九年级数学下学期第五周周末作业(无答案)

合集下载

九年级数学下学期第5周周末作业(含解析) 北师大版

九年级数学下学期第5周周末作业(含解析) 北师大版

2015-2016学年广东省佛山市顺德区江义中学九年级(下)第5周周末数学作业一、选择题:1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.下列运算正确的是()A.﹣30=1 B.3﹣2=﹣6 C.D.﹣32=﹣93.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣64.今年1﹣4月份,芜湖市经济发展形势良好,已完成的固定资产投资快速增长,达240.31亿元,用科学记数法可记作()A.240.31×108元B.2.4031×1010元C.2.4031×109元D.24.031×109元5.下列计算正确的是()A.a3•a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a66.已知x=﹣1是一元二次方程x2+mx﹣5=0的一个解,则m的值是()A.﹣4 B.﹣5 C.5 D.47.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.8.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)9.下列说法正确的是()A.2a2﹣a2+ab2的次数是2次B.是分式C.D. =10.如图所示,桥拱是抛物线形,其函数的表达式为y=﹣,当水位线在AB位置时,水面宽12m,这时水面离桥顶的高度为()A.3m B. m C.4m D.9m二、填空题:11.代数式有意义,则x的取值范围是.12.已知a、b为两个连续的整数,且,则a+b= .13.计算:6tan230°﹣sin60°=.14.方程的根是.15.化简的结果是.16.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)三、解答题:(第17~19每题6分,第20题12分,第21~24每题9分,共66分)17.计算:()﹣2+(﹣1)2015﹣(﹣2)°﹣|﹣3|18.先化简,再求值:,其中.19.某市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.根据相关信息,填空:(1)被调查的学生共有人;(2)把折线统计图补充完整;(3)如果某中学全校有2400个学生,请你估计全校“我最喜欢的职业是教师”有多少学生?20.解下列方程(组):(1)(2)x2+6x﹣7=0.21.已知二次函数的图象经过点(0,5)、(1,﹣1)、(2,﹣3)三点(1)求二次函数的关系式;(2)求出函数的顶点坐标,与x轴的交点坐标.22.广东特产专卖店销售龙眼干,其进价为每斤40元,按每斤60元出售,平均每天可售出100斤,后来经调查发现,单价每降低2元,则平均每天的销售量增加20斤.每斤降价多少元,每天销售额最大?23.如图,Rt△ABC的斜边AB=10,.(1)用尺规作图作线段AB的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)求直线l被Rt△ABC截得的线段长.24.如图,把一张矩形纸片沿对角线折叠,(1)重合部分是什么图形?试说明理由.(2)若AB=3,BC=5,则△BDF的面积是.2015-2016学年广东省佛山市顺德区江义中学九年级(下)第5周周末数学作业参考答案与试题解析一、选择题:1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.下列运算正确的是()A.﹣30=1 B.3﹣2=﹣6 C.D.﹣32=﹣9【考点】算术平方根;有理数的乘方;零指数幂;负整数指数幂.【分析】分别利用零指数幂,负整数指数幂,算术平方根,幂的乘方的定义运算即可.【解答】解:A.﹣30=﹣1,所以此选项错误;B.3﹣2=,所以此选项错误;C. =3,所以此选项错误;D.﹣32=﹣9,所以此选项正确,故选D.【点评】本题主要考查了零指数幂,负整数指数幂,算术平方根,幂的乘方的运算,掌握运算法则是解答此题的关键.3.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6【考点】科学记数法—表示较小的数.【专题】常规题型.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0025=2.5×10﹣6;故选:D.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.今年1﹣4月份,芜湖市经济发展形势良好,已完成的固定资产投资快速增长,达240.31亿元,用科学记数法可记作()A.240.31×108元B.2.4031×1010元C.2.4031×109元D.24.031×109元【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:240.31亿=2.4031×1010元.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.下列计算正确的是()A.a3•a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,合并同类项的法则,幂的乘方的性质,积的乘方的性质,对各选项分析判断后利用排除法求解.【解答】解:A、a3•a2=a3+2=a5,故此选项错误;B、a2和a4不是同类项,不能合并,故此选项错误;C、(a3)2=a6,故此选项正确;D、(3a)2=9a2,故此选项错误;故选:C.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,关键是熟练掌握各运算的计算法则,理清指数的变化.6.已知x=﹣1是一元二次方程x2+mx﹣5=0的一个解,则m的值是()A.﹣4 B.﹣5 C.5 D.4【考点】一元二次方程的解.【分析】由一元二次方程的解的定义,将x=﹣1代入已知方程,列出关于m的新方程,通过解新方程即可求得m的值.【解答】解:∵x=﹣1是一元二次方程x2+mx﹣5=0的一个解,∴x=﹣1满足一元二次方程x2+mx﹣5=0,∴(﹣1)2﹣m﹣5=0,即﹣m﹣4=0,解得,m=﹣4;故选A.【点评】本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.7.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的判别式.【专题】判别式法.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.9.下列说法正确的是()A.2a2﹣a2+ab2的次数是2次B.是分式C.D. =【考点】分式的基本性质;多项式;分式的定义.【分析】根据多项式的次数,分式的定义、分式的性质,可得答案.【解答】解:A、2a2﹣a2+ab2的次数是3次,故A错误;B、分母中含有字母的式子是分式,故B正确;C、分子分母都减去同一个数,分式的值发生变化,故C错误;D、分子分母都加上同一个数,分式的值发生变化,故D错误;故选:B.【点评】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.10.如图所示,桥拱是抛物线形,其函数的表达式为y=﹣,当水位线在AB位置时,水面宽12m,这时水面离桥顶的高度为()A.3m B. m C.4m D.9m【考点】二次函数的应用.【专题】应用题.【分析】根据题意,把x=6直接代入解析式即可解答.【解答】解:由已知AB=12m知:点B的横坐标为6.把x=6代入y=﹣,得y=﹣9.即水面离桥顶的高度为9m.故选D.【点评】本题考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.二、填空题:11.代数式有意义,则x的取值范围是x≤1 .【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件可得1﹣x≥0,再解不等式即可.【解答】解:由题意得:1﹣x≥0,解得:x≤1,故答案为:x≤1.【点评】此题主要考查了二次根式有意义的条件,二次根式中的被开方数是非负数.12.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.13.计算:6tan230°﹣sin60°=.【考点】特殊角的三角函数值.【分析】把特殊角的三角函数值代入原式,根据二次根式的运算法则计算即可.【解答】解:6tan230°﹣sin60°=6×()2﹣×=2﹣=,故答案为:.【点评】本题考查的是特殊角的三角函数值的计算,熟记特殊角的三角函数值是解题的关键.14.方程的根是x=3 .【考点】分式方程的解.【专题】计算题.【分析】先去分母把分式方程化为整式方程得到x=3,然后进行检验确定分式方程的解.【解答】解:去分母得x=3(x﹣2),解得x=3,检验:当x=3时,x(x﹣2)≠0,x=3是原方程的解.所以原方程的解为x=3.故答案为x=3【点评】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.15.化简的结果是2+.【考点】二次根式的乘除法.【分析】先将原式分子分母同时乘以(+1),然后进行二次根式的化简求解即可.【解答】解:原式===2+.故答案为:2+.【点评】本题考查了二次根式的乘除法,解答本题的关键在于熟练掌握该知识点的运算法则.16.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)【考点】扇形面积的计算.【专题】压轴题.【分析】过点O作OD⊥BC于点D,交于点E,则可判断点O是的中点,由折叠的性质可得OD= OE=R=2,在Rt△OBD中求出∠OBD=30°,继而得出∠AOC,求出扇形AOC的面积即可得出阴影部分的面积.【解答】解:过点O作OD⊥BC于点D,交于点E,连接OC,则点E是的中点,由折叠的性质可得点O为的中点,∴S弓形BO=S弓形CO,在Rt△BOD中,OD=DE=R=2,OB=R=4,∴∠OBD=30°,∴∠AOC=60°,∴S阴影=S扇形AOC==.故答案为:.【点评】本题考查了扇形面积的计算,解答本题的关键是作出辅助线,判断点O是的中点,将阴影部分的面积转化为扇形的面积.三、解答题:(第17~19每题6分,第20题12分,第21~24每题9分,共66分)17.计算:()﹣2+(﹣1)2015﹣(﹣2)°﹣|﹣3|【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,乘方的意义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=4﹣1﹣1﹣3=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:,其中.【考点】分式的化简求值.【分析】先通分,再把分子相加减,最后把x的值代入进行计算即可.【解答】解:原式=﹣==,当x=﹣3时,原式==.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意把分式化为最简形式,再代入求值.19.某市某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.根据相关信息,填空:(1)被调查的学生共有200 人;(2)把折线统计图补充完整;(3)如果某中学全校有2400个学生,请你估计全校“我最喜欢的职业是教师”有多少学生?【考点】折线统计图;用样本估计总体;扇形统计图.【分析】(1)根据“公务员”的人数及百分比可得;(2)总人数乘以“医生”百分比可得其人数,根据各项目的人数之和等于总人数求得“教师”的人数,补全折线图;(3)用样本中“教师”所占的比例乘以总人数2400可得.【解答】解:(1)被调查的学生数为=200(人),故答案为:200;(2)最喜欢的职业是“医生”的有200×15%=30(人),最喜欢的职业是“教师”的有:200﹣30﹣40﹣20﹣70=40(人),补全图如下:(3)2400×=480(人),答:估计全校“我最喜欢的职业是教师”有480名学生.【点评】本题考查根据扇形统计图及其折线统计图的信息解决问题,正确应用条件及其统计图的特点是关键.20.解下列方程(组):(1)(2)x2+6x﹣7=0.【考点】解一元二次方程-因式分解法;解二元一次方程组.【分析】(1)利用加减消元法进行解答;(2)利用“十字相乘法”对等式的左边进行因式分解.【解答】解:(1),由①+②,得3x=12,解得x=4③把③代入①解得y=﹣1.则原方程组的解为:;(2)由原方程,得(x﹣1)(x+7)=0,则x﹣1=0或x+7=0,解得x1=1,x2=﹣7.【点评】此题主要考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.当系数成倍数关系式一般用加减法消元,系数为1时,一般用代入法消元.21.已知二次函数的图象经过点(0,5)、(1,﹣1)、(2,﹣3)三点(1)求二次函数的关系式;(2)求出函数的顶点坐标,与x轴的交点坐标.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【专题】计算题;二次函数图象及其性质.【分析】(1)设出二次函数解析式,将三点坐标代入确定出即可;(2)利用二次函数性质确定出顶点坐标,以及与x轴交点坐标即可.【解答】解:(1)设二次函数解析式为y=ax2+bx+c(a≠0),把(0,5)、(1,﹣1)、(2,﹣3)三点代入得:,解得:,则二次函数解析式为y=2x2﹣8x+5;(2)y=2x2﹣8x+5=2(x﹣2)2﹣3,令y=0,得到x=2±,则二次函数顶点坐标为(2,﹣3),与x轴交点坐标为(2+,0)与(2﹣,0).【点评】此题考查了抛物线与x轴的交点,以及待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.22.广东特产专卖店销售龙眼干,其进价为每斤40元,按每斤60元出售,平均每天可售出100斤,后来经调查发现,单价每降低2元,则平均每天的销售量增加20斤.每斤降价多少元,每天销售额最大?【考点】二次函数的应用.【专题】应用题.【分析】根据题意可以列出销售额与销售单价之间的关系式,然后整理为顶点式,即可解答本题.【解答】解:设每斤降价x元,销售额为y元,y=(60﹣x)(100+)=﹣10(x﹣25)2+12250,∴当x<25时,y随x的增大而增大,∵60﹣40=20,∴0≤x≤20,∴当x=20时,y取得最大值,即每斤降价20元时,每天销售额最大.【点评】本题考查二次函数的应用,解题的关键是明确题意,列出相应的关系式,注意自变量的取值范围.23.如图,Rt△ABC的斜边AB=10,.(1)用尺规作图作线段AB的垂直平分线l(保留作图痕迹,不要求写作法、证明);(2)求直线l被Rt△ABC截得的线段长.【考点】解直角三角形;线段垂直平分线的性质.【专题】计算题;作图题.【分析】(1)根据线段垂直平分线的作法即可得出答案,如图;(2)根据三角函数可得出BC=6,AC=8,设直线l与AC,AB的交点为D,E,根据,从而可得出DE的长.【解答】解:(1)如图:(2)∵AB=10,.∴=,∴AC=8,∴.∵l是AB的垂直平分线,∴AE=5,∴=,∴DE=,∴直线l被Rt△ABC截得的线段长为.【点评】本题考查了解直角三角形以及线段垂直平分线的性质,考查了学生的作图能力,是基础题难度不大.24.如图,把一张矩形纸片沿对角线折叠,(1)重合部分是什么图形?试说明理由.(2)若AB=3,BC=5,则△BDF的面积是9 .【考点】翻折变换(折叠问题);矩形的性质.【分析】(1)在折叠过程中,∠DBC转移到了∠EBD,但是大小并没有发生变化,又由于平行,内错角相等,所以∠DBC=∠FDB.因此构成一个等腰三角形.(2)在三角形FED中,ED=3,EF+FB=5.由(1)得,FD=FB,所以可根据勾股定理,列方程进行解答,找到边长后,求出面积.【解答】解:(1)重合部分是等腰三角形.∵四边形ABCD是矩形,∴∠DBC=∠ADB.又∵∠DBC=∠DBF,∴∠DBF=∠ADB.∴FB=FD.(2)∵四边形ABCD是矩形,∴∠DEB=∠C=∠A=90°,AB=ED,在△ABF与△EDF中,,∴△ABF≌△EDF.∴EF=AF.设EF=x,则x2+3=52解得x=4,∴S△FED=×4×3=6,∴△BDF的面积=S△BDE﹣S△EFD=9,故答案为:9.【点评】此题主要考查了翻折变换的性质以及矩形的性质,根据已知得出∠DBC=∠DBF是解题关键.。

九年级下学期数学周末作业5

九年级下学期数学周末作业5

数学练习51.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°2.如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.3.等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40 B.46 C.48 D.504.2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是13,小正方形的面积为1,直角三角形的较短直角边长为a,较长直角边长为b,那么(a+b)2的值为()A.13 B.19 C.25 D.1695.如图,点O是△ABC的重心,则C△DOE:C△BOC的值为()A.B.C.D.6.如图,在四边形ABCD中,∠A=90°,AB=3,AD=,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的最大值为()A.2 B.3 C.4 D.7.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n﹣1的度数为()A.B.C.D.8.如图,将矩形ABCD沿EF折叠,使点B,D重合,已知AB=3,AD=4,则①DE=DF;②DF=EF;③△DCF≌△DGE;④EF=.上面结论正确的有()A.1个B.2个C.3个D.4个9.如图所示,在Rt△ABC中,∠C=90°,AC=4,BC=3,AB上有一动点D以每秒4个单位的速度从点A向点B运动,当点D运动到点B时停止运动.过点D作DE⊥AB,垂足为点D,过点E作EF∥AB 交BC于点F,连接BE交DF于点G,设点D运动的时间为t,当S△BDG=4S△EFG时,t的值为()A.t=B.t=C.t=D.t=10.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE=()A.B.C.2 D.11.在矩形ABCD中,AD=2AB=4,E是AD的中点,一块足够大的三角板的直角顶点与点E重合,将三角板绕点E旋转,三角板的两直角边分别交AB,BC(或它们的延长线)于点M,N,设∠AEM=α(0°<α<90°),给出下列四个结论:①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△=.上述结论中正确的个数是()A.1 B.2 C.3 D.4EMN12.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AD=18,点E在AC上且CE=AC,连接BE,与AD相交于点F.若BE=15,则△DBF的周长是.13.如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.14.如图,在Rt△ABC中,∠ACB=90°,将边BC沿斜边上的中线CD折叠到CB′,若∠B=50°,则∠ACB′=.15.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为.16.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x 轴,y轴上,反比例函数y=(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为.17.Rt△ABD的两顶点A、B分别在x轴和y轴上运动,其中∠ABD=90°,∠D=30°,AB=4,则顶点D 到原点O的距离的最小值为,顶点D到原点O的距离的最大值为.18.如图,已知点A是双曲线在第一象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是.19.如图,四边形ABCO是平行四边形,OA=2,AB=6,点C在x轴的负半轴上,将平行四边形ABCO 绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点D在反比例函数y=(x<0)的图象上,则k的值为.20.如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B (1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b的解集是x<﹣2或0<x<1,其中正确的结论的序号是.21.如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.22.东坡商贸公司购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为p=,且其日销售量y(kg)与时间t(天)的关系如表:时间t(天) 1 3 6 10 20 40 …日销售量y(kg)118 114 108 100 80 40 …(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售的前24天中,公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.23.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD 是否垂直,并说明理由.24.如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF=3S ,求AE的长;△EDF(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.22.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0)和B(3,0)两点,与y轴交于点C,对称轴与x轴交于点E,点D为顶点,连接BD、CD、BC.(1)求证△BCD是直角三角形;(2)点P为线段BD上一点,若∠PCO+∠CDB=180°,求点P的坐标;(3)点M为抛物线上一点,作MN⊥CD,交直线CD于点N,若∠CMN=∠BDE,请直接写出所有符合条件的点M的坐标.。

九年级数学双休日作业(五)

九年级数学双休日作业(五)

一、 选择题:1.对角线互相垂直平分的四边形是 ( )A .平行四边形、菱形B .矩形、菱形C .矩形、正方形D .菱形、正方形 2.下面与是同类二次根式的是 ()3.下面4个算式中,正确的是 ()A.C . = -6D .4.如图,□ABCD 的周长为,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为 ( ) A 、4 B 、6 C 、8 D 、10 5.二次根式:①;②;③;④;⑤中最简二次根式是( )A .①②B .③④⑤C .②③D .④6.实数a 、b 在数轴上的位置如图所示,那么化简|a-b|- 的结果是 ( )A. 2a-bB. bC. -bD. -2a+b7.如图,在□中,,为垂足.如果 ,则 ( )A.B. C.D.8.菱形对角线长分别是4和5,则菱形的面积为 ( )A .20B .10C .16D .259.化简的结果正确的是 ( ) A . B. C . D . 10.如图,把一个正方形纸片三次对折后沿虚线剪下,打开铺平后,得到的图形是( )212)6(-cm 20cm cm cm cm 29x -))((b a b a -+122+-a a x175.02a ABCD CE AB ⊥E 125A =∠BCE =∠5535253094432291021063102 AE BCDA DB CE F第17题图'二、填空题:11.写一条正方形具有而菱形不一定具有的性质:__ ___。

12.若最简二次根式是同类二次根式,则a= 。

13.等式中的括号应填入 。

14的整数部分和小数部分分别是a 与b ,则a-b =________。

15.关于的方程有实数根,则整数的最大值是 。

16.若等腰梯形的中位线长与腰长相等,周长为80,高为12,则它的面积为 。

17. 如图,若□ABCD 与□EBCF F = °18.如图,将边长为2 cm 的正方形ABCD 沿对角线AC 剪开,再把△ABC 沿AD 方向平移,得△ˊ,若两三角形重叠部分的面积是1cm 2,则它移动的距离等于 cm.三.解答题: 19.计算(1) (2)20.解方程.(1) x 2-8x-10=0(配方法) (2) 2x 2-3x+ 1=0 (公式法)a a 241-+与) ()(2++=-y x y x x 2(6)860a x x --+=a cm cm C B A '''A A '1383322+-+()()22325352+--C ADB 沿虚线剪开 右折右下方折图21x 值,代入化简后的式子求值。

九年级数学下学期双休日作业(5)(答案不全)(2021学年)

九年级数学下学期双休日作业(5)(答案不全)(2021学年)

江苏省泰兴市黄桥镇九年级数学下学期双休日作业(5)(答案不全)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省泰兴市黄桥镇九年级数学下学期双休日作业(5)(答案不全))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省泰兴市黄桥镇九年级数学下学期双休日作业(5)(答案不全)的全部内容。

黄桥初级中学九年级数学双休日作业(5)一、选择题:(本大题共有6小题,每小题3分,共18分)1.的平方根是( )A.81ﻩB.±3 C.﹣3 D.32.空气质量检测数据pm2.5是值环境空气中,直径小于等于2。

5微米的颗粒物,已知1微米=0。

000001米,2.5微米用科学记数法可表示为( )米.A.2。

5×106ﻩB.2.5×105ﻩC.2.5×10﹣5ﻩD.2。

5×10﹣63.在天气预报图上,有各种各样表示天气的符号,下列表示天气符号的图形中,既是中心对称图形又是轴对称图形的是()A. B.ﻩC.ﻩD.4.图中几何体的俯视图是()A. B.ﻩC. D.5.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是() A.极差是6 B.众数是7ﻩC.中位数是8 D.平均数是106.直线l:y=(m﹣3)x+n﹣2(m,n为常数)的图象如图,化简:|m﹣3|﹣得( )A.3﹣m﹣n B.5ﻩC.﹣1 D.m+n﹣5二、填空题:(本大题共10小题,每小题3分,共30分)7.若|a|=3,b是2的相反数,ab=.8.在函数y=中,自变量x的取值范围是.9.有5张看上去无差别的卡片,上面分别写着0,π,,,1。

长郡集团九下数学第五周周末作业

长郡集团九下数学第五周周末作业

的解集是( )
A.x>3
B.x<3
C.x>4
D.x<4
9.如图,在⊙O 中,点 A、B、C 在圆上,OD⊥AB,∠ACB=45°,OA=2 ,
则 AD 的长是( )
A.
B.2
C.2
D.3
10.已知圆锥的底面半径为 6,母线长为 10,则这个圆锥的全面积为( )
A.36π
B.48π
C.60π
D.96π
九下数学第五周周末作业
班级: 一.选择题(共 12 小题) 1.下列图形既是轴对称图形又是中心对称图形的是( )
学号:
姓名:
A.
B.
2.下列说法正确的是( )
A.4a3b 的次数是 3
C.2a+b﹣1 的各项分别为 2a,b,1
C.
D.
B.﹣3ab2 的系数是﹣3 D.多项式 x2﹣1 是二次三项式
3.若分式
的值为 0,则 x 的值为( )
A.4
B.﹣4
C.3 或﹣3
D.3
4.如果 x2﹣kxy+9y2 是一个完全平方式,那么 k 的值是( )
A.3
B.±6
C.6
D.±3
5.下列运算正确的是( )
A. + =
B.2 ×3 =6 C.(x2)5=x10
D.x5•x6=x30
6.一工坊用铁皮制作糖果盒,每张铁皮可制作盒身 20 个,或制作盒底 30 个,一个盒身与两个盒底配成一套糖
果盒.现有 35 张铁皮,设用 x 张制作盒身,y 张制作盒底,恰好配套制成糖果盒.则下列方程组中符合题意
的是( )
A.
B.
C.
D.
7.若关于 x 的一元二次方程(k﹣1)x2﹣2kx+k﹣3=0 有实数根,则 k 的取值范围为( )

九年级下数学第五周周末作业

九年级下数学第五周周末作业

绵阳中学育才学校第五周周末作业一、选择题(共10小题,每小题3分,共30分)1. 我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人。

将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A. 766.610⨯ B. 80.66610⨯C. 86.6610⨯D. 76.6610⨯2.下列等式成立是( )A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯- 3.若a 、b 均为正整数,且32,7<>b a ,则b a +的最小是( )A. 3B. 4C. 5D. 6 4、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是( ) A. a c b c +>+ B. c a c b -<- 22.cb c a C 22.b ab a D5.设1a =,a 在两个相邻整数之间,则这两个整数是( ) A.1和2 B.2和3 C.3和4 D.4 和56、下列运算正确的是( )A 、3332a a a =•B 、633a a a =+C 、336)2(x x -=- D 、426a a a =÷7、下列各式计算正确的是( ) A.532=+ B. 2222=+C. 22223=-D. 5621012-=- 8.设m >n >0,m 2+n 2=4mn ,则m 2-n 2mn=( ) A .2 3 B . 3 C . 6 D .3 9.若分式3621x x -+的值为0,则( ) A .x =-2 B .x =-12C .x =12D .x =210.若自然数n 使得三个数的加法运算“n +(n +1)+(n +2)”产生进位现象,则称n 为“连加进位数”.例如:2不是“连加进位数”,因为2+3+4=9不产生进位现象;4是“连加进位数”,因为4+5+6=15产生进位现象;51是“连加进位数”,因为51+52+63=156产生进位现象.如果从0,1,2,…,99这100个自然数中任取一个数,那么取到“连加进位数”的概率是( )A .0.88B .0.89C .0.90D .0.91 二、填空题(共6小题,每小题4分,共24分) 11.多项式 与22-+m m 的和是m m 22-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,数轴上A 点表示的数减去B 点表示的数, 结果是( ).
A .8
B .-8
C .2
D .-2 2. 下列运算正确的是( ).
A. 0(3)1-=-
B. 236-=-
C.9)3(2-=-
D. 932-=-
3. 化简()m n m n --+的结果是( ).
A .0
B .2m
C .2n -
D .22m n -
4.用配方法解一元一次方程0322=--x x 时,方程变形正确的是( )
A .()212x -=
B .()214x -=
C .()211x -=
D .()217x -=
5

A
D
6.若分式x y x y
+-中的x 、y 的值都变为原来的3倍,则此分式的值( ) A 、不变 B 、是原来的3倍 C 、是原来的13 D 、是原来的16
7、我国自行研制的“神舟五号”载人飞船于二00三年十月十五日成功发射,并环绕地球飞行约590520千米,用科学记数法表示为( )
A 、59.052×410千米
B 、 5.9052×510-千米
C 、5.9052×510千米
D 、5.9052×310千米
8、把不等式组1
x x +⎧⎨->0,的解集表示在数轴上,正确的是(
).
(A ) (B
) (C ) (
D ) 9、当分式1
3-x 有意义时,字母x 应满足( ) A :1x ≠- B :0x = C :1x ≠ D :0x ≠
10、下列各式2a b -,3x x +,5y π+,4
2x ,b a b a -+,)(1y x m -中是分式的共( ) A :2个 B :3个 C :4 个 D :5个
1、请写出你熟悉的两个无理数______________。

0 1
第1题图 -1 -1 1 -1 -1
2、在数轴上,离原点距离等于3的数是______________。

3、 分解因式:2x 2﹣10x= .
4、 不等式3x ﹣9>0的解集是
5、 某药品原价是100元,经连续两次降价后,价格变为64元,如果每次降价的百分率是一样的,那么每次降价的百分率是 ;
1、化简:
a b b c ab bc ++- 2、计算:﹣2sin45°﹣(1+)0+2﹣1.
3、分解因式
(1)a (x-3)+2b (x-3) (2) 16a 2-9b 2;
4、解方程组:
5、解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.
6、已知10m =3, 10n =2, 求210m n - 的值.
7、一次环保知识竞赛,共有25道题,规定答对一题得4分,答错一或不答扣一分。

小立在这次竞赛中被评为优秀(85分或85分以上),小立可能答对了多少题?她至少答对了多少题?
附加题:2,4563x y m x y m +=+⎧⎨+=+⎩
的解x 、y 都是正数,则m 的取值范围.。

相关文档
最新文档