山东省枣庄市2014-2015学年高二(下)期末数学试卷(理科)
高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q=.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2=.3.命题:∀x∈R,sinx<2的否定是.4.复数z=(1+3i)i(i是虚数单位),则z的实部是.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为.6.已知则满足的x值为.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为.11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.14.观察下面的数阵,第20行第20个数是.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷参考答案与试题解析一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q={0,2} .考点:交集及其运算.专题:计算题.分析:通过理解集合的表示法化简集合P和集合Q,两集合的交集是集合P和Q中的共同的数.解答:解:∵P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},∴P∩Q={0,2}故答案为:{0,2}点评:本题考查集合的表示法、集合交集的求法.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2= 2+2i .考点:复数代数形式的加减运算.专题:计算题.分析:根据复数减法的运算法则,当且仅当实部与虚部分别相减可求.解答:解:Z1﹣Z2=(3+4i)﹣(1+2i)=2+2i故答案为:2+2i点评:本题主要考查了复数减法的基本运算,运算法则:当且仅当实部与虚部分别相减,属于基础试题.3.命题:∀x∈R,sinx<2的否定是“∃x∈R,sinx≥2”.考点:命题的否定.分析:根据命题“∀x∈R,sinx<2”是全称命题,其否定为特称命题,即“∃x∈R,sinx≥2”.从而得到本题答案.解答:解:∵命题“∀x∈R,sinx<2”是全称命题.∴命题的否定是存在x值,使sinx<2不成立,即“∃x∈R,sinx≥2”.故答案为:“∃x∈R,sinx≥2”.点评:本题给出全称命题,求该命题的否定形式.着重考查了含有量词的命题的否定、全称命题和特称命题等知识点,属于基础题.4.复数z=(1+3i)i(i是虚数单位),则z的实部是﹣3 .考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简=(1+3i)i,依据使不得定义求得z的实部.解答:解:复数z=(1+3i)i=﹣3+i,故实部为﹣3,故答案为﹣3.点评:本题考查两个复数代数形式的乘法,虚数单位i的幂运算性质,以及复数为实数的条件.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为[0,π].考点:函数的单调性与导数的关系.专题:数形结合.分析:根据据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减;从图中找到f′(x)≥0的区间即可.解答:解:据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减由图得到x∈[0,π]时,f′(x)≥0故y=f (x)的单调增区间为[0,π]故答案为[0,π]点评:本题考查函数的单调性与导函数符号的关系:f′(x)≥0时,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减6.已知则满足的x值为 3 .考点:分段函数的解析式求法及其图象的作法;函数的值.分析:分x≤1和x>1两段讨论,x≤1时,得,x>1时,得,分别求解.解答:解:x≤1时,f(x)=,x=2,不合题意,舍去;x>1时,,=3综上所示,x=3故答案为:3点评:本题考查分段函数求值问题,属基本题.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.考点:利用导数研究函数的单调性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求导函数,要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,故可建立不等式,解之即可求得m的取值X围.解答:解:求导函数要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,构建函数g(x)=﹣x2+mx+2,因为函数图象恒过点(0,2),所以﹣x2+mx+2≥0在[2,4]上恒成立,只需m根据函数的单调递增,解得,即所求m的X围为故答案为:点评:本题考查利用导数研究函数的单调性,解题的关键是求导函数,将问题转化为﹣x2+mx+2≥0在[2,4]上恒成立.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是﹣1≤a<7 .考点:函数在某点取得极值的条件.专题:计算题.分析:首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.解答:解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值X围是﹣1≤a<7,故答案为﹣1≤a<7.点评:考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .考点:简单线性规划.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.解答:解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2 =8,在a=b=8时是等号成立,∴a+b的最小值为8.故答案为:8点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为e2.考点:定积分在求面积中的应用.专题:计算题.分析:先利用复合函数求导法则求已知函数的导函数,再利用导数的几何意义求切线斜率,进而利用直线的点斜式写出切线方程,最后求直线与坐标轴的交点,计算直角三角形的面积即可解答:解:y′=,y′|x=4=e2∴曲线在点(4,e2)处的切线方程为y﹣e2=e2(x﹣4)即y=e2x﹣e2令x=0,得y=﹣e2,令y=0,得x=2∴此切线与坐标轴所围三角形的面积为×2×e2=e2故答案为e2点评:本题主要考查了导数的几何意义,求曲线在某点出的切线方程的方法,利用导数求切线方程是解决本题的关键11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由已知直线y=2a与函数y=|x﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a.解答:解:由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.点评:本题考查了函数的图象;考查利用数形结合求参数.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是[1,5].考点:函数最值的应用.专题:计算题;综合题.分析:根据a+b+c=9,ab+bc+ca=24,得到a+c=9﹣b,并代入ab+bc+ca=24,得到ac=24﹣(a+c)b,然后利用基本不等式ac,即可求得b的取值X围.解答:解:∵a+b+c=9,∴a+c=9﹣b,∵ab+ac+bc=(a+c)b+ac=24,得ac=24﹣(a+c)b;又∵ac,∴24﹣(a+c)b,即24﹣(9﹣b)b,整理得b2﹣6b+5≤0,∴1≤b≤5;故答案为[1,5].点评:此题考查了利用基本不等式求最值的问题,注意基本不等式成立的条件为一正、二定、三等,以及消元思想的应用,属中档题.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).考点:利用导数研究函数的单调性;函数奇偶性的性质.专题:导数的概念及应用.分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.解答:解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h (3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).点评:恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键.14.观察下面的数阵,第20行第20个数是381 .12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…考点:归纳推理.专题:综合题;推理和证明.分析:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,由此可求出第20行第20个数.解答:解:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,∴第20行第20个数是361+20=381.故答案为:381.点评:本题给出三角形数阵,求第20行第20个数,着重考查了递归数列和归纳推理等知识点,属于基础题.二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.考点:复合命题的真假.专题:简易逻辑.分析:根据二次函数恒成立的充要条件,我们可以求出命题p为真时,实数a的取值X围,根据二次函数有实根的充要条件,我们可以求出命题q为真时,实数a的取值X围,则命题p,q中一个为真,分类讨论后,即可得到实数a的取值X围.解答:解:对任意实数x都有ax2+ax+1>0恒成立⇔a=0或⇔0≤a<4;关于x的方程x2﹣x+a=0有实数根⇔△=1﹣4a≥0⇔a≤;p和q中至少有一个为真命题如果p真q假,则有0≤a<4,且a>,∴<a<4;如果p假q真,则有a<0,或a≥4,且a≤∴a<0;如果p真q真,则有0≤a<4,且a≤,∴0≤a≤;所以实数a的取值X围为(﹣∞,4)点评:本题考查的知识点是命题的真假判断与应用,复合命题的真假,函数恒成立问题,其中判断出命题p与命题q为真时,实数a的取值X围,是解答本题的关键.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.考点:复数代数形式的混合运算.专题:计算题.分析:利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.解答:解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i点评:本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.考点:利用导数研究函数的极值.专题:计算题.分析:(1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x0的值;(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.解答:解:(Ⅰ)由图象可知,在(﹣∝,1)上f'(x)>0,在(1,2)上f'(x)<0.在(2,+∝)上f'(x)>0.故f(x)在(﹣∝,1),(2,+∝)上递增,在(1,2)上递减.因此f(x)在x=1处取得极大值,所以x0=1.(Ⅱ)f'(x)=3ax2+2bx+c,由f'(1)=0,f'(2)=0,f(1)=5,得解得a=2,b=﹣9,c=12.点评:本题主要考查了利用导数研究函数的极值,以及观察图形的能力,属于基础题.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(Ⅰ)通过a=4可知y=,分别令每段对应函数值大于等于4,计算即得结论;(Ⅱ)通过化简、利用基本不等式可知y=2•(5﹣x)+a[﹣1]=(14﹣x)+﹣a﹣4≥﹣a﹣4,再令﹣a﹣4≥4,计算即得结论.解答:解:(Ⅰ)∵a=4,∴y=,当0≤x≤4时,由﹣4≥4,解得x≥0,∴此时0≤x≤4;当4<x≤10时,由20﹣2x≥4,解得x≤8,∴此时4<x≤8;综上所述,0≤x≤8,即若一次投放4个单位的制剂,则有效治污时间可达8天;(Ⅱ)当6≤x≤10时,y=2•(5﹣x)+a[﹣1]=10﹣x+﹣a=(14﹣x)+﹣a﹣4,∵14﹣x∈[4,8],而1≤a≤4,∴∈[4,8],∴y=(14﹣x)+﹣a﹣4≥2﹣a﹣4=﹣a﹣4,当且仅当14﹣x=即x=14﹣4时,y有最小值为﹣a﹣4,令﹣a﹣4≥4,解得24﹣16≤a≤4,∴a的最小值为24﹣16≈1.6.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解答:解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.证明:①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=(k+1)()k+1>(k+1)()k+1=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.考点:函数恒成立问题;函数单调性的性质.专题:证明题;综合题;压轴题.分析:(1)构造函数,通过研究h(x)的导数得出其单调性,从而得出其在区间[[1,e]上的值域,可以证出f(x)能被g(x)替代;(2)构造函数k(x)=f(x)﹣g(x)=x﹣lnx,可得在区间上函数k(x)为减函数,在区间(1,m)上为增函数,因此函数k(x)在区间的最小值为k(1)=1,最大值是k(m)大于1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)根据题意得出不等式,去掉绝对值,再根据x﹣lnx的正负转化为或,通过讨论右边函数的最值,得出实数a的X围解答:解:(1)∵,令,∵,∴h(x)在[1,e]上单调增,∴.∴|f(x)﹣g(x)|≤1,即在区间[[1,e]]上f(x)能被g(x)替代.(2)记k(x)=f(x)﹣g(x)=x﹣lnx,可得当时,k′(x)<0,在区间上函数k(x)为减函数,当1<x<m时,k′(x)>0,在区间(1,m)上函数k(x)为增函数∴函数k(x)在区间的最小值为k(1)=1,最大值是k(m)>1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)∵f(x)在区间[1,e]上能被g(x)替代,即|f(x)﹣g(x)|≤1对于x∈[1,e]恒成立.∴.,由(2)知,当x∈[1,e]时,x﹣lnx>0恒成立,∴有,令,∵=,由(1)的结果可知,∴F'(x)恒大于零,∴.②,令,∵=,∵,∴G'(x)恒大于零,∴,即实数a的X围为点评:本题考查了利用导数研究函数的单调性,通过分类讨论解决了不等式恒成立的问题,属于难题.。
山东省枣庄市2014-2015学年高一下学期期末考试化学试题 Word版含答案

2014-2015学年度第二学期模块检测高一化学 2015.7 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至4页,第Ⅱ卷5至8页。
全卷共100分。
考试时间90min。
第Ⅰ卷(选择题共44分)可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Al 27 S 32 Cu 64一、选择题(本题包括10小题,每小题2分,共20分。
每小题只有一个选项符合题意。
)1.下列物质中,一定不是..天然高分子化合物的是A.纤维素B.橡胶C.蛋白质D.腈纶2.下列物质中,有固定熔点和沸点的是A.乙烯B.天然气C.汽油D.煤3.下列元素中,最高正价最高的是A.碳B.氮C.氧D.氟4.下列电池中,不易造成环境污染的是A.镍镉电池B.氢氧燃料电池C.锌锰电池D.铅蓄电池5.还原性逐渐增强的是A.Na、Mg、Al B.Li、Na、K C.P、S、CI D.I、Br、Cl6.下列关于化学反应限度的叙述不正确...的是A.任何可逆反应都有一定的限度B.化学反应的限度是不可改变的C.化学反应的限度与时间长短无关D.化学反应达到限度时,正、逆反应速率相等7.I是常规核裂变产物之一,可以通过测定大气或水中I的含量变化来检测核电站是否发生放射性物质泄漏.下列有关I的叙述中错误的是A.I的化学性质与I相同B.I的原子序数为53C.I的原子核外电子数为78D.I的原子核内中子数多于质子数8.下列有关物质的说法正确的是A.淀粉水解的最终产物为酒精B.纤维素水解的最终产物为麦芽糖C.油脂水解的产物之一为甘油D.蛋白质与浓硫酸作用呈黄色9.下列说法中错误的是A.35Cl和37Cl 互为同位素B.元素的化学性质主要取决于核外电子数C.物质之间发生化学变化时,化学键一定发生变化D.熔融状态下能够导电的化合物一定是离子化合物10.下列说法正确的是A.人造纤维、合成纤维和碳纤维都是有机高分子化合物B.加热能杀死流感病毒是因为病毒的蛋白质受热变性C.煤的干馏和石油的分馏均属于化学变化D.油脂都不能使溴的四氯化碳溶液褪色二、选择题(本题包括8小题,每小题3分,共24分。
泰安市2014-2015年高二下学期期末数学(理)试题及答案

试卷类型:A 泰安市2014—2015学年度下学期期末高二年级考试数学试题(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数=A.-1-iB.-1+iC.1-iD.-i2.设随机变量,若,则等于A.0.3B.0.4C.0.6D.0.73.设曲线在点(0,0)处的切线方程为,则的值为A.0B.1C.2D.34.设为实数,若复数,则5.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,根据收集到的数据(如下表),由最小二乘法得回归直线方程,表中有一个数据模糊不清,请你推断该数据的值为A.68B.68.2C.70D.756.从l,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”则P(B/A)等于7.在平面几何里有射影定理:设三角形ABC的两边AB上AC,D是A点在BC上的射影,则AB2=BD·BC。
拓展到空间,在四面体A-BCD中,CA⊥面ABD,点O是4在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,得出正确的结论是A. S△ABC2=S△BOC·S△BDCB. S△ABD2=S△BOD·S△BDCC. S△ADC2=S△DOC·S△BDCD. S△DBC2=S△ABD·S△ABC8.若函数f(x)在定义域R内可导,,则的大小关系是9.某班组织文艺晚会,准备从4,B等6个节目中选出3个节目演出,要求:4,曰两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为A.84B.80C.76D.7210.设函数f(x)在R上可导,其导函数为f’(x),且函数f(x)在x=-2处取得极小值,则函数y=xf’(x)的图像可能是二、填空题:本大题共5小趣,每小题5分,共25分.请把答案填在答题纸相应的位置.11.若复数z=l+i(i为虚数单位),是的共轭复数,则的虚部为▲ .12.抛掷一枚均匀硬币n(3≤n≤8)次,正面向上的次数服从二项分布,若则亭的方差D()= ▲ .13.曲线y=x2-2x与直线x=-1,x=l以及z轴所围图形的面积为▲ ..14.将标号为1,2,3,4,5,6的6张卡片放人3个不同的信封中。
2014-2015年山东省枣庄二中高二上学期期末数学试卷(理科)与解析

2014-2015学年山东省枣庄二中高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2} 2.(5分)已知0<a<1,log a m<log a n<0,则()A.1<n<m B.1<m<n C.m<n<1D.n<m<1 3.(5分)已知各项均为正数的等比数列{a n}中,3a1,a3,2a2成等差数列,则=()A.27B.3C.﹣1或3D.1或274.(5分)设P是△ABC所在平面内的一点,,则()A.B.C.D.5.(5分)已知函数y=a x﹣1﹣1(a>0切a≠1)的图象恒过点P,角α的终边过点P,则sinα=()A.﹣B.1C.D.06.(5分)已知m,n是两条不同直线,α,β是两个不同平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β②若m⊥α,m⊥β,则α∥β③若m⊥α,n⊥β,m⊥n,则α⊥β④若m∥α,n∥β,m∥n,则α∥β其中正确的命题是()A.①②B.②③C.①④D.②④7.(5分)已知等比数列{a n}的公比q=2,其前4项和S4=60,则a2等于()A.8B.6C.﹣8D.﹣68.(5分)如图是函数y=Asin(ωx+φ)在一个周期内的图象,此函数的解析式为可为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)9.(5分)若x,y满足约束条件,则目标函数z=2x+y的最大值是()A.﹣3B.C.2D.310.(5分)与圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0都相切的直线有()A.1条B.2条C.3条D.4条11.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.12.(5分)已知直线l过点O(0,0)和点P(2+cosα,sinα),则直线l 的斜率的最大值为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分).13.(5分)已知函数f(x)=,则不等式f(x)>f(1)的解集是.14.(5分)已知数列{a n}中,a1=0,a n+1=a n+2n﹣1(n∈N*),则数列{a n}的通项公式是.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2﹣b2=2bc,sinC=3sinB,则A=.16.(5分)给出下列命题:①若ab>0,a>b,则;②若已知直线x=m与函数f(x)=sinx,g(x)=sin(﹣x)的图象分别交于点M,N,则|MN|的最大值为;③若数列a n=n2+λn(λ∈N*)为单调递增数列,则λ取值范围是λ<﹣2;④若直线l的斜率k<1,则直线l的倾斜角;其中真命题的序号是:.三.解答题(本大题共6小题,满分70分.解答应写出文字说明.证明过程或演算步骤).17.(10分)已知向量=(a+c,b),=(a﹣c,b﹣a),且,其中A,B,C是△ABC的内角,a,b,c分别是角A,B,C的对边.(1)求角C的大小;(2)求sinA+sinB的取值范围.18.(12分)某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题.(Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.19.(12分)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°.(1)求证:平面PBC丄平面PAC(2)已知PA=1,AB=2,当三棱锥P﹣ABC的体积最大时,求BC的长.20.(12分)已知α为锐角,且tanα=﹣1,函数f(x)=2xtan2a+sin(2a+),数列{a n}的首项a1=1,a n+1=f(a n).(Ⅰ)求函数f(x)的表达式;(Ⅱ)求数列{na n}的前n项和S n.21.(12分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=﹣48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?22.(12分)已知函数(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],恒成立,求实数m取值范围.2014-2015学年山东省枣庄二中高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)已知集合A={x|x2﹣2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}【解答】解:∵A={x|x2﹣2x=0}={0,2},B={0,1,2},∴A∩B={0,2}故选:C.2.(5分)已知0<a<1,log a m<log a n<0,则()A.1<n<m B.1<m<n C.m<n<1D.n<m<1【解答】解:由log a m<log a n<0=log a1得m>n>1,故选:A.3.(5分)已知各项均为正数的等比数列{a n}中,3a1,a3,2a2成等差数列,则=()A.27B.3C.﹣1或3D.1或27【解答】解:设等比数列{a n}的公比为q,由题意可得a3=3a1+2a2,∴a1q2=3a1+2a1q,即q2=3+2q解得q=3,或q=﹣1(舍去),∴==q3=27故选:A.4.(5分)设P是△ABC所在平面内的一点,,则()A.B.C.D.【解答】解:∵,∴,∴∴∴故选:B.5.(5分)已知函数y=a x﹣1﹣1(a>0切a≠1)的图象恒过点P,角α的终边过点P,则sinα=()A.﹣B.1C.D.0【解答】解:令x﹣1=0,求得x=1 且y=0,可得函数y=a x﹣1﹣1(a>0切a≠1)的图象恒过点P(1,0),故角α的终边过点P(1,0),∴x=1,y=0,r=1,∴sinα==0,故选:D.6.(5分)已知m,n是两条不同直线,α,β是两个不同平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β②若m⊥α,m⊥β,则α∥β③若m⊥α,n⊥β,m⊥n,则α⊥β④若m∥α,n∥β,m∥n,则α∥β其中正确的命题是()A.①②B.②③C.①④D.②④【解答】解:①若α∩β=m,n⊂α,n⊥m,如图,则α与β不一定垂直,故①为假命题;②若m⊥α,m⊥β,根据垂直于同一条直线的两个平面平行,则α∥β;故②为真命题;③若m⊥α,n⊥β,m⊥n,则α⊥β,故③为真命题;④若m∥α,n∥β,m∥n,如图,则α与β可能相交,故④为假命题.故选:B.7.(5分)已知等比数列{a n}的公比q=2,其前4项和S4=60,则a2等于()A.8B.6C.﹣8D.﹣6【解答】解:由题意可得,∴a1=4,a2=8故选:A.8.(5分)如图是函数y=Asin(ωx+φ)在一个周期内的图象,此函数的解析式为可为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(﹣)D.y=2sin(2x﹣)【解答】解:由于最大值为2,所以A=2;又.∴y=2sin(2x+φ),将点(﹣,2)代入函数的解析式求得,结合点的位置,知﹣,∴函数的解析式为可为,故选:B.9.(5分)若x,y满足约束条件,则目标函数z=2x+y的最大值是()A.﹣3B.C.2D.3【解答】解:作出不等式组对应的平面区域如图:由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A(1,0)时,直线的截距最大,此时z最大.由,解得即A(1,0),此时z max=2×1+0=2,故选:C.10.(5分)与圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0都相切的直线有()A.1条B.2条C.3条D.4条【解答】解:∵圆C1:x2+y2﹣6x+4y+12=0,C2:x2+y2﹣14x﹣2y+14=0的方程可化为,;;∴圆C1,C2的圆心分别为(3,﹣2),(7,1);半径为r1=1,r2=6.∴两圆的圆心距=r2﹣r1;∴两个圆内切,∴它们只有1条公切线.故选:A.11.(5分)执行如图所示的程序框图,若输入n=10,则输出的S=()A.B.C.D.【解答】解:输入n的值为10,框图首先给累加变量S和循环变量i分别赋值0和2,判断2≤10成立,执行,i=2+2=4;判断4≤10成立,执行=,i=4+2=6;判断6≤10成立,执行,i=6+2=8;判断8≤10成立,执行,i=8+2=10;判断10≤10成立,执行,i=10+2=12;判断12≤10不成立,跳出循环,算法结束,输出S的值为.故选:A.12.(5分)已知直线l过点O(0,0)和点P(2+cosα,sinα),则直线l 的斜率的最大值为()A.B.C.D.【解答】解∵动点P(2+cosα,sinα)的轨迹方程为圆C:(x﹣2)2+y2=3,∴当直线l与圆C相切时,斜率取得最值,∴k max==,故选:D.二、填空题(本大题共4小题,每小题5分,满分20分).13.(5分)已知函数f(x)=,则不等式f(x)>f(1)的解集是{x|x<1或x>2} .【解答】解:∵函数f(x)=,∴f(1)=4.由解得x>2.由解得x<1.故不等式f(x)>f(1)的解集是{x|x<1或x>2},故答案为{x|x<1或x>2}.14.(5分)已知数列{a n}中,a1=0,a n+1=a n+2n﹣1(n∈N*),则数列{a n}的通项公式是.=a n+(2n﹣1),得【解答】解:由a n+1a2=a1+1.a3=a2+3.a4=a3+5.…a n=a n﹣1+(2n﹣3).累加得:a n=a1+1+3+…+(2n﹣3)=0+=(n﹣1)2.故答案为:a n=(n﹣1)2.15.(5分)在△ABC中,角A,B,C所对的边分别为a,b,c,若a2﹣b2=2bc,sinC=3sinB,则A=60°.【解答】解:已知等式sinC=3sinB,利用正弦定理化简得:c=3b,代入已知等式得:a2﹣b2=6b2,即a=b,∴cosA===,则A=60°.故答案为:60°16.(5分)给出下列命题:①若ab>0,a>b,则;②若已知直线x=m与函数f(x)=sinx,g(x)=sin(﹣x)的图象分别交于点M,N,则|MN|的最大值为;③若数列a n=n2+λn(λ∈N*)为单调递增数列,则λ取值范围是λ<﹣2;④若直线l的斜率k<1,则直线l的倾斜角;其中真命题的序号是:①②.【解答】解:①.∵ab>0,a>b,∴,即,因此正确;②.|MN|==|sinx﹣cosx|=,故②正确;③.若数列a n=n2+λn(λ∈N*)为单调递增数列,则,即λ>0,因此不正确;④若直线l的斜率k<1,则直线l的倾斜角或,因此不正确.综上可知:只有①②正确.故答案为:①②.三.解答题(本大题共6小题,满分70分.解答应写出文字说明.证明过程或演算步骤).17.(10分)已知向量=(a+c,b),=(a﹣c,b﹣a),且,其中A,B,C是△ABC的内角,a,b,c分别是角A,B,C的对边.(1)求角C的大小;(2)求sinA+sinB的取值范围.【解答】解:(1)由⊥得•=0得(a +c )(a ﹣c )+b (b ﹣a )=0⇒a 2+b 2﹣c 2=ab 由余弦定理得cosC=∵0<C <π∴C=(2)∵C=∴A +B=∴sinA +sinB=sinA +sin (﹣A )=sinA +sin cosA ﹣cos sinA=sinA +cosA=(sinA +cosA )=sin (A +) ∵0<A <∴<A +<∴<sin (A +)≤1∴<sin (A +)≤即<sinA +sinB ≤. 18.(12分)某校从参加2015年高考的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到部分频率分布直方图(如图所示).观察图中数据,回答下列问题. (Ⅰ)求分数在[120,130)内的频率;(Ⅱ)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.【解答】解:(Ⅰ)[120,130)内的频率为:1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3;…(5分)(Ⅱ)由题意,[110,120)分数段的人数为60×0.15=9(人). [120,130)分数段的人数为60×0.3=18(人). …(7分)∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,并分别记为m、n;…(8分)在[120,130)分数段内抽取4人,并分别记为a、b、c、d;…(9分)设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A,则基本事件共有(m,n),(m,a),…,(m,d),(n,a),…,(n,d),(a,b),…,(c,d)共15种.…(10分)则事件A包含的基本事件有(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)共9种.…(11分)∴.…(12分)19.(12分)如图,在三棱锥P﹣ABC中,∠PAB=∠PAC=∠ACB=90°.(1)求证:平面PBC丄平面PAC(2)已知PA=1,AB=2,当三棱锥P﹣ABC的体积最大时,求BC的长.【解答】解:(1)证明:∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC,∵AB∩AC=A,∴PA⊥平面ABC,∵BC⊂平面ABC,∴BC⊥PA∵∠ACB=90°,∴BC⊥CA,又PA∩CA=A,∴BC⊥平面PAC,∵BC⊂平面PBC,∴平面PBC⊥平面PAC.(2)由(1)知:PA⊥平面ABC,BC⊥CA,设BC=x(0<x<2),AC===,V P﹣ABC=×S△ABC×PA=x=≤×=.当且仅当x=时,取“=”,故三棱锥P﹣ABC的体积最大为,此时BC=.20.(12分)已知α为锐角,且tanα=﹣1,函数f(x)=2xtan2a+sin(2a+),数列{a n}的首项a1=1,a n+1=f(a n).(Ⅰ)求函数f(x)的表达式;(Ⅱ)求数列{na n}的前n项和S n.【解答】解:(Ⅰ)∵tanα=﹣1,∴tan2α===1,又α为锐角,∴2α=,∴sin(2α+)=1,∴f(x)=2x+1;=f(a n)=2a n+1,(Ⅱ)∵a n+1+1=2(a n+1),∴a n+1∵a1=1,∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2•2n﹣1=2n,∴a n=2n﹣1,∴na n=n•2n﹣n,下面先求{n•2n}的前n项和T n:T n=1×2+2×22+3×23+…+(n﹣1)•2n﹣1+n•2n,2T n=1×22+2×23+…+(n﹣1)•2n+n•2n+1,两式相减得:﹣T n=2+22+23+…+2n﹣n•2n+1=﹣n•2n+1=2n+1﹣2﹣n•2n+1,∴T n=2+(n﹣1)•2n+1,∴S n=2+(n﹣1)•2n+1﹣.21.(12分)某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=﹣48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?【解答】解:(1)设每吨的平均成本为W(万元/T),则(0<x≤210),(4分)当且仅当,x=200(T)时每吨平均成本最低,且最低成本为32万元.(6分)(2)设年利润为u(万元),则=.(11分)所以当年产量为210吨时,最大年利润1660万元.(12分)22.(12分)已知函数(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],恒成立,求实数m取值范围.【解答】解:(1)由,解得x<﹣1或x>1,∴定义域为(﹣∞,﹣1)∪(1,+∞)(2分)当x∈(﹣∞,﹣1)∪(1,+∞)时,∴是奇函数.….(5分)(2)由x∈[2,6]时,恒成立,∴,∵x ∈[2,6],∴0<m <(x +1)(7﹣x )在x ∈[2,6]成立…(8分) 令g (x )=(x +1)(7﹣x )=﹣(x ﹣3)2+16,x ∈[2,6],由二次函数的性质可知x ∈[2,3]时函数单调递增,x ∈[3,6]时函数单调递减, ∴x ∈[2,6]时,g (x )min =g (6)=7 ∴0<m <7….(12分)赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则yxo[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
山东省枣庄第八中学2014-2015学年高二上学期第二次阶段性检测数学(理)试题 Word版含答案

2014-2015届山东省枣庄第八中学高二第一学期第二次阶段性检测数学理试题一、选择题:本大题共12小题,每小题4分,共48分。
1.已知函数f (x )=cos (2x+ϕ)满足f (x )≤f (1)对x ∈R 恒成立,则( )A .函数f (x+1)一定是偶函数,B .函数f (x-1)一定是偶函数C .函数f (x+1)一定是奇函数,D .函数f (x-1)一定是奇函数2.若tan α>0,则( )A .sinα>0,B .cosα>0,C .sin2α>0,D .cos2α>03. 3.(2015•河南二模)在△ABC 中,已知角A ,B ,C 所对的边分别为a ,b ,c ,且a=3,c=8,B=60°,则△ABC 的周长是( )A .17,B .19,C .16,D .184.在△ABC 中, 316,38,8===∆ABC S c b ,则A ∠等于( )A .︒30B .︒60C .︒30或︒150D .︒60或︒1205.等差数列{a n }中,S 10=120,那么a 1+a 10的值是( )A .12B .24C .36D .486.在等比数列{a n }中,已知9,9151==a a ,,则3a =( ) A .1 B .3C .±1D .±3 7.若}{n a 是等比数列,124,5128374=+-=a a a a 且公比q 为整数,则10a 等于( )A .-256B .256C .-512D .5128.如图所示,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,此时气球的高度是60 m ,则河流的宽度BC 等于( )A .240(3-1)mB .180(2-1)mC .120(3-1)mD .30(3+1)m9.若n S 是等差数列{}n a 前n 项和,若63S S =31,则126S S =A .31B .81C .91D .103 10.在ABC ∆中,3B π∠=,三边长a ,b ,c 成等差数列,且6ac =,则b 的值是 ABCD11.在数列{}n a 中,*11,122,2N n a a a n n ∈+==+则101a 的值为A .49B .52C .51D .5012.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为41的等差数列, m n -等于A .1B .43C .21D .83 二、填空题:本大题共4小题,每题4分,共16分。
高二数学第二学期期末试卷 理(含解析)-人教版高二全册数学试题

2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤34.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=15.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 76.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>18.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2} 11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 812.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.2014-2015学年某某省某某市满城中学高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.若直线的参数方程为(t为参数),则直线的倾斜角为()A. 30° B. 60° C. 120° D. 150°考点:直线的参数方程.专题:直线与圆.分析:设直线的倾斜角为α,则α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.可得直线的斜率,即可得出.解答:解:设直线的倾斜角为α,α∈[0°,180°).由直线的参数方程为(t为参数),消去参数t可得.∴直线的斜率,则直线的倾斜角α=150°.故选D.点评:本题考查了把直线的参数方程化为普通方程、直线的斜率与倾斜角的关系,属于基础题.2.“x2﹣2x<0”是“0<x<4”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:不等式的解法及应用.分析:因为“x2﹣x>0”可以求出x的X围,再根据充分必要条件的定义进行求解;解答:解:∵x2﹣2x<0⇔0<x<2,若0<x<2可得0<x<4,反之不成立.∴“x2﹣2x<0”是“0<x<4”的充分非必要条件,故选B.点评:此题主要考查一元二次不等式的解法,以及充分必要条件的定义,是一道基础题;3.若命题“存在x∈R,使x2+(a﹣1)x+1<0”是假命题,则实数a的取值X围为() A. a>3或a<﹣1 B. a≥3或a≤﹣1 C.﹣1<a<3 D.﹣1≤a≤3考点:特称命题.分析:根据所给的特称命题写出其否定命题:任意实数x,使x2+ax+1≥0,根据命题否定是假命题,得到判别式大于0,解不等式即可.解答:解:∵命题“存在x∈R,使x2+(a﹣1)x+1<0”的否定是“任意实数x,使x2+ax+1≥0”命题否定是真命题,∴△=(a﹣1)2﹣4≤0,整理得出a2﹣2a﹣3≤0∴﹣1≤a≤3故选D.点评:本题考查命题的否定,解题的关键是写出正确的全称命题,并且根据这个命题是一个真命题,得到判别式的情况.4.在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1 D.θ=0(ρ∈R)和ρcosθ=1考点:简单曲线的极坐标方程;圆的切线方程.专题:直线与圆.分析:利用圆的极坐标方程和直线的极坐标方程即可得出.解答:解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.点评:正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》5.若x,y∈R且满足x+3y=2,则3x+27y+1的最小值是()A. B. C. 6 D. 7考点:基本不等式.专题:计算题.分析:将x用y表示出来,代入3x+27y+1,化简整理后,再用基本不等式,即可求最小值.解答:解:由x+3y﹣2=0得x=2﹣3y代入3x+27y+1=32﹣3y+27y+1=+27y+1∵,27y>0∴+27y+1≥7当=27y时,即y=,x=1时等号成立故3x+27y+1的最小值为7故选D.点评:本题的考点是基本不等式,解题的关键是将代数式等价变形,构造符合基本不等式的使用条件.6.不等式||>a的解集为M,又2∉M,则a的取值X围为()A.(,+∞) B. [,+∞) C.(0,) D.(0,]考点:绝对值不等式的解法.专题:综合题.分析:本题为含有参数的分式不等式,若直接求解,比较复杂,可直接由条件2∉M出发求解.2∉M即2不满足不等式,从而得到关于a的不等关系即可求得a的取值X围.解答:解:依题意2∉M,即2不满足不等式,得:||≤a,解得a≥,则a的取值X围为[,+∞).故选B.点评:本题考查绝对值不等式的解法和等价转化思想,属于基础题.7.如果关于x的不等式|x﹣3|+|x﹣4|<a的解集不是空集,则实数a的取值X围是() A. 0<a≤1 B. a≥1 C. 0<a<1 D. a>1考点:绝对值不等式的解法.专题:函数的性质及应用.分析:利用绝对值的意义求得|x﹣3|+|x﹣4|的最小值为1,再结合条件求得实数a的取值X围.解答:解:|x﹣3|+|x﹣4|表示数轴上的x对应点到3、4对应点的距离之和,它的最小值为1,故a>1,故选:D.点评:本题主要考查绝对值的意义,属于基础题.8.极坐标系中,圆ρ=2cosθ与直线2ρcos(θ+)=﹣1的位置关系为()A.相离 B.相切 C.相交 D.无法确定考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:把极坐标方程化为直角坐标方程,求出圆心到直线的距离,再与半径比较大小即可得出.解答:解:圆ρ=2cosθ即ρ2=2ρcosθ,化为x2+y2=2x,配方为(x﹣1)2+y2=1,∴圆心C (1,0),半径r=1.直线2ρcos(θ+)=﹣1展开为=﹣1,化为x﹣y+1=0.∴圆心C到直线的距离d==1=r.∴直线与圆相切.故选:B.点评:本题考查了把极坐标方程化为直角坐标方程的方法、点到直线的距离公式、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.9.下列说法中正确的是()A.命题“若x>y,则2x>2y”的否命题为假命题B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1>0”C.设x,y为实数,则“x>1”是“lgx>0”的充要条件D.若“p∧q”为假命题,则p和q都是假命题考点:命题的真假判断与应用.专题:简易逻辑.分析:由指数函数的单调性和命题的否命题,即可判断A;由含有一个量词的命题的否定,即可判断B;运用对数函数的单调性和充分必要条件的定义,即可判断C;由复合命题的真假,结合真值表,即可判断D.解答:解:A.命题“若x>y,则2x>2y”的否命题是“若x≤y,则2x≤2y”是真命题,故A错;B.命题“∃x∈R,使得x2+x+1<0”的否定为“∀x∈R,满足x2+x+1≥0”,故B错;C.设x,y为实数,x>1可推出lgx>lg1=0,反之,lgx>0也可推出x>1,“x>1”是“lgx>0”的充要条件,故C正确;D.若“p∧q”为假命题,则p,q中至少有一个为假命题,故D错.故选C.点评:本题主要考查简易逻辑的基础知识:四种命题及关系、命题的否定、充分必要条件和复合命题的真假,注意否命题与命题的否定的区别,是一道基础题.10.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A. {x|0<x<2} B. {x|1<x≤2} C. {x|0≤x≤1或x≥2} D. {x|0≤x≤1或x>2}考点: Venn图表达集合的关系及运算.专题:计算题;新定义.分析:利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.解答:解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.点评:本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.11.若n>0,则n+的最小值为()A. 2 B. 4 C. 6 D. 8考点:平均值不等式.专题:计算题;转化思想.分析:利用题设中的等式,把n+的表达式转化成++后,利用平均值不等式求得最小值.解答:解:∵n+=++∴n+=++(当且仅当n=4时等号成立)故选C点评:本题主要考查了平均值不等式求最值.注意把握好一定,二正,三相等的原则.12.已知a,b,c为三角形的三边且S=a2+b2+c2,P=ab+bc+ca,则()A. S≥2P B. P<S<2P C. S>P D. P≤S<2P考点:基本不等式.专题:不等式的解法及应用.分析:由于a+b>c,a+c>b,c+b>a,可得ac+bc>c2,ab+bc>b2,ac+ab>a2,可得SP >S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,可得S≥P,即可得出.解答:解:∵a+b>c,a+c>b,c+b>a,∴ac+bc>c2,ab+bc>b2,ac+ab>a2,∴2(ac+bc+ab)>c2+b2+a2,∴SP>S.又2S﹣2P=(a﹣b)2+(a﹣c)2+(b﹣c)2≥0,∴S≥P>0.∴P≤S<2P.故选:D.点评:本题考查了基本不等式的性质、三角形三边大小关系,考查了变形能力与计算能力,属于中档题.二.填空题(本大题共4小题,每小题5分,共20分.请把最简答案填在题后横线上)13.不等式|2x﹣1|﹣|x﹣2|<0的解集为{x|﹣1<x<1} .考点:绝对值不等式的解法.专题:计算题;转化思想.分析:首先分析题目求不等式|2x﹣1|﹣|x﹣2|<0的解集,可以考虑平方去绝对的方法,先移向,平方,然后转化为求解一元二次不等式即可得到答案.解答:解:|2x﹣1|﹣|x﹣2|<0移向得:丨2x﹣1丨<丨x﹣2丨两边同时平方得(2x﹣1)2<(x﹣2)2即:4x2﹣4x+1<x2﹣4x+4,整理得:x2<1,即﹣1<x<1故答案为:{x|﹣1<x<1}.点评:此题主要考查绝对值不等式的解法的问题,其中涉及到平方去绝对值的方法,对于绝对值不等式属于比较基础的知识点,需要同学们掌握.14.在平面直角坐标系xOy中,若直线l:,(t为参数)过椭圆C:(θ为参数)的右顶点,则常数a的值为 3 .考点:参数方程化成普通方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:直接划参数方程为普通方程得到直线和椭圆的普通方程,求出椭圆的右顶点,代入直线方程即可求得a的值.解答:解:由直线l:,得y=x﹣a,再由椭圆C:,得,①2+②2得,.所以椭圆C:的右顶点为(3,0).因为直线l过椭圆的右顶点,所以0=3﹣a,所以a=3.故答案为3.点评:本题考查了参数方程和普通方程的互化,考查了直线和圆锥曲线的关系,是基础题.15.已知集合A={﹣1,1},B={x|ax+1=0},若B⊆A,则实数a的所有可能取值的集合为{﹣1,0,1} .考点:集合的包含关系判断及应用.专题:阅读型.分析:根据B⊆A,利用分类讨论思想求解即可.解答:解:当a=0时,B=∅,B⊆A;当a≠0时,B={﹣}⊆A,﹣=1或﹣=﹣1⇒a=1或﹣1,综上实数a的所有可能取值的集合为{﹣1,0,1}.故答案是{﹣1,0,1}.点评:本题考查集合的包含关系及应用.16.已知p:|x﹣3|≤2,q:(x﹣m+1)(x﹣m﹣1)≤0,若¬p是¬q的充分而不必要条件,则实数m的取值X围为[2,4] .考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:先求出命题p,q的等价条件,然后利用p是¬q的必要非充分条件,建立条件关系即可求出m的取值X围.解答:解:∵log2|1﹣|>1;∴:|x﹣3|≤2,即﹣2≤x﹣3≤2,∴1≤x≤5,设A=[1,5],由:(x﹣m+1)(x﹣m﹣1)≤0,得m﹣1≤x≤m+1,设B=[m﹣1,m+1],∵¬p是¬q的充分而不必要条件,∴q是p的充分而不必要条件,则B是A的真子集,即,∴,即2≤m≤4,故答案为:[2,4].点评:本题主要考查充分条件和必要条件的应用,根据不等式的性质求出命题p,q的等价条件是解决本题的关键.三.解答题(本大题共6小题,70分.解答应写出必要的文字说明,证明过程或演算步骤)17.⊙O1和⊙O2的极坐标方程分别为ρ=4coθ,ρ=﹣sinθ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1,⊙O2交点的直线的极坐标方程.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(1)利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,代入两个圆的极坐标方程,化简后可得⊙O1和⊙O2的直角坐标方程;(2)把两个圆的直角坐标方程相减可得公共弦所在的直线方程,再化为极坐标方程.解答:解:(1)∵圆O1的极坐标方程为ρ=4cosθ,即ρ2=4ρcosθ,∴化为直角坐标方程为(x﹣2)2+y2=4,∵圆O2的极坐标方程ρ=﹣sinθ,即ρ2=﹣ρsinθ,∴化为直角坐标方程为 x2+(y+)2=.(2)由(1)可得,圆O1:(x﹣2)2+y2=4,①圆O2:x2+(y+)2=,②①﹣②得,4x+y=0,∴公共弦所在的直线方程为4x+y=0,化为极坐标方程为:4ρcosθ+ρsinθ=0.点评:本题主要考查把极坐标方程化为直角坐标方程的方法,求直线的极坐标方程,属于基础题.18.选修4﹣5:不等式选讲设函数,f(x)=|x﹣1|+|x﹣2|.(I)求证f(x)≥1;(II)若f(x)=成立,求x的取值X围.考点:带绝对值的函数.专题:计算题;证明题;函数的性质及应用.分析:(I)利用绝对值不等式即可证得f(x)≥1;(II)利用基本不等式可求得≥2,要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2即可.解答:解:(Ⅰ)证明:由绝对值不等式得:f(x)=|x﹣1|+|x﹣2|≥|(x﹣1)﹣(x﹣2)|=1 …(5分)(Ⅱ)∵==+≥2,∴要使f(x)=成立,需且只需|x﹣1|+|x﹣2|≥2,即,或,或,解得x≤,或x≥.故x的取值X围是(﹣∞,]∪[,+∞).…(10分)点评:本题考查带绝对值的函数,考查基本不等式的应用与绝对值不等式的解法,求得≥2是关键,属于中档题.19.极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线C的极坐标方程为ρ=2(cosθ+sinθ).(1)求C的直角坐标方程;(2)直线l:为参数)与曲线C交于A,B两点,与y轴交于E,求|EA|+|EB|的值.考点:参数方程化成普通方程;直线与圆的位置关系.专题:直线与圆.分析:(1)将极坐标方程两边同乘ρ,进而根据ρ2=x2+y2,x=ρcosθ,y=ρsinθ,可求出C的直角坐标方程;(2)将直线l的参数方程,代入曲线C的直角坐标方程,求出对应的t值,根据参数t的几何意义,求出|EA|+|EB|的值.解答:解:(1)∵曲线C的极坐标方程为ρ=2(cosθ+sinθ)∴ρ2=2ρcosθ+2ρsinθ∴x2+y2=2x+2y即(x﹣1)2+(y﹣1)2=2﹣﹣﹣﹣﹣﹣(5分)(2)将l的参数方程代入曲线C的直角坐标方程,得t2﹣t﹣1=0,所以|EA|+|EB|=|t1|+|t2|=|t1﹣t2|==.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)点评:本题考查的知识点是参数方程与普通方程,直线与圆的位置关系,极坐标,熟练掌握极坐标方程与普通方程之间互化的公式,及直线参数方程中参数的几何意义是解答的关键.20.已知直线l:(t为参数),曲线C1:(θ为参数).(Ⅰ)设l与C1相交于A,B两点,求|AB|;(Ⅱ)若把曲线C1上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线C2,设点P是曲线C2上的一个动点,求它到直线l的距离的最小值.考点:圆的参数方程;函数的图象与图象变化;直线与圆相交的性质;直线的参数方程.专题:计算题.分析:(I)将直线l中的x与y代入到直线C1中,即可得到交点坐标,然后利用两点间的距离公式即可求出|AB|.(II)将直线的参数方程化为普通方程,曲线C2任意点P的坐标,利用点到直线的距离公式P到直线的距离d,分子合并后利用两角和与差的正弦函数公式及特殊角的三角函数值化为一个角的正弦函数,与分母约分化简后,根据正弦函数的值域可得正弦函数的最小值,进而得到距离d的最小值即可.解答:解:(I)l的普通方程为y=(x﹣1),C1的普通方程为x2+y2=1,联立方程组,解得交点坐标为A(1,0),B(,﹣)所以|AB|==1;(II)曲线C2:(θ为参数).设所求的点为P(cosθ,sinθ),则P到直线l的距离d==[sin()+2]当sin()=﹣1时,d取得最小值.点评:此题考查了直线与圆的位置关系,涉及的知识有直线与圆的参数方程与普通方程的互化,点到直线的距离公式,两角和与差的正弦函数公式,正弦函数的定义域与值域,以及特殊角的三角函数值,根据曲线C2的参数方程设出所求P的坐标,根据点到直线的距离公式表示出d,进而利用三角函数来解决问题是解本题的思路.21.已知函数f(x)=|2x﹣a|+a.(1)若不等式f(x)≤6的解集为{x|﹣2≤x≤3},某某数a的值.(2)在(1)的条件下,若存在实数n使f(n)≤m﹣f(﹣n)成立,某某数m的取值X 围.考点:分段函数的应用.专题:函数的性质及应用.分析:(1)原不等式可化为|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,从而求得a的值.(2)由题意可得|n﹣1|+|2n﹣1|+2≤m,构造函数y=|n﹣1|+|2n﹣1|+2,求得y的最小值,从而求得m的X围.解答:解:(1)原不等式可化为|2x﹣a|≤6﹣a,∴,解得a﹣3≤x≤3.再根据不等式f(x)≤6的解集为[﹣2,3],可得a﹣3=﹣2,∴a=1.(2)∵f(x)=|2x﹣1|+1,f(n)≤m﹣f(﹣n),∴|n﹣1|+1≤m﹣(|﹣2n﹣1|+1),∴|n﹣1|+|2n﹣1|+2≤m,∵y=|n﹣1|+|2n﹣1|+2,当n≤时,y=﹣3n+4≥,当≤n≤1时,y=n+2≥,当n≥1时,y=3n≥3,故函数y=|n﹣1|+|2n﹣1|+2的最小值为,∴m≥,即m的X围是[,+∞).点评:本题主要考查绝对值不等式的解法,带有绝对值的函数,体现了转化的数学思想,属于中档题.22.在直角坐标xoy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cosθ,如图,曲线C与x轴交于O,B两点,P是曲线C在x轴上方图象上任意一点,连结OP并延长至M,使PM=PB,当P变化时,求动点M的轨迹的长度.考点:简单曲线的极坐标方程;轨迹方程.专题:坐标系和参数方程.分析:设出点M的极坐标(ρ,θ),表示出OP、PB,列出的极坐标方程,再化为普通方程,求出点M的轨迹长度即可.解答:解:设M(ρ,θ),θ∈(0,),则OP=2cosθ,PB=2sinθ;∴ρ=OP+PM=OP+PB=2cosθ+2sinθ,∴ρ2=2ρcosθ+2ρsinθ;化为普通方程是x2+y2=2x+2y,∴M的轨迹方程是(x﹣1)2+(y﹣1)2=2(x>0,y>0);∴点M的轨迹长度是l=×2π×=π.点评:本题考查了极坐标的应用问题,解题时应根据题意,列出极坐标方程,再化为普通方程,从而求出解答来,是基础题.。
山东省枣庄八中2014-2015学年高二数学上学期第二次段考试卷 理(含解析)

山东省枣庄八中2014-2015学年高二上学期第二次段考数学试卷(理科)一、选择题:本大题共12小题,每小题4分,共48分.1.(4分)已知函数f(x)=cos(2x+ϕ)满足f(x)≤f(1)对x∈R恒成立,则()A.函数f(x+1)一定是偶函数B.函数f(x﹣1)一定是偶函数C.函数f(x+1)一定是奇函数D.函数f(x﹣1)一定是奇函数2.(4分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(4分)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.184.(4分)在△ABC中,b=8,c=8,则∠A等于()A.30°B.60°C.30°或150°D.60°或120°5.(4分)在等差数列{a n}中,S10=120,那么a1+a10的值是()A.12 B.24 C.36 D.486.(4分)在等比数列{a n}中,已知a1=,a5=9,则a3=()A.1 B.3 C.±1D.±37.(4分)若 {a n}是等比数列,a4a7=﹣512,a3+a8=124,且公比q为整数,则a10=()A.256 B.﹣256 C.512 D.﹣5128.(4分)如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为75°、30°,此时气球的高是60m,则河流的宽度BC等于()A.240(﹣1)m B.180(﹣1)m C.120(﹣1)m D.30(+1)m9.(4分)设S n是等差数列{a n}的前n项和,若,则=()A.B.C.D.10.(4分)在△ABC中,,三边长a,b,c成等差数列,且ac=6,则b的值是()A.B.C.D.11.(4分)在数列{a n}中,a1=2,2a n+1=2a n+1,n∈N*,则a101的值为()A.49 B.50 C.51 D.5212.(4分)已知方程(x2﹣2x+m)(x2﹣2x+n)=0的四个根组成一个首项为的等差数列,则|m﹣n|等于()A.1 B.C.D.二、填空题:本大题共4小题,每题4分,共16分.13.(4分)如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB 的长为.14.(4分)数列{a n}的通项公式a n=2n﹣9,(n∈N+)则|a1|+|a2|+|a3|+…+|a10|=.15.(4分)等比数列{a n}的各项均为正数,且a5a6+a3a8=16,则log2a1+log2a2+…+log2a10的值为.16.(4分)已知S n,T n分别是等差数列{a n},{b n}的前n项和,且=,(n∈N+)则+=.三、解答题:本大题共4小题,共36分.17.(8分)△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=.(Ⅰ)求•;(Ⅱ)若c﹣b=1,求a的值.18.(8分)已知数列{a n}前 n项和为S n,且S n=n2,(1)求{a n}的通项公式(2)设,求数列{b n}的前n项和T n.19.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△ABC的周长为5,求b的长.20.(10分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.山东省枣庄八中2014-2015学年高二上学期第二次段考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分.1.(4分)已知函数f(x)=cos(2x+ϕ)满足f(x)≤f(1)对x∈R恒成立,则()A.函数f(x+1)一定是偶函数B.函数f(x﹣1)一定是偶函数C.函数f(x+1)一定是奇函数D.函数f(x﹣1)一定是奇函数考点:余弦函数的奇偶性.专题:计算题;三角函数的图像与性质.分析:依题意,f(1)是最大值,从而可求得φ=2kπ﹣2,k∈Z,于是可求得f(x+1)=cos2x,继而可得答案.解答:解:显然f(1)是最大值,所以f(1)=cos(2+φ)=1,∴2+φ=2kπ,φ=2kπ﹣2,k∈Z,所以f(x)=cos(2x+2kπ﹣2)=cos(2x﹣2),∴f(x+1)=cos(2x+2﹣2)=cos2x,所以f(x+1)是偶函数.故选A.点评:本题考查余弦函数的奇偶性,求得φ=2kπ﹣2,k∈Z是关键,考查分析与运算能力,属于中档题.2.(4分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>0考点:三角函数值的符号.专题:三角函数的求值.分析:化切为弦,然后利用二倍角的正弦得答案.解答:解:∵tanα>0,∴,则sin2α=2sinαcosα>0.故选:C.点评:本题考查三角函数值的符号,考查了二倍角的正弦公式,是基础题.3.(4分)在△ABC中,已知角A,B,C所对的边分别为a,b,c,且a=3,c=8,B=60°,则△ABC的周长是()A.17 B.19 C.16 D.18考点:余弦定理.专题:解三角形.分析:利用余弦定理列出关系式,将a,b及cosB的值代入,得到关于c的方程,求出方程的解即可得到c的值.解答:解:∵a=3,c=9,B=60°,∴由余弦定理b2=a2+c2﹣2accosB,即:b2=9+64﹣24,即b=7,则a+b+c=18故选:D.点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.4.(4分)在△ABC中,b=8,c=8,则∠A等于()A.30°B.60°C.30°或150°D.60°或120°考点:正弦定理的应用.专题:计算题.分析:由题意可得=bc•sinA=32sinA,求出 sinA=,即可得到∠A的值.解答:解:由题意可得=bc•sinA=32sinA,∴sinA=,∴∠A=30° 或1500°,故选C.点评:本题主要考查正弦定理的应用,求出sinA=,是解题的关键,属于基础题.5.(4分)在等差数列{a n}中,S10=120,那么a1+a10的值是()A.12 B.24 C.36 D.48考点:等差数列的前n项和.专题:计算题.分析:根据等差数列的性质可知,项数之和为11的两项之和都相等,即可求出a1+a10的值.解答:解:S10=a1+a2+…+a10=(a1+a10)+(a2+a9)+(a3+a8)+(a4+a8)+(a5+a6)=5(a1+a10)=120所以a1+a10=24故选B点评:考查学生灵活运用等差数列的性质,做题时学生要会把前10项结合变形.6.(4分)在等比数列{a n}中,已知a1=,a5=9,则a3=()A.1 B.3 C.±1D.±3考点:等比数列的通项公式.专题:计算题;等差数列与等比数列.分析:由等比数列的性质可知,,可求解答:解:∵a1=,a5=9,由等比数列的性质可知,=1∴a3=±1当a3=﹣1时,=﹣9不合题意∴a3=1故选A点评:本题主要考查了等比数列的性质的简单应用,属于基础试题7.(4分)若 {a n}是等比数列,a4a7=﹣512,a3+a8=124,且公比q为整数,则a10=()A.256 B.﹣256 C.512 D.﹣512考点:等比数列的通项公式.专题:计算题.分析:由题设条件知a3和a8是方程x2﹣124x﹣512=0的两个实数根,解方程x2﹣124x﹣512=0,得x1=128,x2=﹣4,由公比q为整数,知a3=﹣4,a8=128,由此能够求出a10.解答:解:{a n}是等比数列,∵a4a7=﹣512,a3+a8=124,∴a3a8=﹣512,a3+a8=124,∴a3和a8是方程x2﹣124x﹣512=0的两个实数根,解方程x2﹣124x﹣512=0,得x1=128,x2=﹣4,∵公比q为整数,∴a3=﹣4,a8=128,﹣4q5=128,解得q=﹣2,∴a10=a8•(﹣2)2=128×4=512.故选C.点评:本题考查等比数列的通项公式的求法,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.8.(4分)如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为75°、30°,此时气球的高是60m,则河流的宽度BC等于()A.240(﹣1)m B.180(﹣1)m C.120(﹣1)m D.30(+1)m考点:解三角形的实际应用;余弦定理的应用.专题:解三角形.分析:由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.解答:解:如图,由图可知,∠DAB=15°,∵tan15°=tan(45°﹣30°)==.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120()(m).∴河流的宽度BC等于120()m.故选:C.点评:本题考查了解三角形的实际应用,考查了两角差的正切,训练了直角三角形的解法,是中档题.9.(4分)设S n是等差数列{a n}的前n项和,若,则=()A.B.C.D.考点:等差数列的前n项和.专题:计算题;压轴题.分析:根据等差数列的前n项和公式,用a1和d分别表示出s3与s6,代入中,整理得a1=2d,再代入中化简求值即可.解答:解:设等差数列{a n}的首项为a1,公差为d,由等差数列的求和公式可得且d≠0,∴,故选A.点评:本题主要考查等比数列的求和公式,难度一般.10.(4分)在△ABC中,,三边长a,b,c成等差数列,且ac=6,则b的值是()A.B.C.D.考点:数列与三角函数的综合.专题:综合题.分析:根据三边长a,b,c成等差数列,可得a+c=2b,再利用余弦定理及ac=6,可求b 的值.解答:解:由题意,∵三边长a,b,c成等差数列∴a+c=2b∵∴由余弦定理得b2=a2+c2﹣2accosB=(a+c)2﹣3ac∵ac=6∴b2=6∴故选D.点评:本题以三角形载体,考查余弦定理的运用,考查数列与三角函数的综合,属于中档题.11.(4分)在数列{a n}中,a1=2,2a n+1=2a n+1,n∈N*,则a101的值为()A.49 B.50 C.51 D.52考点:数列递推式.专题:计算题.分析:先利用递推关系得出其为等差数列,再代入等差数列的通项公式即可.解答:解:由2a n+1=2a n+1,得a n+1﹣a n=,故为首项为2,公差为的等差数列,所以a101=a1+100d=2+100×=52.故选 D.点评:本题是对数列递推关系式的考查.做这一类型题时,要注意观察递推关系式,找到其隐含的结论,来解题.12.(4分)已知方程(x2﹣2x+m)(x2﹣2x+n)=0的四个根组成一个首项为的等差数列,则|m﹣n|等于()A.1 B.C.D.考点:等差数列的性质;一元二次不等式的解法.专题:计算题.分析:设4个根分别为x1、x2、x3、x4,进而可知x1+x2和x3+x4的值,进而根据等差数列的性质,当m+n=p+q时,a m+a n=a p+a q.设x1为第一项,x2必为第4项,可得数列,进而求得m和n,则答案可得.解答:解:设4个根分别为x1、x2、x3、x4,则x1+x2=2,x3+x4=2,由等差数列的性质,当m+n=p+q时,a m+a n=a p+a q.设x1为第一项,x2必为第4项,可得数列为,,,,∴m=,n=.∴|m﹣n|=.故选C点评:本题主要考查了等差数列的性质.解题的关键是运用了等差数列当m+n=p+q时,a m+a n=a p+a q的性质.二、填空题:本大题共4小题,每题4分,共16分.13.(4分)如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3,则AB 的长为.考点:余弦定理.专题:综合题.分析:先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解答:解:在△ADC中,AD=5,AC=7,DC=3,由余弦定理得cos∠ADC==﹣,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=5,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=故答案为:.点评:本题主要考查余弦定理和正弦定理的应用,在解决问题的过程中要灵活运用正弦定理和余弦定理.属基础题.14.(4分)数列{a n}的通项公式a n=2n﹣9,(n∈N+)则|a1|+|a2|+|a3|+…+|a10|=52.考点:数列的求和.专题:等差数列与等比数列.分析:根据通项公式判断出数列{a n}是以2为公差、﹣7为首项的等差数列,判断出正负项对应的范围,再化简所求的式子,根据等差数列的前n项和公式求值.解答:解:因为数列{a n}的通项公式a n=2n﹣9,所以数列{a n}是以2为公差、﹣7为首项的等差数列,当n≤4时,a n<0;当n≥5时,a n>0,所以|a1|+|a2|+|a3|+…+|a10|=﹣(a1+a2+a3+a4)+(a5+…+a10)=﹣[4×(﹣7)+]+[6×1+]=52,故答案为:52.点评:本题等差数列的通项公式、前n项和公式,注意判断正负项对应的范围,属于中档题.15.(4分)等比数列{a n}的各项均为正数,且a5a6+a3a8=16,则log2a1+log2a2+…+log2a10的值为15.考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:由条件并利用等比数列的定义和性质可得8=a1a10,把要求的式子化为log2(a1a2…a10)=log2(a1a10)5,运算求出结果.解答:解:等比数列{a n}的各项均为正数,且a5a6+a3a8=16,则a5a6 =a3a8 =8=a1a10.∴log2a1+log2a2+…+l og2a10=log2(a1a2…a10)=log2(a1a10)5=log2215=15.故答案为:15.点评:本题主要考查对数的运算性质,以及等比数列的定义和性质的应用,求出 8=a1a10,是解题的关键,属于中档题.16.(4分)已知S n,T n分别是等差数列{a n},{b n}的前n项和,且=,(n∈N+)则+=.考点:数列的求和.专题:计算题.分析:由等差数列的性质,知+==,由此能够求出结果.解答:解:∵S n,T n分别是等差数列{a n},{b n}的前n项和,且=,(n∈N+),∴+====.故答案为:.点评:本题考查等差数列的通项公式和前n项和公式的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.三、解答题:本大题共4小题,共36分.17.(8分)△ABC的面积是30,内角A,B,C所对边长分别为a,b,c,cosA=.(Ⅰ)求•;(Ⅱ)若c﹣b=1,求a的值.考点:余弦定理的应用;平面向量数量积的运算;同角三角函数间的基本关系.专题:计算题.分析:根据本题所给的条件及所要求的结论可知,需求bc的值,考虑已知△ABC的面积是30,cosA=,所以先求sinA的值,然后根据三角形面积公式得bc的值.第二问中求a 的值,根据第一问中的结论可知,直接利用余弦定理即可.根据同角三角函数关系,由cosA=得sinA的值,再根据△ABC面积公式得bc=156;直接求数量积•.由余弦定理a2=b2+c2﹣2bccosA,代入已知条件c﹣b=1,及bc=156求a的值.解答:解:由cosA=,得sinA==.又sinA=30,∴bc=156.(Ⅰ)•=bccosA=156×=144.(Ⅱ)a2=b2+c2﹣2bccosA=(c﹣b)2+2bc(1﹣cosA)=1+2•156•(1﹣)=25,∴a=5.点评:本题考查同角三角函数的基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力.18.(8分)已知数列{a n}前 n项和为S n,且S n=n2,(1)求{a n}的通项公式(2)设,求数列{b n}的前n项和T n.考点:数列的求和;等差数列的通项公式.专题:计算题.分析:(1)将S n=n2中的n用n﹣1代替仿写出一个新的等式,两个式子相减,即得到函数的通项公式.(2)将a n的值代入b n,将其裂成两项的差,利用裂项求和的方法求出数列{b n}的前 n项和T n.解答:解:(1)∵S n=n2∴S n﹣1=(n﹣1)2两个式子相减得a n=2n﹣1;(2)=(故Tn=+++…+==点评:求数列的前n项和问题,应该先求出数列的通项,根据通项的特点选择合适的求和方法,常见的求和方法有:公式法、倒序相加的方法、错位相减法、裂项相消法、分组法.19.(10分)在△A BC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△ABC的周长为5,求b的长.考点:正弦定理的应用;余弦定理.专题:三角函数的求值;三角函数的图像与性质.分析:(1)利用正弦定理化简等式的右边,然后整理,利用两角和的正弦函数求出的值.(2)利用(1)可知c=2a,结合余弦定理,三角形的周长,即可求出b的值.解答:解:(1)因为所以即:cosAsinB﹣2sinBcosC=2sinCcosB﹣cosBsinA所以sin(A+B)=2sin(B+C),即sinC=2sinA所以=2(2)由(1)可知c=2a…①a+b+c=5…②b2=a2+c2﹣2accosB…③cosB=…④解①②③④可得a=1,b=c=2;所以b=2点评:本题是中档题,考查正弦定理、余弦定理的应用、两角和的三角函数的应用,函数与方程的思想,考查计算能力,常考题型.20.(10分)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列.考点:等比关系的确定;等比数列的通项公式;等比数列的前n项和.专题:等差数列与等比数列.分析:(I)利用成等差数列的三个正数的和等于15可设三个数分别为5﹣d,5,5+d,代入等比数列中可求d,进一步可求数列{b n}的通项公式(II)根据(I)及等比数列的前 n项和公式可求S n,要证数列{S n+}是等比数列⇔即可.解答:解:(I)设成等差数列的三个正数分别为a﹣d,a,a+d依题意,得a﹣d+a+a+d=15,解得a=5所以{b n}中的依次为7﹣d,10,18+d依题意,有(7﹣d)(18+d)=100,解得d=2或d=﹣13(舍去)故{b n}的第3项为5,公比为2由b3=b1•22,即5=4b1,解得所以{b n}是以首项,2为公比的等比数列,通项公式为(II)数列{b n}的前和即,所以,因此{}是以为首项,公比为2的等比数列点评:本题主要考查了等差数列、等比数列及前n和公式等基础知识,同时考查基本运算能力。
2014年山东省高考数学试卷真题及答案(理科)

2014年山东省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i2.(5分)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)3.(5分)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)4.(5分)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根5.(5分)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y36.(5分)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2 B.4 C.2 D.47.(5分)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.188.(5分)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)9.(5分)已知x,y满足约束条件,当目标函数z=ax+by(a>0,b >0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.210.(5分)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0二、填空题(共5小题,每小题5分,满分25分)11.(5分)执行如图程序框图,若输入的x的值为1,则输出的n的值为.12.(5分)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.13.(5分)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE 的体积为V1,P﹣ABC的体积为V2,则=.14.(5分)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为.15.(5分)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是.三、解答题(共6小题,满分75分)16.(12分)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.17.(12分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.18.(12分)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.19.(12分)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.20.(13分)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.21.(14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.2014年山东省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2014•山东)已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4i B.5+4i C.3﹣4i D.3+4i【分析】由条件利用共轭复数的定义求得a、b的值,即可得到(a+bi)2的值.【解答】解:∵a﹣i与2+bi互为共轭复数,则a=2、b=1,∴(a+bi)2=(2+i)2=3+4i,故选:D.【点评】本题主要考查复数的基本概念,两个复数代数形式的乘除法法则的应用,虚数单位i的幂运算性质,属于基础题.2.(5分)(2014•山东)设集合A={x||x﹣1|<2},B={y|y=2x,x∈[0,2]},则A∩B=()A.[0,2]B.(1,3) C.[1,3) D.(1,4)【分析】求出集合A,B的元素,利用集合的基本运算即可得到结论.【解答】解:A={x丨丨x﹣1丨<2}={x丨﹣1<x<3},B={y丨y=2x,x∈[0,2]}={y丨1≤y≤4},则A∩B={x丨1≤y<3},故选:C【点评】本题主要考查集合的基本运算,利用条件求出集合A,B是解决本题的关键.3.(5分)(2014•山东)函数f(x)=的定义域为()A.(0,)B.(2,+∞)C.(0,)∪(2,+∞)D.(0,]∪[2,+∞)【分析】根据函数出来的条件,建立不等式即可求出函数的定义域.【解答】解:要使函数有意义,则,即log2x>1或log2x<﹣1,解得x>2或0<x<,即函数的定义域为(0,)∪(2,+∞),故选:C【点评】本题主要考查函数定义域的求法,根据对数函数的性质是解决本题的关键,比较基础.4.(5分)(2014•山东)用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根【分析】直接利用命题的否定写出假设即可.【解答】解:反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要做的假设是:方程x3+ax+b=0没有实根.故选:A.【点评】本题考查反证法证明问题的步骤,基本知识的考查.5.(5分)(2014•山东)已知实数x,y满足a x<a y(0<a<1),则下列关系式恒成立的是()A.>B.ln(x2+1)>ln(y2+1)C.sinx>siny D.x3>y3【分析】本题主要考查不等式的大小比较,利用函数的单调性的性质是解决本题的关键.【解答】解:∵实数x,y满足a x<a y(0<a<1),∴x>y,A.若x=1,y=﹣1时,满足x>y,但==,故>不成立.B.若x=1,y=﹣1时,满足x>y,但ln(x2+1)=ln(y2+1)=ln2,故ln(x2+1)>ln(y2+1)不成立.C.当x=π,y=0时,满足x>y,此时sinx=sinπ=0,siny=sin0=0,有sinx>siny,但sinx>siny不成立.D.∵函数y=x3为增函数,故当x>y时,x3>y3,恒成立,故选:D.【点评】本题主要考查函数值的大小比较,利用不等式的性质以及函数的单调性是解决本题的关键.6.(5分)(2014•山东)直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为()A.2 B.4 C.2 D.4【分析】先根据题意画出区域,然后依据图形得到积分上限为2,积分下限为0的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:先根据题意画出图形,得到积分上限为2,积分下限为0,曲线y=x3与直线y=4x在第一象限所围成的图形的面积是∫(4x﹣x3)dx,而∫(4x﹣x3)dx=(2x2﹣x4)|=8﹣4=4,∴曲边梯形的面积是4,故选:D.【点评】考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.7.(5分)(2014•山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.18【分析】由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.8.(5分)(2014•山东)已知函数f(x)=丨x﹣2丨+1,g(x)=kx.若方程f(x)=g(x)有两个不相等的实根,则实数k的取值范围是()A.(0,)B.(,1)C.(1,2) D.(2,+∞)【分析】画出函数f(x)、g(x)的图象,由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,数形结合求得k的范围.【解答】解:由题意可得函数f(x)的图象(蓝线)和函数g(x)的图象(红线)有两个交点,如图所示:K OA=,数形结合可得<k<1,故选:B.【点评】本题主要考查函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于基础题.9.(5分)(2014•山东)已知x,y满足约束条件,当目标函数z=ax+by (a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为()A.5 B.4 C.D.2【分析】由约束条件正常可行域,然后求出使目标函数取得最小值的点的坐标,代入目标函数得到2a+b﹣2=0.a2+b2的几何意义为坐标原点到直线2a+b﹣2=0的距离的平方,然后由点到直线的距离公式得答案.【解答】解:由约束条件作可行域如图,联立,解得:A(2,1).化目标函数为直线方程得:(b>0).由图可知,当直线过A点时,直线在y轴上的截距最小,z最小.∴2a+b=2.即2a+b﹣2=0.则a2+b2的最小值为.故选:B.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,考查了数学转化思想方法,训练了点到直线距离公式的应用,是中档题.10.(5分)(2014•山东)已知a>b>0,椭圆C1的方程为+=1,双曲线C2的方程为﹣=1,C1与C2的离心率之积为,则C2的渐近线方程为()A.x±y=0 B.x±y=0 C.x±2y=0 D.2x±y=0【分析】求出椭圆与双曲线的离心率,然后推出ab关系,即可求解双曲线的渐近线方程.【解答】解:a>b>0,椭圆C1的方程为+=1,C1的离心率为:,双曲线C2的方程为﹣=1,C2的离心率为:,∵C1与C2的离心率之积为,∴,∴=,=,C2的渐近线方程为:y=,即x±y=0.故选:A.【点评】本题考查椭圆与双曲线的基本性质,离心率以及渐近线方程的求法,基本知识的考查.二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2014•山东)执行如图程序框图,若输入的x的值为1,则输出的n 的值为3.【分析】计算循环中不等式的值,当不等式的值大于0时,不满足判断框的条件,退出循环,输出结果即可.【解答】解:循环前输入的x的值为1,第1次循环,x2﹣4x+3=0≤0,满足判断框条件,x=2,n=1,x2﹣4x+3=﹣1≤0,满足判断框条件,x=3,n=2,x2﹣4x+3=0≤0满足判断框条件,x=4,n=3,x2﹣4x+3=3>0,不满足判断框条件,输出n:3.故答案为:3.【点评】本题考查循环结构的应用,注意循环的结果的计算,考查计算能力.12.(5分)(2014•山东)若△ABC中,已知•=tanA,当A=时,△ABC的面积为.【分析】由条件利用两个向量的数量积的定义,求得AB•AC=,再根据△ABC 的面积为AB•AC•sinA,计算求得结果.【解答】解:△ABC中,∵•=AB•AC•cosA=tanA,∴当A=时,有AB•AC•=,解得AB•AC=,△ABC的面积为AB•AC•sinA=××=,故答案为:.【点评】本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题.13.(5分)(2014•山东)三棱锥P﹣ABC中,D,E分别为PB,PC的中点,记三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,则=.【分析】画出图形,通过底面面积的比求解棱锥的体积的比.【解答】解:如图,三棱锥P﹣ABC中,D,E分别为PB,PC的中点,三棱锥D﹣ABE的体积为V1,P﹣ABC的体积为V2,∴A到底面PBC的距离不变,底面BDE底面积是PBC面积的=,∴==.故答案为:.【点评】本题考查三棱锥的体积,着重考查了棱锥的底面面积与体积的关系,属于基础题.14.(5分)(2014•山东)若(ax2+)6的展开式中x3项的系数为20,则a2+b2的最小值为2.【分析】利用二项式定理的展开式的通项公式,通过x幂指数为3,求出ab关系式,然后利用基本不等式求解表达式的最小值.【解答】解:(ax2+)6的展开式中x3项的系数为20,==,所以T r+1令12﹣3r=3,∴r=3,,∴ab=1,a2+b2≥2ab=2,当且仅当a=b=1时取等号.a2+b2的最小值为:2.故答案为:2.【点评】本题考查二项式定理的应用,基本不等式的应用,基本知识的考查.15.(5分)(2014•山东)已知函数y=f(x)(x∈R),对函数y=g(x)(x∈R),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈R),y=h(x)满足:对任意x∈R,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是(2,+∞).【分析】根据对称函数的定义,将不等式恒成立转化为直线和圆的位置关系,即可得到结论.【解答】解:根据“对称函数”的定义可知,,即h(x)=6x+2b﹣,若h(x)>g(x)恒成立,则等价为6x+2b﹣>,即3x+b>恒成立,设y1=3x+b,y2=,作出两个函数对应的图象如图,当直线和上半圆相切时,圆心到直线的距离d=,即|b|=2,∴b=2或﹣2,(舍去),即要使h(x)>g(x)恒成立,则b>2,即实数b的取值范围是(2,+∞),故答案为:(2,+∞)【点评】本题主要考查对称函数的定义的理解,以及不等式恒成立的证明,利用直线和圆的位置关系是解决本题的关键.三、解答题(共6小题,满分75分)16.(12分)(2014•山东)已知向量=(m,cos2x),=(sin2x,n),函数f(x)=•,且y=f(x)的图象过点(,)和点(,﹣2).(Ⅰ)求m,n的值;(Ⅱ)将y=f(x)的图象向左平移φ(0<φ<π)个单位后得到函数y=g(x)的图象,若y=g(x)图象上的最高点到点(0,3)的距离的最小值为1,求y=g(x)的单调递增区间.【分析】(Ⅰ)由题意可得函数f(x)=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),解方程组求得m、n的值.(Ⅱ)由(Ⅰ)可得f(x)=2sin(2x+),根据函数y=Asin(ωx+φ)的图象变换规律求得g(x)=2sin(2x+2φ+)的图象,再由函数g(x)的一个最高点在y轴上,求得φ=,可得g(x)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得x 的范围,可得g(x)的增区间.【解答】解:(Ⅰ)由题意可得函数f(x)=•=msin2x+ncos2x,再由y=f(x)的图象过点(,)和点(,﹣2),可得.解得m=,n=1.(Ⅱ)由(Ⅰ)可得f(x)=sin2x+cos2x=2(sin2x+cos2x)=2sin(2x+).将y=f(x)的图象向左平移φ(0<φ<π)个单位后,得到函数g(x)=2sin[2(x+φ)+]=2sin(2x+2φ+)的图象,显然函数g(x)最高点的纵坐标为2.y=g(x)图象上各最高点到点(0,3)的距离的最小值为1,故函数g(x)的一个最高点在y轴上,∴2φ+=2kπ+,k∈Z,结合0<φ<π,可得φ=,故g(x)=2sin(2x+)=2cos2x.令2kπ﹣π≤2x≤2kπ,k∈Z,求得kπ﹣≤x≤kπ,故y=g(x)的单调递增区间是[kπ﹣,kπ],k∈Z.【点评】本题主要考查两个向量的数量积公式,三角恒等变换,函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,体现了转化的数学思想,属于中档题.17.(12分)(2014•山东)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是等腰梯形,∠DAB=60°,AB=2CD=2,M是线段AB的中点.(Ⅰ)求证:C1M∥平面A1ADD1;(Ⅱ)若CD1垂直于平面ABCD且CD1=,求平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【分析】(Ⅰ)连接AD1,易证AMC1D1为平行四边形,利用线面平行的判定定理即可证得C1M∥平面A1ADD1;(Ⅱ)作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,易求C1(﹣1,0,),D1,(0,0,),M(,,0),=(1,1,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),可求得=(0,2,1),而平面ABCD的法向量=(1,0,0),从而可求得平面C1D1M和平面ABCD所成的角(锐角)的余弦值.【解答】解:(Ⅰ)连接AD1,∵ABCD﹣A1B1C1D1为四棱柱,∴CD C1D1,又M为AB的中点,∴AM=1.∴CD∥AM,CD=AM,∴AM C1D1,∴AMC1D1为平行四边形,∴AD1∥MC1,又MC1⊄平面A1ADD1,AD1⊂平面A1ADD1,∴C1M∥平面A1ADD1;(Ⅱ)解法一:∵AB∥A1B1,A1B1∥C1D1,∴面D1C1M与ABC1D1共面,作CN⊥AB,连接D1N,则∠D1NC即为所求二面角,在ABCD中,DC=1,AB=2,∠DAB=60°,∴CN=,在Rt△D1CN中,CD1=,CN=,∴D1N=∴cos∠D1CN===解法二:作CP⊥AB于P,以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系则C1(﹣1,0,),D1,(0,0,),M(,,0),∴=(1,0,0),=(,,﹣),设平面C1D1M的法向量=(x1,y1,z1),则,∴=(0,2,1).显然平面ABCD的法向量=(0,0,1),cos<,>|===,显然二面角为锐角,∴平面C1D1M和平面ABCD所成的角(锐角)的余弦值为.【点评】本题考查用空间向量求平面间的夹角,主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,空间向量的坐标运算,推理论证能力和运算求解能力.18.(12分)(2014•山东)乒乓球台面被网分成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球,规定:回球一次,落点在C上记3分,在D 上记1分,其它情况记0分.对落点在A上的来球,小明回球的落点在C上的概率为,在D上的概率为;对落点在B上的来球,小明回球的落点在C上的概率为,在D上的概率为.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响,求:(Ⅰ)小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的分布列与数学期望.【分析】(Ⅰ)分别求出回球前落点在A上和B上时,回球落点在乙上的概率,进而根据分类分布原理,可得小明两次回球的落点中恰有一次的落点在乙上的概率;(Ⅱ)两次回球结束后,小明得分之和ξ的取值有0,1,2,3,4,6六种情况,求出随机变量ξ的分布列,代入数学期望公式可得其数学期望Eξ.【解答】解:(Ⅰ)小明回球前落点在A上,回球落点在乙上的概率为+=,回球前落点在B上,回球落点在乙上的概率为+=,故小明两次回球的落点中恰有一次的落点在乙上的概率P=×(1﹣)+(1﹣)×=+=.(Ⅱ)ξ的可能取值为0,1,2,3,4,6其中P(ξ=0)=(1﹣)×(1﹣)=;P(ξ=1)=×(1﹣)+(1﹣)×=;P(ξ=2)=×=;P(ξ=3)=×(1﹣)+(1﹣)×=;P(ξ=4)=×+×=;P(ξ=6)=×=;故ξ的分布列为:ξ012346P故ξ的数学期望为E(ξ)=0×+1×+2×+3×+4×+6×=.【点评】本题考查离散型随机变量的分布列,求离散型随机变量的分布列和期望是近年来理科高考必出的一个问题,题目做起来不难,运算量也不大,只要注意解题格式就问题不大.19.(12分)(2014•山东)已知等差数列{a n}的公差为2,前n项和为S n,且S1,S2,S4成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(﹣1)n﹣1,求数列{b n}的前n项和T n.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得b n=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{a n}的公差为2,前n项和为S n,∴S n==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得b n=(﹣1)n﹣1==.∴T n=﹣++…+.当n为偶数时,T n=﹣++…+﹣=1﹣=.当n为奇数时,T n=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题.20.(13分)(2014•山东)设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).(Ⅰ)当k≤0时,求函数f(x)的单调区间;(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.【分析】(Ⅰ)求出导函数,根据导函数的正负性,求出函数的单调区间;(Ⅱ)函数f(x)在(0,2)内存在两个极值点,等价于它的导函数f′(x)在(0,2)内有两个不同的零点.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),∴f′(x)=﹣k(﹣)=(x>0),当k≤0时,kx≤0,∴e x﹣kx>0,令f′(x)=0,则x=2,∴当0<x<2时,f′(x)<0,f(x)单调递减;当x>2时,f′(x)>0,f(x)单调递增,∴f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞).(Ⅱ)由(Ⅰ)知,k≤0时,函数f(x)在(0,2)内单调递减,故f(x)在(0,2)内不存在极值点;当k>0时,设函数g(x)=e x﹣kx,x∈(0,+∞).∵g′(x)=e x﹣k=e x﹣e lnk,当0<k≤1时,当x∈(0,2)时,g′(x)=e x﹣k>0,y=g(x)单调递增,故f(x)在(0,2)内不存在两个极值点;当k>1时,得x∈(0,lnk)时,g′(x)<0,函数y=g(x)单调递减,x∈(lnk,+∞)时,g′(x)>0,函数y=g(x)单调递增,∴函数y=g(x)的最小值为g(lnk)=k(1﹣lnk)函数f(x)在(0,2)内存在两个极值点当且仅当解得:e综上所述,函数f(x)在(0,2)内存在两个极值点时,k的取值范围为(e,)【点评】本题考查了导数在求函数的单调区间,和极值,运用了等价转化思想.是一道导数的综合应用题.属于中档题.21.(14分)(2014•山东)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有丨FA丨=丨FD丨.当点A的横坐标为3时,△ADF为正三角形.(Ⅰ)求C的方程;(Ⅱ)若直线l1∥l,且l1和C有且只有一个公共点E,(ⅰ)证明直线AE过定点,并求出定点坐标;(ⅱ)△ABE的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.【分析】(1)根据抛物线的焦半径公式,结合等边三角形的性质,求出的p值;(2)(ⅰ)设出点A的坐标,求出直线AB的方程,利用直线l1∥l,且l1和C有且只有一个公共点E,求出点E的坐标,写出直线AE的方程,将方程化为点斜式,可求出定点;(ⅱ)利用弦长公式求出弦AB的长度,再求点E到直线AB的距离,得到关于面积的函数关系式,再利用基本不等式求最小值.【解答】解:(1)当点A的横坐标为3时,过点A作AG⊥x轴于G,A(3,),F(,0),,∴.∵△ADF为正三角形,∴.又∵,∴,∴p=2.∴C的方程为y2=4x.当D在焦点F的左侧时,.又|FD|=2|FG|=2(﹣3)=p﹣6,∵△ADF为正三角形,∴3+=p﹣6,解得p=18,∴C的方程为y2=36x.此时点D在x轴负半轴,不成立,舍.∴C的方程为y2=4x.(2)(ⅰ)设A(x1,y1),|FD|=|AF|=x1+1,∴D(x1+2,0),∴k AD=﹣.由直线l1∥l可设直线l1方程为,联立方程,消去x得①由l1和C有且只有一个公共点得△=64+32y1m=0,∴y1m=﹣2,这时方程①的解为,代入得x=m2,∴E(m2,2m).点A的坐标可化为,直线AE方程为y﹣2m=(x﹣m2),即,∴,∴,∴,∴直线AE过定点(1,0);(ⅱ)直线AB的方程为,即.联立方程,消去x得,∴,∴=,由(ⅰ)点E的坐标为,点E到直线AB的距离为:=,∴△ABE的面积=,当且仅当y1=±2时等号成立,∴△ABE的面积最小值为16.【点评】本题考查了抛物线的定义的应用、标准方程求法,切线方程的求法,定点问题与最值问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省枣庄市2014-2015学年高二(下)期末数学试卷(理科)一、选择题,共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2015春•枣庄期末)复数z=i(1+2i)在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:首先化简复数,然后找到对应的点,根据坐标特点确定位置.解答:解:复数z=i(1+2i)=﹣2+i,对应的点为(﹣2,1),在第二象限;故选:B.点评:本题考查了复数的计算以及复数的几何意义;属于基础题.2.(2015春•枣庄期末)设有一个回归方程为=4﹣6x,则变量x增加一个单位时()A.y平均增加4个单位B.y平均减少4个单位C.y平均增加6个单位D.y平均减少6个单位考点:线性回归方程.专题:概率与统计.分析:回归方程=4﹣6x,变量x增加一个单位时,变量平均变化[4﹣6(x+1)]﹣(4﹣6x),及变量平均减少6个单位,得到结果.解答:解:∵﹣6是斜率的估计值,说明x每增加一个单位,y平均减少6个单位.故选:D点评:本题考查线性回归方程的应用,考查线性回归方程自变量变化一个单位,对应的预报值是一个平均变化,这是容易出错的知识点.3.(2011•福建)(e x+2x)dx等于()A. 1 B.e﹣1 C.e D.e2+1考点:定积分.专题:计算题.分析:求出被积函数的原函数,将积分的上限代入减去将下限代入求出差.解答:解:(e x+2x)dx=(e x+x2)|01=e+1﹣1=e故选C.点评:本题考查利用微积分基本定理求定积分值.4.(2015春•枣庄期末)若随机变量X~N(1,4),则P(1<X≤3)=()(附:若随机变量X~N(μ,σ2)(σ>0),则P(μ﹣σ<X≤(μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544.A.0.6826 B.0.3413 C.0.9544 D.0.4772考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:利用P(μ﹣σ<X≤(μ+σ)=0.6826,及正态曲线的对称性,即可得出结论.解答:解:由题意,P(﹣1<X≤3)=0.6826,所以P(1<X≤3)=P(﹣1<X≤3)=0.3413.故选:B.点评:本题考查正态曲线的对称性,考查3σ原则的运用,比较基础.5.(2015春•枣庄期末)化简(x+1)4﹣4(x+1)3+6(x+1)2﹣4(x+1)+1的结果为()A.x4B.(x﹣1)4C.(x+1)4 D.x4﹣1考点:二项式定理的应用.专题:二项式定理.分析:由条件利用二项式定理,可得所给式子的结果.解答:解:(x+1)4﹣4(x+1)3+6(x+1)2﹣4(x+1)+1=[(x+1)﹣1]4=x4,故选:A.点评:本题主要考查二项式定理的应用,属于基础题.6.(2015春•枣庄期末)已知x,y的取值如下表:X 2 3 4 5y 2.2 3.8 5.5 6.5从散点图分析,y与x线性相关,且回归直线方程为=1.46x+,则的值为()A.﹣0.71 B.﹣0.61 C.﹣0.72 D.﹣0.62考点:线性回归方程.专题:概率与统计.分析:求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于的方程,解方程即可解答:解:∵=3.5,=4.5,∴这组数据的样本中心点是(3.5,4.5)把样本中心点代入回归直线方程=1.46x+,∴4.5=1.46×3.5+,∴=﹣0.61.故选:B点评:本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.7.(2015春•枣庄期末)一个盒子中有20个大小形状相同的小球,其中5个红球,5个黄球,10个蓝球,从盒子中任取一球,若它不是红球,则它是蓝球的概率是()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:从盒子中任取一球,若它不是红球,则所有的取法共有15种,而它是蓝球的取法有10种,由此求得它是蓝球的概率.解答:解:从盒子中任取一球,若它不是红球,所有的取法共有15种,而它是蓝球的取法有10种,故它是蓝球的概率P==,故选:C.点评:本题主要考查等可能事件的概率,属于基础题.8.(2015春•枣庄期末)有一个圆锥,其母线长为18cm,要使其体积最大,则该圆锥的高为()A.8cm B.6cm C.8cm D.12cm考点:旋转体(圆柱、圆锥、圆台).专题:函数的性质及应用;空间位置关系与距离.分析:设圆锥的底面半径为r,高为h,表示出圆锥的体积,利用但是判断函数的单调性求出函数的最大值点即可.解答:解:设圆锥的底面半径为r,高为h,则r2+h2=182,即r2=324﹣h2,圆锥的体积为:V=πr2h=π(324h﹣h3).(0<h<18).∴V′=π(324﹣3h2)=π(108﹣h2),令V′=0,则h=6,∵0<h<6时,V′>0,6<h<18时,V′<0,故h=6时,V取最大值,故选:B点评:本题考查函数与方程的综合应用,函数的导数求解函数的最值的基本方法,考查计算能力.9.(5分)(2015春•枣庄期末)4名优秀学生全部保送到3所学校去,每所学校至少去一名学生,则不同的保送方案有()A.12种B.72种C.18种D.36种考点:计数原理的应用.专题:计算题;排列组合.分析:根据题意,分2步进行分析:①、将4名学生分为3组,一组2人、其余2组每组1人,②、将分好的3组进行全排列,对应3所学校,分别求出每一步的情况数目,由分步计数原理计算可得答案.解答:解:根据题意,分2步进行分析:①、将4名学生分为3组,一组2人、其余2组每组1人,有C42=6种情况,②、将分好的3组进行全排列,对应3所学校,有A33=6种情况,则不同的保送方案有6×6=36种,故选:D.点评:本题考查分步计数原理的运用,对于此类问题一般要先分组、再对应,关键是审清题意,明确分组的方法.10.(2015春•枣庄期末)定义在上(0,)的函数f(x)满足2f(x)<f′(x)tan2x,f′(x)是f(x)的导函数,则()A.f()<f()B. f()sinC.f()>f()D.f ()>f()考点:导数的运算.专题:导数的概念及应用.分析:根据商的关系化简2f(x)<f′(x)tan2x,由式子的特点和求导公式、法则构造函数g(x)=,求出g′(x)根据条件判断出符号,得到g(x)的单调性,利用单调性验证出正确答案.解答:解:∵在(0,)上满足2f(x)<f′(x)tan2x,∴2(cos2x)f(x)<f′(x)sin2x,设g(x)=,则g′(x)=>0,∴g(x)在(0,)上单调递增,∴g()>g(),则,化简可得,故选:A.点评:本题考查求导公式和法则,利用导数研究函数的单调性,以及构造函数法,属于中档题.二、填空题,本大题共5小题,每小题5分,共25分11.(2015春•枣庄期末)已知i为虚数单位,若x+1+(x2﹣4)i>0(x∈R),则x的值为2.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:由x+1+(x2﹣4)i>0(x∈R),可得,解得即可.解答:解:∵x+1+(x2﹣4)i>0(x∈R),∴,解得x=2.故答案为:2.点评:本题考查了复数为实数的充要条件、不等式的解法,属于基础题.12.(2015春•枣庄期末)已知随机变量X~B(4,p),若E(X)=2,则D(X)=1.考点:二项分布与n次独立重复试验的模型.专题:计算题;概率与统计.分析:根据随机变量符合二项分布,由二项分布的期望公式,列出方程,解方程,求出p,即可求出答案.解答:解:随机变量X服从二项分布X~B(4,p),E(X)=2,∴4p=2,∴p=∴D(X)=4p(1﹣p)=1,故答案为:1.点评:本题考查二项分布与n次独立重复试验的模型,考查二项分布的方差,本题解题的关键是通过期望公式列方程,本题是一个基础题.13.(2015春•枣庄期末)的值为﹣sin1.考点:极限及其运算.专题:导数的概念及应用.分析:利用导数的定义即可得出.解答:解:=(cosx)′|x=1=﹣sin1,故答案为:﹣sin1.点评:本题考查了导数的定义,属于基础题.14.(2015春•枣庄期末)若正三角形内切圆的半径为r,则该正三角形的周长C(r)=6r,面积S(r)=3r2,发现S′(r)=C(r).相应地,若正四面体内切球的半径为r,则该正四面体的表面积S(r)=24r2.请用类比推理的方法猜测该正四面体的体积V(r)=8r3(写出关于r的表达式).考点:类比推理.专题:综合题;推理和证明.分析:由题意,V′(r)=S(r),求出原函数,即可得出结论.解答:解:由题意,V′(r)=S(r),∵S(r)=24r2,∴V′(r)=24r2.∴V(r)=8r3.故答案为:8r3.点评:本题考查类比推理,考查学生的计算能力,比较基础.15.(2015春•枣庄期末)若n是一个正数值,且n的个位数字,大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如135,148,567等),则能被2整除的“三位递增数”的个数为34(用数字作答).考点:排列、组合的实际应用.专题:计算题;排列组合.分析:根据题意,由“三位递增数”分析可得n的三个数位中不能有0,且个位数字不能为2,而又要求“三位递增数”能被2整除,则其个位数字必须是4、6、8中的一个,则分3种情况讨论:①、当个位数字为4时,②、当个位数字为6时,③、当个位数字为8时;每种情况下只需在比个位数字小的数字中任取2个按从小到大的顺序排在百位、十位,由组合数公式每种情况下的“三位递增数”的个数,由分类计数原理计算可得答案.解答:解:根据题意,对于“三位递增数”,要求n的个位数字,大于十位数字,十位数字大于百位数字,则n的三个数位中不能有0,且个位数字不能为2,而又要求“三位递增数”能被2整除,则其个位数字必须是4、6、8中的一个,则分3种情况讨论:①、当个位数字为4时,只需在1、2、3这三个数字中任选2个,按从小到大的顺序排在百位、十位即可,有C32=3种情况,②、当个位数字为6时,只需在1、2、3、4、5这五个数字中任选2个,按从小到大的顺序排在百位、十位即可,有C52=10种情况,③、当个位数字为8时,只需在1、2、3、4、5、6、7这七个数字中任选2个,按从小到大的顺序排在百位、十位即可,有C72=21种情况,则共有3+10+21=34种情况,即有能被2整除的“三位递增数”的个数为34个;故答案为:34.点评:本题考查排列、组合的运用,解题的关键是认真分析题意,将原问题转化为排列、组合的问题,进而利用排列或组合公式分析.三、解答题,本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(2015春•枣庄期末)已知(3x+)n的展开式中各二项式系数之和为16.(1)求正整数n的值;(2)求展开式中x项的系数.考点:二项式定理的应用;二项式系数的性质.专题:二项式定理.分析:(1)由题意可得展开式中各二项式系数之和2n=16,从而求得n的值.(2)在(3x+)n的展开式的通项公式中,令x的幂指数等于1,求得r的值,可得展开式中x项的系数.解答:解:(1)由题意可得展开式中各二项式系数之和2n=16,∴n=4.(2)(3x+)n的展开式的通项公式为T r+1=•34﹣r•,令4﹣=1,求得r=2,∴展开式中x项的系数为×32=54.点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.17.(2015春•枣庄期末)从某校高三年级抽查100名男同学,如果以身高达到170cm作为达标的标准,对抽取的100名男同学,得到以下列联表:身高达标身高不达标总计积极参加体育锻炼40 75不积极参加体育锻炼10总计100(1)请完成上表;(2)能否在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系(K2的观察值精确到0.001)?参考:K2=P(k2≥k0)0.15 0.10k0 2.072 2.706考点:独立性检验的应用.专题:计算题;概率与统计.分析:(1)根据各项数据的值,可得列联表中的数据;(2)代入公式计算出k值,然后代入离散系数表,比较即可得到答案.解答:解:(1)身高达标身高不达标总计积极参加体育锻炼40 35 75不积极参加体育锻炼10 15 25总计50 50 100(2)K2=≈1.33<2.072故不能在犯错误的概率不超过0.15的前提下认为体育锻炼与身高达标有关系.点评:本题考查了列联表,独立性检验的方法等知识,考查了学生处理数据和运算求解的能力.18.(2015春•枣庄期末)用数学归纳法证明(1+x)n>1+nx,这里x>﹣1且x≠0,n∈N*且n≥2.考点:数学归纳法.专题:推理和证明.分析:(1)验证当n=2时,原不等式成立;(2)假设当n=k时不等式成立,由数学归纳法证明当n=k+1时不等式也成立即可.解答:证明:(1)当n=2时,左边=1+2x+x2,右边=1+2x,∵x2>0,∴左边>右边,原不等式成立;(2)假设当n=k时,不等式成立,即(1+x)k>1+kx,则当n=k+1时,∵x>﹣1,∴1+x>0,在不等式(1+x)k>1+kx两边同乘以1+x得(1+x)k•(1+x)>(1+kx)•(1+x)=1+(k+1)x+kx2>1+(k+1)x,∴(1+x)k+1>1+(k+1)x.即当n=k+1时,不等式也成立.综合(1)(2)可得对一切正整数n,不等式都成立.点评:本题考查数学归纳法证明不等式,属中档题.19.(2015春•枣庄期末)已知甲、乙两名篮球运动员每次投篮命中的概率分别为、p,甲、乙每次投篮是否投中相互之间没有影响,乙投篮3次均未命中的概率为.(1)求p的值;(2)若甲投篮1次、乙投篮2次,两人投篮命中的次数的和记为X,求X的分布列和数学期望E(X)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(1)服从B(3,p)独立重复试验,利用概率公式求解即可.(2)确定X=0,1,2,3,分析得出当x=0时,甲,乙两人投篮命中次数都为0,当x=1时,甲,乙两人投篮命中次数为0,1或1,0;当x=2时,甲,乙两人投篮命中次数为1,1.或0,2;当x=3时,甲,乙两人投篮命中次数为1,2;利用独立事件同时发生的概率求解即可.解答:解:(1)服从B(3,p)独立重复试验根据题意得出:p3(1﹣P)0=,∴p=,(2)X=0,1,2,3当x=0时,甲,乙两人投篮命中次数都为0,P(X=0)=(1﹣)×(1﹣)2=,当x=1时,甲,乙两人投篮命中次数为0,1或1,0.P(X=1)=(1﹣)×××(1﹣)+(1﹣)2==,当x=2时,甲,乙两人投篮命中次数为1,1.或0,2P(X=2)=×××(1﹣)+(1﹣)×()2==,当x=3时,甲,乙两人投篮命中次数为1,2.P(X=3)=()2=,X 0 1 2 3PE(X)=0×+2×=.点评:本题考查了离散型的概率求解,分布列,数学期望,考查了学生的阅读分析问题的能力,计算能力,属于中档题.20.(2015春•枣庄期末)已知函数f(x)=ax3,函数g(x)=x2+bx+c满足g(1)=g(3)=﹣6.(1)当a=﹣时,求函数h(x)=f(x)﹣g(x)在[0,)上的最值;(2)当x∈[﹣2,0]时,f(x)≥g(x)恒成立,求实数a的取值范围附:(x a)′=axα﹣1,这里α∈Q.考点:导数的运算.专题:导数的概念及应用.分析:(1)由g(1)=g(3)=﹣6列出方程组求出b、c的值,代入h(x)化简并求出h′(x),利用导数与函数单调性的关系,求出h′(x)>0和h′(x)<0的解集,即可判断出函数h(x)的单调区间,再求出h(x)的最大值和最小值;(2)由(1)和二次函数的单调性求出g(x)在[﹣2,0]上的单调性和最大值,求出f′(x)根据恒成立判断出a的符号,确定出f(x)的单调性并求出最小值,根据条件列出不等式,求出实数a的取值范围.解答:解:(1)∵g(x)=x2+bx+c满足g(1)=g(3)=﹣6,∴,解得b=﹣4,c=﹣3,∴g(x)=x2﹣4x﹣3,又a=﹣,则h(x)=f(x)﹣g(x)=﹣x2+4x+3,∴h′(x)=﹣2x2﹣2x+4=2(﹣x2﹣x+2)=﹣2(x﹣1)(x+2),∴当x∈[0,1)时,h′(x)>0,当x∈时,h′(x)<0,∴函数h(x)在[0,1)上递增,在递减,则当x=1时,函数h(x)取到最大值是h(1)=,又h(0)=3,h()=2>3,∴函数h(x)在[0,)上的最大值是,最小值是3;(2)由(1)可得,g(x)=x2﹣4x﹣3=(x﹣2)2﹣7,∴g(x)在[﹣2,0]上单调递减,最大值是g(﹣2)=9,又f(x)=ax3,则f′(x)=3ax2,∵当x∈[﹣2,0]时,f(x)≥g(x)恒成立,∴a>0,∴f′(x)=3ax2≥0,则f(x)在[﹣2,0]上单调递增,最小值是f(﹣2)=﹣8a,∵当x∈[﹣2,0]时,f(x)≥g(x)恒成立,∴﹣8a≥9,解得a≤,∴实数a的取值范围是(﹣∞,].点评:本题考查求导公式和法则,利用导数研究函数的单调性、最值,以及恒成立问题的转化,属于中档题.21.(2015春•枣庄期末)设函数f(x)=(ax﹣1)e x+ax+1,其中e为自然对数的底数,a∈R.(1)若曲线y=f(x)在点(0,f(0))处的切线与直线x﹣y+1=0平行,求a的值;(2)若a=,问函数f(x)有无极值点?若有,请求出极值点的个数,若没有,请说明理由;(3)若∀x>0,f(x)≥0,求a的取值范围.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的极值.专题:导数的综合应用.分析:(1)由题意求出f′(x),根据条件和导数的几何意义列出方程求出a的值;(2)把a=代入f(x)求出f′(x),化简后构造函数g(x)=e x(x﹣1)+1,求出g′(x)判断出g(x)的单调性和范围,再判断出f′(x)与0的关系,得到函数的单调性和极值,即可判断出极值点的个数零,列出关于a的不等式求解;(3)求出f′(x)和f(0)的值,设h(x)=f′(x),求出h′(x),对a分类讨论,分别利用导数确定函数的单调性,再求a的取值范围.解答:解:(1)由题意得f(x)=(ax﹣1)e x+ax+1,∴f′(x)=ae x+(ax﹣1)e x+a,∵在点(0,f(0))处的切线与直线x﹣y+1=0平行,∴切线的斜率为f′(0)=a﹣1+a=1,解得a=1;(2)当a=时,f(x)=(x﹣1)e x +x+1,∴f′(x)=e x+(x﹣1)e x +=[e x(x﹣1)+1],设g(x)=e x(x﹣1)+1,则g′(x)=e x(x﹣1)+e x=xe x≥0,∴g(x)在R上递增,且g(0)=0,当x∈(﹣∞,0)时,g(x)<0,即f′(x)<0,当x∈(0,+∞)时,g(x)>0,即f′(x)>0,∴f(x)在(﹣∞,0)上递减,f(x)在(0,+∞)上递增,∴当x=0时,函数f(x)取到极小值f(0)=0,没有极大值,∴方程g(x)=0(即2ax﹣e x=0)有两个实根,∴函数f(x)有1个极值点;(3)f′(x)=(ax+a﹣1)e x+a,f′(0)=2a﹣1,且f(0)=0,设h(x)=f′(x),则h′(x)=(ax+2a﹣1)e x,①当a≤0时,x∈(0,+∞)时,g′(x)<0,∴g(x)在(0,+∞)上为减函数,∵f′(0)=2a﹣1<0,∴f′(x)<0,∴f(x)在(0,+∞)上为减函数,∴f(x)<f(0)=0,不成立;②当0<a <,x∈(0,﹣2)时,h′(x)<0,则h(x)在(0,﹣2)上为减函数,此时f′(x)<0,∴f(x)在(0,)上为减函数,∴f(x)<f(0)=0,不成立;③当a ≥,x∈(0,+∞)时,h′(x)>0,即f′(x)在(0,+∞)上为增函数,∴f′(x)≥f′(0)=0,∴f(x)在(0,+∞)上为增函数,∴f(x)>f(0)=0,不等式成立,综上,a的取值范围是[,+∞).点评:本题考查导数的几何意义,导数与函数的单调性、极值、最值的综合应用,考查了转化思想、分类讨论思想以及分析、解决问题的能力.。