事件是独立的,那么它们的 概率可以相乘,即$P(A cap B) = P(A) times P(B)$。
条件概率
条件概率的定义
在某个条件下,某个事件发生的概率称为条件概率。记作 $P(A|B)$,表示在事件B发生的条件下,事件A发生的概率。
3
离散型随机变量的概率
每个取值的概率通常由实验或经验数据得出,表 示为P(X=x),其中X是随机变量,x是取值。
几种常见的离散型随机变量的概率分布
二项分布
当一个随机事件只有两种可能的结果,且这两种结果发生的概率是 已知的,那么这个随机事件的概率分布就是二项分布。
泊松分布
当一个随机事件在单位时间内发生的次数是一个离散型随机变量时 ,这个随机变量的概率分布就是泊松分布。
独立事件的概率计算
01
独立事件
两个或多个事件的发生相互独立,一个事件的发生不影响另一个事件的
发生。
02
概率计算公式
对于独立事件 A 和 B,其概率计算公式为 P(A∩B) = P(A) * P(B),其中
3.1.1随机事件的概率精品PPT课件

频率与概率的关系
(1)联系:随着试验次数的增加, 频率会在概 率的附近摆动,并趋于稳定. 在实际问题中,若事件的概率未知, 常用频率作为它的估计值.
(2)区别: 频率本身是随机的,在试验前不能确 定,做同样次数或不同次数的重复试 验得到的事件的频率都可能不同. 而概率是一个确定数,是客观存在的, 与每次试验无关.
必然事件:在一定条件下必然要发生的事件 叫必然事件。
不可能事件:在一定条件下不可能发生的事 件叫不可能事件。
确定事件和随机事件统称为事件,一般用大 写字母A,B,C…表示。
这些事件发生与否,各有什么特点呢?
(1)“地球不停地转动” 必必然然事发件生 (2)“木柴燃烧,产生能量”必必然然发事生件 (3)“在常温下,石头风化”不可能事发件生 (4)“某人射击一次,中靶”可随能机发事生件也可能不发生 (5)“掷一枚硬币,出现正面”可随能机发事生件也可能不发生
(6)“在标准大气压下且温度低于0℃时,雪融化” 不不可可能能发事生件
指出下列事件是必然事件,不可能事件,还是随机事件:
(1)某地明年1月1日刮西北风; 随机事件
(2)当x是实数时,x2 0
必然事件
(3) 手电筒的电池没电,灯泡发亮;不可能事件
(4)一个电影院某天的上座率超过50%。
随机事件
(5)从分别标有1,2,3,4,5,6,7,8,9, 10的10张号签中任取一张,得到4号签。
抛掷次数(n)
2048 4040
正面朝上次数(m) 1061 2048
频率(m/n)
0.518 0.506
12000 6019 0.501
24000 12012 0.5005
高二数学随机事件的概率知识精讲

高二数学随机事件的概率【本讲主要内容】随机事件的概率事件的定义、随机事件的概率、概率的性质、基本事件、等可能性事件、等可能性事件的概率【知识掌握】【知识点精析】1. 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件;必然事件:在一定条件下必然发生的事件;不可能事件:在一定条件下不可能发生的事件。
随机现象的两个特征⑴结果的随机性:即在相同的条件下做重复的试验时,如果试验的结果不止一个,则在试验前无法预料哪一种结果将发生。
⑵频率的稳定性:即大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。
这一常数就成为该事件的概率。
2. 随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率mn总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作()P A。
理解:需要区分“频率”和“概率”这两个概念:(1)频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的随机事件出现的可能性。
(2)概率是一个客观常数,它反映了随机事件的属性。
大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这一常数的偏差大的可能性越小。
这一常数就成为该事件的概率。
3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。
4. 概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A≤≤,必然事件和不可能事件看作随机事件的两个极端情形。
5. 基本事件:一次试验连同其中可能出现的每一个结果(事件A)称为一个基本事件。
例如:投掷硬币出现2种结果叫2个基本事件,通常试验中的某一事件A由几个基本事件组成(例如:投掷一枚骰子出现正面是3的倍数这一事件由“正面是3”、“正面是6”这两个基本事件组成)。
6. 等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n,这种事件叫等可能性事件。
随机事件的概率

[11.5,15.5) ,2 ;[15.5,19.5) , 4 ;[19.5,23.5),9 ;[23.5,27.5),18 ;
[27.5,31.5),11;[31.5,35.5),12;[35.5,39.5),7;[39.5,43.5],3. 1 根据样本的频率分布估计,数据落在[27.5,43.5]内的概率约是________. 2 解析 由条件可知,落在[27.5,43.5]内的数据有11+12+7+3=33(个),
1 2 3 4 5 6
题组二 教材改编
2.[P121T5]一个人打靶时连续射击两次,事件“至少有一次中靶”的对
立事件是
A.至多有一次中靶
C.只有一次中靶
B.两次都中靶
D.两次都不中靶 √
解析 “至少有一次中靶”的对立事件是“两次都不中靶”.
1
2
3
4
5
6
解析
答案
3.[P82B组T1]有一个容量为66的样本,数据的分组及各组的频数如下:
并事件(和事件) 事件B发生,称此事件为事件A与事
(或和事件) 件B的并事件 _______________
A∪B(或A+B)
事件A发生 若某事件发生当且仅当__________ 交事件(积事件) 且 事件B发生 ,则称此事件为事件 A∩B(或AB)
(或积事件) A与事件B的交事件 _______________
是联通卡”两个事件, 它是“2张全是移动卡”的对立事件.
解析 答案
3.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出两个球,
事件 A= “ 取出的两个球同色 ” , B = “ 取出的两个球中至少有一个黄
球”,C=“取出的两个球中至少有一个白球”,D=“取出的两个球
随机事件的概率

随机事件的概率导言:随机事件是指在一定条件下,由于种种因素的不确定性而发生的事件。
生活中的许多事情都是随机事件,无法预测和控制。
我们对于随机事件的发生与否往往抱有一定的期望或预测,这就引出了随机事件的概率。
一、什么是概率?概率(probability)是现代数学中研究事件发生的一种数学方法。
概率既是一种数学工具,同时也是描述随机现象出现“规律”的一种观念。
概率的大小通常用数字来表示,范围在0到1之间,概率越大,表示事件发生的可能性越大。
二、概率的计算方法1. 古典概率:古典概率也叫“理论概率”,它是指当各种结果发生的机会是等可能的时候,可以根据有限的样本空间中可能结果的数目比来计算。
例如投掷均匀的骰子,每一个面都有相同的机会出现,那么每一个面出现的概率就是1/6。
2. 频率概率:频率概率也叫“实验概率”,它是指在实际的重复试验中,事件发生的次数与总的试验次数的比例。
例如,我们可以通过多次投掷骰子的实验来计算每个面出现的概率,通过实验的结果来估计概率。
3. 主观概率:主观概率也叫“人为概率”,它是指个人根据经验、直觉和一些可能的关联性来估计事件发生的概率。
这种概率是主观的,因为它依赖于个人的判断和看法。
三、随机事件的应用随机事件的概率在现实生活中有着广泛的应用,下面举几个例子进行阐述:1. 赌场中的赌博:在赌场中,很多赌博游戏都基于随机事件的概率来决定输赢。
例如,在轮盘赌中,赌徒根据小球停在哪一个数字上来下注,而小球停留在哪个数字上是完全由随机事件决定的。
赌徒可以根据每个数字出现的概率来决定下注的策略。
2. 保险业的风险评估:在保险业中,概率是一个非常重要的概念。
保险公司需要根据客户的信息以及历史数据来评估风险,并计算出合理的保险费用。
例如,在车险中,保险公司需要根据客户的驾驶记录和车辆信息来评估客户发生车祸的概率,并根据概率来决定保险费用的高低。
3. 股票市场:在股票市场中,投资者根据股票的历史数据和一些基本面分析来预测股票的未来涨跌。
随机事件的概率 经典课件(最新)

高中数学课件
谢谢
高中数学课件
解:(1)由题意知,抽出的 20 名学生中,来自 C 班的学生有 8 名.根据分层抽样方法, C 班的学生人数估计为 100×280=40.
(2)设事件 Ai 为“甲是现有样本中 A 班的第 i 个人”,i=1,2,…,5. 事件 Cj 为“乙是现有样本中 C 班的第 j 个人”,j=1,2,…,8. 由题意可知,P(Ai)=15,i=1,2,…,5;P(Cj)=18,j=1,2,…,8. P(AiCj)=P(Ai)P(Cj)=15×18=410,i=1,2,…,5,j=1,2,…,8.
高中数学课件
[强化训练 3.1] (2019 年洛阳模拟)经统计,在某储蓄所一个营业窗口等候的人数及 相应的概率如下:
排队人数 0 1 2 3 4 5 人及 5 人以上
概率 0.1 0.16 0.3 0.3 0.1
0.04
求:(1)至多 2 人排队等候的概率是多少?
(2)至少 3 人排队等候的概率是多少?
投篮次数 n 8 10 15 20 30 40 50 进球次数 m 6 8 12 17 25 32 38 进球频率mn (1)计算表中进球的频率; (2)这位运动员投篮一次,进球的概率约是多少? 【思路分析】 (1)利用频率的计算公式即可求解; (2)由频率估计进球的概率.
高中数学课件
【解】 (1)进球的频率分别为68=0.75,180=0.8, 1125=0.8,1270=0.85,2350≈0.83,3420=0.8,3580=0.76. (2)由于这位运动员投篮一次,进球的频率都在 0.8 左右摆动,故这位运动员投篮一 次,进球的概率约是 0.8.
交事件 若某事件发生当且仅当____________________,则称
2024-2025学年高中数学第3章概率§11.11.2随机事件的概率(教师用书)教案北师大版必修3

教师总结各组的亮点和不足,并提出进一步的建议和改进方向。
6.课堂小结(5分钟)
目标:回顾本节课的主要内容,强调概率的重要性和意义。
过程:
简要回顾本节课的学习内容,包括概率的基本概念、组成部分、案例分析等。
强调概率在现实生活或学习中的价值和作用,鼓励学生进一步探索和应用概率。
10.提高合作能力和解决问题的能力:通过小组讨论和案例分析,学生能够与他人合作,共同解决问题,提高合作能力和解决问题的能力。
内容逻辑关系
①随机事件的定义和分类:必然事件、不可能事件、随机事件
②概率的定义和性质:概率的计算方法,包括古典概率、几何概率和条件概率;概率的基本性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
-互斥事件的概率加法公式:P(A+B) = P(A) + P(B)
-独立事件的乘积公式:P(AB) = P(A) * P(B)
③概率的运用
-抽奖问题:计算获奖的概率
-概率论的基本问题:计算某个事件发生的概率
教学评价与反馈
1.课堂表现:通过观察学生在课堂上的参与程度、提问和回答问题的积极性,以及学生的反应和理解程度,评价学生对概率知识的掌握情况。
布置课后作业:让学生撰写一篇关于概率的短文或报告,以巩固学习效果。
学生学习效果
1.理解概率的基本概念:学生能够理解概率的定义,掌握概率的基本计算方法和性质,如互斥事件的概率加法公式、独立事件的乘积公式等。
2.掌握随机事件的分类:学生能够区分必然事件、不可能事件和随机事件,并能够运用这些概念解决实际问题。
2.数据分析:通过讲解概率的定义和性质,培养学生收集、整理、分析和处理数据的能力,使学生能够运用几何概率和条件概率的方法解决实际问题。
随机事件的概率 共99页PPT资料

( A 1 A 2 ) A 3 ( A 1 A 2 ) A 3 ( A 1 A 2 ) A 3
第二节 随机事件的概率
一、频率与概率 二、概率的性质 三、等可能概型(古典概型) 四、几何概型
一、频率与概率
概率 在一次试验中A发 事生 件的可能性大小的
量度称为事 A的件概率。
例1 设 A 、B为两事件, 且设P(B)0.3,P(AB)0.6求 P( AB)
解 P (A B ) P { A ( B ) } P (A A ) B P (A ) P (A )B 而 P (A B ) P (A ) P (B ) P (A )B 所以 P (A B ) P (B ) P (A ) P (A )B 于是 P(AB)0.60.30.3
P(A)1P(A)
证明 性质6
性质6(加法公式) 对任意两个事A、 件B有
P (A B ) P (A ) P (B ) P (A )B
证明: 因为 ABA(BA)B 且 A (B A) B ,A B B 故由性质2和性质3得:
P ( A B ) P ( A ) P ( B A ) P ( B A ) P ( B ) P ( A ) B
n
n
因此 1P ( )P ( { i}) P { i}n P { i}
从而
P{i }
1 n
i 1
i 1
(i1,2, ,n)
若事A件 含有 k个基本事件
即 A {i1 } {i2 } {ik}
这里 i1,i2,ik是1, 2, n中某 k个不同的数,
E 2 A{HH ,TT} B{HH ,HT }
AB{TT}
AB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机事件的概率
一、知识结构
二、典型例题
例1同时掷四枚均匀硬币,求:
(1)恰有两枚“正面向上”的概率;
(2)至少有两枚“正面向上”的概率.
分析:同时任意投掷四枚均匀硬币,每个硬币的结果都有两种可能性,四枚硬币的情况决定了一次试验的结果,每种结果的出现是等可能的,本$月于等可能事件的概率问题.四枚硬币发生的结果总数我们可以分步确定,恰有两枚正面向上,可以先确定哪两枚正面向上,则另两枚反面向上,至少有两枚正面向上可分类为两枚正面向上、三校正面向上、全部正面向上.
解:同时投掷四枚硬币,正面、反面向上的不同结果总数为:
(种)
(1)恰有两枚正面向上的结果总数为,所以恰有两枚正面向上的概率为
.
(2)至少有两枚正面向上的结果总数为:
种
所以至少两枚正面向上的概率为.
说明:使用等可能事件概率公式时,首先要判定事件是不是等可能事件,本题实际上可推广到投掷几枚硬币,恰好有m枚正面向上的概率以及至少有m枚正面向上的概率,设两个
事件分别为A、B,可以求到:.例2用4个不同的球任意投入4个不同的盒子内,每盒投入的球数不限,计算:(l)无空盒的概率,(2)恰好有一空盒的概率.
分析:一次试验的结果是每个球分别在哪个盒子,由于一个球投入哪一个盒中是任意的,所以一次试验的各个结果是等可能的,本题是等可能事件的概率问题,4个不同小球投入4个盒子的结果总数可以用分步计数原理求得,无空盒的情况实质上相当于每个小球在一个盒中,每个盒子一个球,也就是把4个小球“分配到”4个不同的盆中,信有一个空盒的情况相当于有一个盒子两个球,还有两个盒子各1球,至于它们各自的结果总数可以用排列组合的方法解决.
解:本题是等可能事件的概率问题,4个不同的小球投入四个盆子的所有不同的结果总
数为:.
(l)无空盒的结果总数为.
所以无空盒的概率为.
(2)恰有一个空盒,则必有一盒2球,另有两盒各1球,其所有可能结果总数为:
.
所以恰有一空盒的概率为:.
说明:由于每个小球投入哪一个盒子是任意的,从而导致4个小球投入4个盒子的不同结果是等可能的,现在把球换成人,盒子换成房间,则问题就转变成了若干人任意住进若干个房间的问题,这就是古典概率中有名的“分房问题”,请看下面的例子.例3 有6个房间安排4个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住几个人.试求下列事件的概率.
(1)事件A:指定的4个房间中各有1人;
(2)事件B:恰有4个房间中各有1人;
(3)事件C:指定的某个房间中有两人;
(4)事件D:第1号房间有1人,第2号房间有3人.
分析:由于每个人进哪一个房间是随意的,所以4个人住房的各种结果是等可能的,本题是等可能事件的概率问题.所有可能的不同住房结果总数可以用分步计数原理求得,每人
住房的结果都有6种可能,最后4个人住房的不同结果总数为.事件A中指定的4个房
间中各有1人相当于4个人排到4个房间中去,有种不同结果;事件B中恰有4个房间,每间1人与事件A的区别在于哪4间房不空;事件C中指定的某房间2人,我们可以先从4人中选2人进入此房间,其它2人分步任意住进其它5个房间;事件D可以先安排1
号房间1人,再安排2号房间3人
解:4个人住进6个房间,所有可能的住房结果总数为:
(种)
(1)指定的4个房间每间1人共有种不同住法.
∴.
(2)恰有4个房间每间1人共有种不同住法.
∴.
(3)指定的某个房间两个人的不同的住法总数为:
(种),
∴.
(4)第一号房间1人,第二号房间3人的不同住法总数为:
(种),
∴.
说明:“分房问题”抽象化以后可以与许多问题发生联系,比如,前面例题的小球投入盒子、安排几个人做某几项工作,几列火车停在哪个站道,若干个同学各自在哪一天生日等等.我们可以看例子:某班有50名同学,一年按365天计算,至少有两名同学在同一天生日的概率是多少?50名同学相当于上述例题中的旅游者,每一天相当于“房间”,50名同
学所有生日的不同结果总数为:,至少有两名同学在同一天生日的结果总数可用间接法计算,总数为,则至少有两人在同一天生日的概率为
,利用工具计算后将会发现,这是一个很接近1的结果,即50个人的一个班级中,有两个人在同一天生日的概率很大,高达0.97,几乎是令人惊讶的结果.
例4某人有5把钥匙,其中有一把是打开房门的钥匙,但他忘记了哪一把是打开房门的钥匙,于是他逐把不重复地试开,问:
(1)恰好第三次打开房门锁的概率是多少?
(2)三次内打开房门锁的概率是多少?
分析:某人五次顺次拿出钥匙的结果相当于5把钥匙的一个排列,由于他每次拿哪一把是任意的,所以不同的拿钥匙的结果的可能性相同,本题是等可能事件的概率问题.恰好第三次打开房门锁相当于第三次拿出的钥匙正好是房门钥匙,或者说在5把钥匙的一个排列中第3把钥匙正好是开房门钥匙,三次内打开房门相当于5把钥匙的排列中,开房门钥匙出现在前3个.
解:本题是等可能事件的概率问题,某人5次拿钥匙的所有不同的结果是.
(1)恰好第3次拿出开房门钥匙的结果总数为:.
所以恰好第3次打开房门的概率为:
(2)前3次内拿出开房门钥匙的结果总数为:3.
所以前3次打开房门的概率为:
说明:如果5把钥匙中有2把可以开房门的钥匙,则在前3次内打开房门的概率是多少?三次内找开房门说明在前三次中至少有1次取出开房门钥匙,我们可以通过分类讨论,恰有
一把开房门钥匙在前3次拿出的结果总数为:,恰有两把开房门钥匙在前3次拿出的结果总数为,这样我们得到前三次内打开房门的结果总数为
,从而前3次内打开房门的概率为:
例5抽签口语测试,共有a+b张不同的考签,每个考生抽1张考签,抽过的考签不再放回,某考生只会考其中的a张,他是第k个抽签的,求该考生抽到会考考签的概率.分析:因为每个人抽哪一张考签是随意的,所有人抽签后抽出的结果相当于这些考签的一个全排列,而且各种不同的排列结果出现的可能性相同,本题是求等可能事件的概率问题.由于某考生是第是次抽签,他能抽到会考考签相当于全排列中第k个元素,是某人会考的a个考签中的一个,我们可以用排列组合知识求出这种排列的所有不同种数,然后用等可能事件的概率公式求解.
解:本题是等可能事件的概率问题.a+b个考生的所有不同的抽签结果的总数为,某个考生第k次抽签,他正好抽到会考的a张考签的一个,相当于所有抽签的结果中第k张考签是a张考签中的1张,我们可以得到所有这种抽签结果的总数为:.
所以某个考生抽到会考考签的概率为:.
说明:从计算结果看,第几次抽签对该考生抽到会考考签的概率并没有影响,也就是说,无论他是第几个抽签,都不会影响他抽到会考考签的可能性.在日常生活中有这样的问题:10张彩票中有1张是中奖彩票,现在10个人去摸彩,先模后摸对中奖的可能性有无影响?现在我们可以来计算这个问题的结果,现在假定你是第m个去摸奖,为了计算中奖的概率,先算出10个人摸彩的所有可能结果是10!,而中奖彩票正好出现在第m个的所有可能结果
为9!,这样可以得出你中奖的概率为,结果与m并无关系,根本无须担心中
奖彩票被别人抓去.
例6已知10只晶体管中有8只正品,2只次品,每次任抽取1只测试,测试后放回,求下列事件的概率.
(1)抽3次,第3只是正品;
(2)直到第6只时,才把2只次品都捡到了.
解:每次从10件晶体管中任取1件,经过若干次,各种结果的可能性是一样的,抽 3次,所有可能抽出的结果总数为10×10×10,抽6次,所有可能抽出的结果总数为,
到第6次时正好第2只次品也抽到了,说明前5次抽检中出现过另一只次品,当然这只次品也可能出现过几次.我们可以用间接法来求出符合这个要求的所有可能结果的总数为
,这个式子的含义是先走下第6次抽出的次品是哪一个,然后用前5次抽检的所有结果总数(前5次未出现第6次抽检的次品)减去前5次全是正品的所有结果总数.
解:本题是等可能事件的概率问题.
(1)抽检3次所有可能的抽检结果总数为,
第三只是正品的所有可能的抽检结果总数为10×10×8.
所以第三只是正品的概率为:.
(2)抽检6次所有可能的抽检结果总数为.
∵第6只时才能把第2只次品抽检到,
∴前5次抽检未出现第6次抽到的次品,但是至少出现一次另一只次品.
∴第6只时才把第2只次品抽检到的所有可能的抽检结果总数为.此事件发生的概率为:
.
说明:如果每次抽检的结果不再放回去,直到第6只时才把2只次品都找出来的概率是多少?这个问题仍然是等可能事件的概率问题,因为抽出的产品不再拿回,所以前6次抽出
的不同结果相当于从10件产品中抽出6件的一个排列,所有可能的结果总数为,第6次抽到第2件次品,说明第6件是次品,前面还有一件次品,所有可能的结果总数为
,其含义是先在第6个位置放一个次品,另一个次品在前面5个位置的某一个上,最后在其它四个位置上放上8件正品中的4个.用等可能事件的概率公式可算出此事件
发生的概率是.。