2018版高中数学第一章导数及其应用1.1.3导数的几何意义课件新人教A版选修2_2

合集下载

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二

1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。

高中数学第一章导数及其应用1.1.3导数的几何意义课件新人教A版选修2

高中数学第一章导数及其应用1.1.3导数的几何意义课件新人教A版选修2

在 1.5 s 后,曲线在任何点的切线斜率都小于 0 且切线的倾 斜程度越来越大,即烟花达到最高点后,以越来越大的速度下 落,直到落地.
导数的几何意义是曲线的切线的斜率.反之,在曲线上取确 定的点,作曲线的切线,则可以根据切线斜率的符号及绝对值的 大小来确定曲线的升降情况及升降的快慢程度.
某斜坡在某段内的倾斜程度可以近似地用函数 y=-x2+ 4x32≤x≤2来刻画,试分析该段斜坡的坡度的变化情况.
(-4.9-4.9Δt)=-4.9,
即在 t=2 s 时,烟花正以 4.9 m/s 的瞬时速度下降.
如图,结合导数的几何意义,我们可以看出: 在 t=1.5 s 附近曲线比较平坦,也就是说此时烟花的瞬时速 度几乎为 0,达到最高点并爆裂;
在 0~1.5 s 之间,曲线在任何点的切线斜率都大于 0 且切线 的倾斜程度越来越小,也就是说烟花在达到最高点前,以越来 越小的速度升空;
解析:ΔΔyx=fx0+ΔΔxx-fx0
=x0+Δx3-3x0+ΔΔxx2+1-x30+3x20-1
=(Δx)2+3x0Δx-3Δx+3x20-6x0.
所以
f′(x0)

lim
[(Δx)2

3x0Δx

3Δx

3x
2 0

6x0]

3x
20 -
Δx→0
6x0,于是 3x20-6x0=9,解得 x0=3 或 x0=-1,
解:因为ΔΔyx=[-x+Δx2+4xΔ+xΔx]--x2+4x =-2x·Δx+Δ4xΔx-Δx2=-2x+4-Δx,
所以 y′=lim
Δx→0
ΔΔyx=-2x+432≤x≤2.
由于 y′=-2x+4 在区间32,2上是减函数,且 0≤y′≤1,

(全国通用版)2018版高中数学 第一章 导数及其应用 1.1 变化率与导数 1.1.3 导数的几何意义

(全国通用版)2018版高中数学 第一章 导数及其应用 1.1 变化率与导数 1.1.3 导数的几何意义

知识点二 导函数
思考 已知函数f(x)=x2,分别计算f′(1)与f′(x),它们有什么不同.
f1+Δx-f1
答案 f′(1)=lim Δx→0
Δx
=2.
fx+Δx-fx
f′(x)= lim Δx→0
Δx
=2x,
f′(1)是一个值,而f′(x)是一个函数.
梳理 对于函数y=f(x),当x=x0时,f′(x0)是一个确定的数,则当x变化
时,割线PPn趋近于确定的位置,这个确定位置的直线PT称为曲线y= f(x) 在点P处 的切线.
(2)导数f′(x0)的几何意义:导数f′(x0)表示曲线y=f(x)在点 (x0,f(x0)) 处
fx0+Δx-fx0
的切线的斜率k,即k=
f′(x0) =
lim
Δx→0
Δx
.
(3)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为____y-__f_(_x_0)_=___ __f_′__(x_0_)_(x_-__x_0_) _.
规律与方法
1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k Δl=ixm→0fx0+ΔΔxx-fx0=f′(x0), 物理意义是运动物体在某一时刻的瞬时速度.
2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个 函数,二者有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x =x0处的一个函数值. 3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在 曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不 在切线上,则设出切点坐标(x0,f(x0)),表示出切线方程,然后求出切点.

高中数学 第一章 导数及其应用 1.2 导数的计算 导数概念与运算基础知识总结素材 新人教A版选修2-2

高中数学 第一章 导数及其应用 1.2 导数的计算 导数概念与运算基础知识总结素材 新人教A版选修2-2

导数概念与运算基础知识总结知识清单 1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳):(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim 。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f(x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,则'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。

人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件

人教a版数学【选修2-2】1.1.3《导数的概念》ppt课件

重点:导数的几何意义及曲线的切线方程. 难点:对导数几何意义的理解.
导数的几何意义
新知导学 1.曲线的切线:过曲线y=f(x)上一点P作曲线的割线PQ,当
Q点沿着曲线无限趋近于P时,若割线PQ趋近于某一确定的 直线PT,则这一确定的直线PT称为曲线y=f(x)在点P的 __________.
[解析] (1)将x=2代入曲线C的方程得y=4,
∴切点P(2,4).
y′|x=2=Δlixm→0
ΔΔyx=Δlixm→0
132+Δx3+43-13×23-43 Δx
=Δlixm→0[4+2·Δx+13(Δx)2]=4. ∴k=y′|x=2=4. ∴曲线在点P(2,4)处的切线方程为y-4=4(x-2),即4x-y
)
A.1
B.π4
C.54π
D.-π4
[答案] B
[解析] ∵y=12x2-2,
∴y′= lim Δx→0
12x+Δx2-2-12x2-2 Δx
= lim Δx→0
12ΔxΔ2+x x·Δx=Δlixm→0
x+12Δx=x.
∴y′|x=1=1.
∴点P1,-32处切线的斜率为1,则切线的倾斜角为45°.
数f(x)的导函数__________.
(3)函数y=f(x)在点x0处的导数f ′(x0)就是导函数f ′(x)在点x=x0 处的函数值,f即′(xf)′(x0)=__________.
f′(x)|x=x0
牛刀小试
1.(2014·三峡名校联盟联考)曲线y=x2在点P(1,1)处的切线 方程为( )
A.y=2x
B.y=2x-1
C.y=2x+1 D.y=-2x
[答案] B

1.1.3导数的几何意义课件-人教A版高二数学选修2-2

1.1.3导数的几何意义课件-人教A版高二数学选修2-2

因为 y' =li mx+Δx3-x+Δx2+1-x3-x2+1
Δx →0
Δx
=3x2-2x,
则 y′|x=x0=3x20-2x0=1,解得 x0=1 或 x0=-13,
当 x0=1 时,y0=x30-x20+1=1, 又(x0,y0)在直线 y=x+a 上,
将 x0=1,y0=1 代入得 a=0 矛盾舍去. 当 x0=-13时,y0=(-13)3-(-13)2+1=2237, 则切点坐标为(-13,2237),代入直线 y=x+a 中得 a=3227.
下面来看导数的几何意义:
y
如图,曲线C是函数y=f(x)的
y=f(x) Q
图象,P(x0,y0)是曲线C上的任意 一点,Q(x0+Δx,y0+Δy)为P邻近一 点,PQ为C的割线,PM//x
Pβ Δx
O
Δy
M x
轴,QM//y轴,β为PQ的倾斜角.则 : MP x, MQ y,
请问:y 是割线PQ的什么? y
0-1
=x20+x0-1,
又由导数的几何意义知
k=f′(x0)=Δlix→m0fx0+ΔΔxx-fx0
=li m Δx→0
x
0+Δx
3-2x0+Δx Δx
-x
30-2x
0=3x20-2,
∴x20+x0-1=3x20-2,∴2x20-x0-1=0,
∵x0≠1,∴x0=-12.∴k=x20+x0-1=-54, ∴切线方程为 y-(-1)=-5(x-1),
(5)根据点斜式写出切线方程.
(6)将切线方程化为一般式.
3.要正确区分曲线y=f(x)在点P处的切线,与 过点P的曲线y=f(x)的切线. P为切点 P可以是切点,也可以不是切点

2018-2019学年高中数学 第一章 导数及其应用 1.2.1 几个常用函数的导数优质课件 新人教

2018-2019学年高中数学 第一章 导数及其应用 1.2.1 几个常用函数的导数优质课件 新人教

2.若 y=cos23π,则 y′=( C )
A.-
3 2
B.-12
C.0
D.12
[解析] 常数函数的导数为 0.
• 3.(2018·德阳模拟)已知函数f(x)在R上存在导数 关于f(x),f′(x)的描B 述正确的是( )
• A.若f(x)为奇函数,则f′(x)必为奇函数 • B.若f(x)为周期函数,则f′(x)必为周期函数 • C.若f(x)不为周期函数,则f′(x)必不为周期函数 • D.若f(x)为偶函数,则f′(x)必为偶函数
∴直线 l2 的方程为 y-y0=-2 x0(x-x0).
∵点 P(x0,y0)在曲线 y= x上,∴y0= x0.
在直线 l2 的方程中令 y=0,则- x0=-2 x0(x-x0).
∴x=12+x0,即 xQ=12+x0.
又 xK=x0,∴|KQ|=xQ-xK=12+x0-x0=12.
『规律总结』 解答此题的关键在于求出以曲线上任意一 方程,而切线斜率易由导数求出.
其中正确的有( B )
A.0 个
B.1 个
C.2 个
D.3 个
(2)求下列函数的导数:
①y=-3;②y=x4;③y=2x;④y=log5x;⑤y=cos(π2-x).
பைடு நூலகம்
• [思路分析] 利用常用函数的导数公式求导即可
[解析] (1)①(sinx)′=cosx,①错;②(x53)′=53x23,②错;③ ③错;④(lnx)′=1x,④对,故选 B.
当 P 点不是切点时,设切点为 A(x0,y0),由定义可求得切线 ∵A 在曲线上,∴y0=x30,∴xx300--82=3x20, ∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0,∴x0=-1 或 x0=2(舍 k=3,此时切线方程 y+1=3(x+1), 即 3x-y+2=0. 故经过点 P 的曲线的切线有两条,方程为 12x-y-16=0 和

高中数学第一章导数及其应用1.1.3导数的几何意义课件新人教A版选修

高中数学第一章导数及其应用1.1.3导数的几何意义课件新人教A版选修
导数及其应用
1.1.3 导数的几何意义
导数的定义
一 般 地 , 函 数 y=f (x)在 x x0处 的 瞬 时 变 化 率 是
lim lim y
f (x 0 x) f (x0 )
x x 0
x 0
x
我 们 称 它 为 函 数 y f (x)在 x x0处 的 导 数 ,
记 作 f ( x0 )或 y ' xx0 ,即
并写出切线方程。
2.求在曲线y=x2上切线倾斜角为的点的坐标。
4 合作交流(课本第7页观察部分)
当 点 P nx n,fx nn 1 ,2 ,3 ,4 沿 着 曲 线 fx趋 近 于 点 P x 0 ,fx 0时 , 割 线 P P n 的 变 化 趋 势 是 什 么 ?
y
请看当点Q 沿着曲线逐 渐向点P接 近时,割线 PQ绕着点P 逐渐转动的 情况.
lim lim f ( x0 )
x 0
y x
x 0
f (x0 x) f (x0) x
学习目标:
1.理解函数切线的定义,掌握函数导数的几何意义 2.会用函数导数的几何意义求解曲线在某点处的切线方程
自主学习
阅读教材P7到例2之前的内容,理解导数的几何意义, 并完成下列题目:
1.求曲线y=x21在点2,3处的切线的斜率,
这 个 确 定 位 置 的 直 线 P T 称 为 点 P 处 的 切 线 。 合作交流(课本第7页观察部分)
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
分析:求函数f(x)图象上点P处的切线方程的步骤:先求出函数在点(x0,y0)处的导数f′(x0)(即过点P的切线的斜率),再用点斜式写出切
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Δx→0
=2x0+1, 令 2x0+1=3, ∴x0=1,则 y0=0.故选 B. 答案:B
4.已知 y=f(x)的图象如图,则 f′(xA)与 f′(xB)的大小关系 是( ) A.f′(xA)>f′(xB) B.f′(xA)<f′(xB) C.f′(xA)=f′(xB) D.不能确定
解析:由图可知,曲线在点 A 处的切线的斜率比曲线在点 B 处的切线的斜率小,结合导数的几何意义知 f′(xA)<f′(xB),选 B. 答案:B
5.如图,函数 y=f(x)的图象在点 P 处的切线方程是 y=-x +8,则 f(5)+f′(5)=________.
解析:点(5,f(5))在切线 y=-x+8 上, ∴f(5)=-5+8=3. 且 f′(5)=-1, ∴f(5)+f′(5)=2. 答案:2
课堂探究 类型一 曲线在某点处的切线方程 1 1 [例 1] 求曲线 y=x 在点 M3,3处的切线方程.
跟踪训练 1 线方程.
求曲线 y=f(x)=x3+2Δy=(x+Δx)3+2(x+Δx)-1-x3-2x+1 =(3x2+2)Δx+3x·(Δx)2+(Δx)3. Δy 2 2 = 3 x + 2 + 3 x ·Δ x + (Δ x ) . Δx 当 Δx 无限趋近于 0 时,3x2+2+3x·Δx+(Δx)2 无限趋近于 3x2+2.即 f′(x)=3x2+2,所以 f′(1)=5. 故点 P 处的切线斜率为 k=5. 所以点 P 处的切线方程为 y-2=5(x-1). 即 5x-y-3=0.
1.1.3
导数的几何意义
【课标要求】 1.了解导函数的概念以及导数与割线斜率之间的关系. 2.理解曲线的切线的概念以及导数的几何意义. 3.会求曲线上某点处的切线方程,初步体会以直代曲的思想 方法.
自主学习 |新知预习|
基础认识
1.导数的几何意义 (1)切线的定义.
如图,对于割线 PPn,当点 Pn 趋近于点 P 时,割线 PPn 趋 近于确定的位置,这个确定位置的直线 PT 称为点 P 处的切线.
类型二 利用导数的几何意义求切点坐标 [例 2] 已知曲线 f(x)=x2+6 在点 P 处的切线平行于直线 4x -y-3=0,求点 P 的坐标.
【解析】
设切点 P 坐标为(x0,y0). fx+Δx-fx f′(x)=li m Δx Δx→0 x+Δx2+6-x2+6 =li m Δx Δx→0 =li m (2x+Δx)
跟踪训练 2 本例中的“平行于直线 4x- y - 3 = 0”变为 “垂直于直线 2x-y+5=0”,其他条件不变,求点 P 的坐标.
解析:由本例解析知,点 P(x0,y0)处的切线的斜率为 2x0. 因为切线与直线 2x-y+5=0 垂直, 所以 2x0×2=-1, 1 97 得 x0=-4,y0=16, 1 97 即切点为-4,16.
-1 -1 【解析】 ∵y′=li m =li m 2 = x2 , Δ x Δx→0 Δx→0 x +xΔx 1 1 1 ∴曲线 y=x 在点 M 3,3 处的切线斜率为-9, 1 ∴曲线在点 M3,3处的切线方程为 1 1 y-3=-9(x-3),即 x+9y-6=0.
(2)导数的几何意义. 导数的几何意义: 函数 f(x)在 x=x0 处的导数就是切线 PT 的 fx0+Δx-fx0 斜率 k,则 k=li m =f′(x0). Δ x Δx→0
2.导函数的概念 (1)定义:当 x 变化时,f′(x)便是 x 的一个函数,我们称它 为 f(x)的导函数(简称导数). (2)记法:f′(x)或 y′,即 fx+Δx-fx f′(x)=y′=li m . Δ x → Δx 0
Δx→0
=2x. 所以点 P 在(x0,y0)处的切线的斜率为 2x0. 因为切线与直线 4x-y-3=0 平行, 所以 2x0=4,x0=2,y0=x2 0+6=10,即切点为(2,10).
方法归纳 求满足某条件的曲线的切点坐标的步骤 (1)先设切点坐标(x0,y0); (2)求导函数 f′(x); (3)求切线的斜率 f′(x0); (4)由斜率间的关系列出关于 x0 的方程,解方程求 x0; (5)点(x0,y0)在曲线 f(x)上,将(x0,y0)代入求 y0 得切点坐标.
)
解析: 在点(x0, f(x0))处切线斜率为 0 的直线与 x 轴平行或重 合,故选 B. 答案:B
3.设曲线 y=x2+x-2 在点 M 处的切线斜率为 3,则点 M 的坐标为( ) A.(0,-2) B.(1,0) C.(0,0) D.(1,1)
解析:设点 M(x0,y0), x0+Δx2+x0+Δx-2-x2 0+x0-2 ∴k=li m Δx
1 1 - x+Δx x
方法归纳 求曲线 y=f(x)在点 P 处的切线方程的步骤 (1)求出点 P 的坐标(x0,f(x0)). (2) 求出函数在 x0 处的变化率 f′(x0) ,从而得到曲线在点 P(x0,f(x0))处切线的斜率. (3)利用点斜式写出切线方程. 求曲线过点 P 的切线,点 P 不一定是切点,也不一定在曲 线上,即使点 P 在曲线上也不一定是切点.
|自我尝试| 1.判断下列命题(正确的打“√”,错误的打“×”) (1)函数 f(x)在点 x0 处的导数 f′(x0)与导函数 f′(x)之间是有 区别的.( √ ) (2)函数 f(x)=x2 的导数是 f′(x)=2x.( √ )
2. 设 f′(x0)=0, 则曲线 y=f(x)在点(x0, f(x0))处的切线( A.不存在 B.与 x 轴平行或重合 C.与 x 轴垂直 D.与 x 轴相交
类型三 导数几何意义的实际应用 [例 3] “菊花”烟火是最壮观的烟花之一,制造时通常期 望它在达到最高时爆裂.如果烟花距地面的高度 h(m)与时间 t(s) 之间的关系式为 h(t)=-4.9t2+14.7t+18,求烟花在 t=2 s 时的 瞬时速度,并解释烟花升空后的运动状况.
相关文档
最新文档