白车身结构强度分析报告
白车身强度分析报告

白车身强度分析报告1. 引言白车身是指汽车的主体骨架部分,它承受着车辆的重量和各种外部力的作用。
白车身的强度是保证车辆在运行过程中能够承受各种力和压力而不发生变形或破裂的重要指标。
本文将对白车身的强度进行分析,以提供有关白车身设计和改进的参考。
2. 强度分析方法为了分析白车身的强度,我们可以采用有限元分析(FEA)方法。
有限元分析是一种工程设计和分析的常用方法,通过将结构细分为有限数量的元素,利用数值计算方法对每个元素进行分析,从而得出整个结构的行为。
以下是强度分析的步骤:2.1 几何建模首先,需要建立一个准确的白车身的几何模型。
可以利用计算机辅助设计(CAD)软件或三维扫描技术获得车身的三维模型。
2.2 材料属性定义每种材料都有其特定的力学性质,如弹性模量、屈服强度和断裂韧性等。
在分析中,需要将这些材料属性定义在模型中。
2.3 边界条件设定在分析中,需要考虑车身受到的各种外部力和约束条件。
这些外部力可以是来自引擎、悬挂系统或碰撞等。
同时,还需要考虑车身的支撑条件和连接点的约束。
2.4 网格划分为了对车身进行数值计算,需要将其细分为有限数量的元素。
这些元素可以是三角形、四边形或六边形等。
网格划分的密度和精度对分析结果的准确性有很大影响。
2.5 载荷施加在分析中,需要根据实际情况施加各种载荷,如静载荷、动载荷和碰撞载荷等。
这些载荷将作用于车身结构上,并导致应力和变形的产生。
2.6 求解和结果分析经过以上步骤的准备,可以使用有限元软件对车身进行数值计算。
通过求解有限元方程,可以得到车身在不同载荷下的应力和变形分布。
然后,可以对分析结果进行评估和比较,以了解车身的强度和刚度。
3. 强度改进措施根据强度分析结果,可以提出一些改进措施来增强白车身的强度和刚度。
以下是一些常见的改进措施:3.1 材料优化选择具有更高强度和刚度的材料,如高强度钢或铝合金,可以显著提高白车身的整体强度。
3.2 结构优化通过对车身结构进行优化设计,可以减少材料的使用量,同时提高整体的强度。
白车身刚度强度测定

试验对象准备
试验用白车身可包含对象为白车身本体、风窗玻璃(顶部风窗)、罩盖(及翼子 板)、车门、保险杠及其支架、悬架和副车架。按零部件与总体刚度关系考虑 的需要或者实际情况选择,具体如下。 a.带风窗玻璃(项部风窗),不计其他。 b.不装风窗玻璃、无四门两盖,装有翼子板、悬架(或带副车架)。
扩散硅压力传感器
白车身弯曲刚度试验的结果评估
(1)在弯曲工况时,对于中央1点加载的情况可以比照 简支梁进行核算 。普通乘用车车身弯曲刚度计算见图 4。
白车身弯曲刚度试验的结果评估
白车身弯曲刚度试验的结果评估
式中,EI为普通乘用车车身弯曲刚度,N · m ;F为等 效载荷,N;L 为前后悬挂固定座支撑点纵向距离, m:b、a分别是前后支撑点与载荷的距离,m:Z为 垂直方向弯曲挠度,m;X为计算Z值点到前支撑点与 集中载荷的距离,m。
扩散硅压力传感器
量程:
测量范围:-100KPa~60MPa
基本特性: 抗过载和抗冲击能力强,过压可达量程的数倍,甚至用硬物直接 敲打测量元件也不致使其损坏,且对测量精度毫无影响。 稳定性高,每年优于0.1%满量程,这个技术指标已达到智能 型压 力仪表水平;温度漂移小,由于取消了压力测量元件中的中介液, 因而传感器不仅获得了很高的 测量精度,且受温度梯度影响极小。 精度: 精度等级:0.1级、0.2级、0.5级
陶瓷压阻压力传感器
基本特性:
陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度 范围高达-40~135℃,而且具有测量的高精度、高稳定 性。电气绝缘程度>2kV,输出信号强,长期稳定性好。
精度: 精度等级:0.5级
陶瓷压阻压力传感器
扩散硅压力传感器
工作原理 扩散硅压力变送器通过温度传感器把温度信号变为电信号,再由前置放大器把此 电信号放大滤波,送往CPU的A/D 转换模块进行模拟量到数字量的变换,最后由 CPU进行数据处理并显示及PWM输出。原理框图如下: 被侧介质---〉传感器---〉电子线路---〉输出信号 被测介质的压力直接作用于传感器的陶瓷/扩散硅膜片/上,使膜片产生与介质压 力成正比的微小位移,正常工作状态下,膜片最大位移不大于0.025毫米,电子 线路检测这一位移量后,即把这一位移量转换成对应于这一压力的标准工业测量 信号。超压时膜片直接贴到坚固的陶瓷基体/扩散硅上,由于膜片与基体的间隙 只有0.1毫米,因此过压时膜片的最大位移只能是0.1毫米,所以从结构上保证了 膜片不会产生过大变形,该传感器具有很好的稳定性和高可靠性。
白车身强度分析

白车身强度分析高晓庆廖世辉闫立志陈建华长安汽车股份有限公司汽车工程研究总院白车身强度分析Strength Analysis for Body In White高晓庆廖世辉闫立志陈建华(长安汽车股份有限公司汽车工程研究总院CAE所,重庆,401120)摘要:研发中的试制车辆在道路试验过程中通常会出现开裂等问题。
在设计过程中需关注车身的强度。
CAE通过强度分析模拟路试中极限工况,找出风险区域,提供结构优化方案,提高车辆性能,避免车辆在实际使用中出现开裂的质量问题,保证车辆的正常使用。
本文针对开裂问题进行结构优化。
关键词:白车身;强度; CAEAbstract: Threr are cracks in working process usually .That is the reason why we should pay attention to the BIW strength in design. We can find the reason taht caused crack using CAE simulation. In this paper, we do the cases to solve probelem using strength analysis ofMSC.Nastran in auto structure design.Key words: body in white; strength ;CAE1引言车辆研发需要进行试制车辆的道路试验,重点考察设计车辆的性能。
设计要求在路试中车身不可以出现开裂。
CAE通过车身强度分析可模拟试制车辆在道路试验中的多种极限工况,找出风险区域,提供解决方案。
因此车身的强度分析对于整车的正常使用有非常重要的作用。
本论文主要是针对路试中开裂的问题进行白车身多种极限工况下的强度分析,进行结构优化,解决开裂问题。
2 基于Nastran的汽车车身强度分析(SOL101)本文以某项目开发为例,利用MSC.Nastran分析白车身在颠簸+制动、单轮下掉、转弯、扭转极限工况下的强度,针对开裂区域提供解决方案。
白车身结构强度分析报告

目录1.分析目的 (1)2.使用软件说明 (1)3.模型建立 (1)4 边界条件 (3)5.分析结果 (3)6.结论 (21)1.分析目的白车身结构的静强度不足则会引起构件在使用过程中出现失效。
本报告采用有限元方法对Q11白车身分别进行了满载、1g制动、0.8g转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价Q11白车身的结构设计,并提出相应建议。
2.使用软件说明本次分析采用HyperMesh作前处理,Altair optistruct求解。
HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。
通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。
3.模型建立对车身设计部门提供的Q11白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图3.1所示。
白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳图3.1 Q11白车身CAD以及有限元模型单元类型四边形单元三角形单元单元数目46970015543三角形单元比例 3.4%焊接模拟Rbe单元及实体单元涂胶模拟实体单元单元质量良好强度分析模型质量按整车满载质量计算,其中的白车身附加质量(见表 3.2)用质量点单元CONM2单元模拟。
发动机和变速箱、油箱、备胎、冷凝器、前门总成、滑移门总成、后背门总成、发动机罩总成、前排座椅及乘员等使用RBE刚性单元加载到相应总成的安装处。
白车身结构强度分析报告模版

目录1.分析目的 (1)2.使用软件说明 (1)3.模型建立 (1)4 边界条件 (3)5.分析结果 (3)6.结论 (21)1.分析目的白车身结构的静强度不足则会引起构件在使用过程中出现失效。
本报告采用有限元方法对Q11白车身分别进行了满载、1g制动、0.8g转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价Q11白车身的结构设计,并提出相应建议。
2.使用软件说明本次分析采用HyperMesh作前处理,Altair optistruct求解。
HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。
通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的存分配技术,具有很高的计算精度和效率。
3.模型建立对车身设计部门提供的Q11白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图3.1所示。
白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳图3.1 Q11白车身CAD以及有限元模型单元类型四边形单元三角形单元单元数目46970015543三角形单元比例 3.4%焊接模拟Rbe单元及实体单元涂胶模拟实体单元单元质量良好强度分析模型质量按整车满载质量计算,其中的白车身附加质量(见表 3.2)用质量点单元CONM2单元模拟。
发动机和变速箱、油箱、备胎、冷凝器、前门总成、滑移门总成、后背门总成、发动机罩总成、前排座椅及乘员等使用RBE刚性单元加载到相应总成的安装处。
大客车车身结构强度及刚度分析

大客车车身结构强度及刚度分析作者:斯彩霞杨绪红近年来,随着城市公共交通的不断发展,在经济发达、城市化水平高的大型及特大型城市对大型城市公交客车提出了更高的要求。
对于国内的大客车而言,道路行驶条件较为严峻,通常为B级或C级路面。
客车在高低不平、崎岖起伏的道路上行驶时,整个车身骨架会产生成为车架强度主要问题的反复约束扭转应力。
因大客车车身是由空间骨架、抗弯薄板、壳体和应力蒙皮等构成的空间高次超静定结构。
各杆件结构形状各异,而且杆件之间的连接也是多种多样,骨架受力情况比较复杂,难以用经典的理论方法进行研究。
本文运用有限元方法和电测量技术对某白车身结构进行了研究,并对构件的形状、布置以及板材厚度等影响进行了分析,通过反复模拟计算,设计出满足车身刚度和强度等性能要求的轻量化结构。
1 模型的建立1.1 车身骨架模型(1)整体坐标系的建立,以通过前轴中心线的垂直平面与客车纵向对称面的交线与车架上平面的交点为坐标原点;以客车前进的反方向为X轴的正方向;以从原点垂直向上的直线为Z轴的正方向;由右手定则确定Y轴。
(2)本文应用ANSYS程序及车身结构模型化方面成功的经验,选取某半承载框架式结构的大客车为研究对象,该车整个骨架由矩形钢管以及钢板冲压件通过焊接而成。
建立模型时取各构件之间的连接点、集中载荷的作用点作为有限元计算模型的节点。
根据模型的简化原则,样车车身骨架被划分为1281个长度不等,截面形状各异的单元和783个节点,见图1。
1.2 车身有限元计算时载荷的处理(1)对于车身骨架的自重,在软件前处理程序中输入骨架材料密度和重力加速度,程序便根据所输入的单元截面形状、实常数自动将单元载荷因子的信息计入总载荷,进行计算。
(2)对乘客和座椅质量分别在相应受力点上施力。
对于车窗玻璃质量,考虑窗框质量,取系数k=1.2,以均布载荷的形式加到车身骨架腰梁的相应单元(构件)上。
对于底盘各总成质量,以静力等效的原则按实际位置以集中载荷施加。
白车身强度分析及优化设计

10.16638/ki.1671-7988.2020.10.054白车身强度分析及优化设计刘小会,杨越(安徽江淮汽车集团股份有限公司技术中心,安徽合肥230001)摘要:文章首先阐述了车身强度分析的目的以及CAE分析的方法,然后分析了基于强度考虑的车身优化设计方法。
以某型汽车C柱区域的强度问题为例,进行了原因分析和方案优化,经CAE分析验证,结果满足要求。
关键词:汽车;强度;CAE 分析;应力中图分类号:U467 文献标识码:B 文章编号:1671-7988(2020)10-181-03The Optimal Design of The White Body StrengthLiu Xiaohui, Y ang Y ue(The technology center of the jiang huai automobile, Anhui Hefei 230001)Abstract: This paper first describes the purpose of the body strength analysis and the method of CAE analysis, then analyzes the body design method based on intensity is considered. Finally, this paper takes the strength of the column with a certain type of car C area problem as example, has carried on the analysis of the causes and scheme optimization, the final CAE analysis verify again, can meet the requirements.Keywords: Automobile; Strength; CAE; StressCLC NO.: U467 Document Code: B Article ID: 1671-7988(2020)10-181-03前言汽车的结构强度主要由车身强度来决定。
(整理)k01白车身模态分析报告减重1027.

K01设计开发项目白车身模态分析报告(□初版/☑更改)重庆迪科汽车研究有限公司二〇一五年十月1.数据记录✧初始模型白车身(BIW)✧更改情况减重(最终)2.分析内容白车身自由模态分析。
3.模型简述✧使用软件前处理:Hypermesh;求解器:Radioss✧建模过程网格划分白车身结构可分为五个总成:顶盖、地板、侧围、后围和前围,依次对各总成进行有限元模型的建立,再将其焊接为一整体。
建立白车身有限元模型的步骤包括几何模型分析、几何清理、模型简化、网格划分、单元质量检查、设置材料和单元属性、各部件焊接等。
由于白车身主要是由大的钢板覆盖件组成,其厚度尺寸远远小于其他尺寸,故白车身网格选用PSHELL的壳单元形式。
采用各总成逐个划分、连接,再总装的方式进行整车的有限元建模。
据工程实践和硬件条件,选取有限元网格的大小为8mm。
根据前面所述的几何清理原则,选用8mm的壳单元网格对各总成进行离散化,建立各总成对应的有限元模型如图3.1——图3.5所示:图3.1 车顶总成的有限元模型图3.2侧围总成的有限元模型图3.3后围总成有限元模型图3.4地板的几何及有限元模型图3.5前围的几何及有限元模型白车身各部件连接白车身大部分零部件是薄板冲压件,各零部件之间主要是通过焊接工艺实现连接,本次运用了点焊、缝焊等。
根据所提供的焊点图,在Hypermesh中通过运用spot-weld单元来把各板件焊点位置的节点连接起来,以此来模拟实际的焊点。
焊点材料选用08AL,焊点直径为7mm。
焊接完成后,焊点周围单元的质量可能会变差,通常需要对这些单元进行重新划分。
有限元焊接结果如图3.6所示图3.6 有限元焊接效果图由于工艺和部件性能的要求,在顶盖与顶盖横梁处,运用了粘胶连接。
本次分析采用了软件的粘胶连接来实现这些有限元部件的连接,通过这样的处理能更好的模拟结构的实际性能。
有限元粘接效果如图3.7所示。
图3.7有限元粘胶连接效果图在前围总成中还采用了螺栓连接,这主要是一些不需永久连接、进行更换的部件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
1.分析目的 (1)
2.使用软件说明 (1)
3.模型建立 (1)
4 边界条件 (3)
5.分析结果 (3)
6.结论 (21)
1.分析目的
白车身结构的静强度不足则会引起构件在使用过程中出现失效。
本报告采用有限元方法对**白车身分别进行了满载、 1g制动、0.8g转弯、右前轮抬高150mm、左后轮抬高150mm、右前轮左后轮同时抬高150mm,6种工况的强度分析,观察整车受力状况,找出高应力区,考察其零部件的强度是否满足要求,定性地评价**白车身的结构设计,并提出相应建议。
2.使用软件说明
本次分析采用HyperMesh作前处理,Altair optistruct求解。
HyperMesh是世界领先的、功能强大的CAE应用软件包,也是一个创新、开放的企业级CAE平台,它集成了设计与分析所需的各种工具,具有无与伦比的性能以及高度的开放性、灵活性和友好的用户界面,与多种CAD和CAE软件有良好的接口并具有高效的网格划分功能;Altair Optistruct 是一个综和隐式和显示求解器与一体的大规模有限元计算软件,几乎所有的线性和非线性问题都可以通过其进行求解。
通过Altair Optistruct可以进行任何形状、尺寸、拓扑结构的优化,采用固定的内存分配技术,具有很高的计算精度和效率。
3.模型建立
对车身设计部门提供的**白车身CAD模型进行有限单元离散,CAD模型以及有限元模型如图3.1所示。
白车身所有零部件均采用板壳单元进行离散,并尽量采用四边形板壳单
图3.1 **白车身CAD以及有限元模型
单元类型四边形单元三角形单元
单元数目46970015543
三角形单元比例 3.4%
焊接模拟Rbe单元及实体单元
涂胶模拟实体单元
单元质量良好
强度分析模型质量按整车满载质量计算,其中的白车身附加质量(见表3.2)用质量点单元CONM2单元模拟。
发动机和变速箱、油箱、备胎、冷凝器、前门总成、滑移门总成、后背门总成、发动机罩总成、前排座椅及乘员等使用RBE刚性单元加载到相应总成的安装处。
由于额定载货质心的不可确定性,无法给定具体质心位置,因此本次分析在经验基础上确定质心位置,并将额定载货分布于后地板多处主要受力点处进行模拟。
具体质量点分布情况可参考图3.2。
表3.2 **白车身附加质量及质心
序
部件质心坐标(X,Y,Z),mm 质量,kg 号
1 发动机和变速箱1036.0,-24.0,187.7 130
2 燃油箱1958.9,258.4,54.0 34
3 备胎3525.8,94.8,22.2 12
4 散热器-64.2,0.70,350.4 2.5
5 蓄电池1061.903,-456.199,270.094 10
6 前门总成813,±731,671.3 23/23
7 中门总成1763.3,±733.8,649.7 25/25
8 后背门总成3627.1,0,918.7 27
9 发动机罩总成-66.9,0,787 6.5
10 主、副驾驶座椅及乘员1195,-295/320,616 87.5/87.5
11 二排座椅及乘员质量、质心2048.457,-166.498,589.908 164
12 三排座椅及乘员质量、质心2896.054,0,617.012 243
13 仪表台质量、质心475.8,13.3,813.8 5
14 行李3341.6,0,421 225
15 白车身质量1769.404,-0.7,552.975 309
16 整车满载状态质量参数1858.4,-3.7,497.8 1810
图3.2 **白车身附加质量分布
4 边界条件
以满载状态下计算车身在以下工况下的强度应力。
计算工况包括满载工况(工况1)、制动工况(工况2)、转弯工况(工况3)、右前轮抬高150mm工况(工况4)、左后轮抬高150mm工况(工况5)、右前轮左后轮同时抬高150mm(工况6)。
载荷如表4.1所示。
工况载荷(加速度)
满载-Z向1g 满载
制动-X向1g;-Z向1g 满载
转向-Y向0.8g;-Z向1g 满载
右前轮抬高150mm -Z向1g 满载
左后轮抬高150mm -Z向1g 满载
右前轮左后轮同时抬高150mm -Z向1g 满载
5.分析结果
5.1满载工况:
车身应力
云图
**前轮壳和前地板
**后轮罩
**顶盖和后背门框
**后地板**横梁
**纵梁
5.2制动工况
车身受力
云图
**前轮壳和前地板
**后轮罩
**顶盖和后背门框
**后地板
**横梁
**纵梁
5.3转弯工况
0.8g转弯工况下,车身和主要零部件应力云图如下所示。
车身受力
云图
**前轮壳和前地板
**后轮罩
**顶盖和后背门框
**后地板**横梁
**纵梁
5.4右前轮抬高150mm
车身受力
云图
**前轮壳和前地板
**后轮罩
**顶盖和后背门框
**后地板**横梁**纵梁
5.5左后轮抬高150mm
左后轮抬高150mm工况下,车身和主要零部件应力云图如下所示。
车身受力
云图
**前轮壳
和前地板
**后轮罩
**顶盖和后背门框
**后地板
**横梁
**纵梁
5.6右前轮左后轮同时抬高150mm
车身受力
云图
**前轮壳和前地板
**后轮罩
**顶盖和后背门框
**后地板**横梁
**纵梁
通过以上6中工况的计算,综合**所用材料的屈服强度值(见表5.1),下面列出各种工况下主要零部件的应力值,见表5. 2。
表5.1 **车身所用部分材料及其强度参数
材料名称屈服强度(MPa) 抗拉强度(MPa)
DC01 130-260 ≥270
DC03 120-240 ≥270
DC04 140-210 ≥270
DC06 100-180 ≥250
08F 175 295
20 245 410
表5.2 主要零部件的应力值及其安全系数统计表
零件名满载工况制动工况转弯工况右前轮抬
高150mm
左后轮抬
高150mm
右前轮左
后轮同时
抬高
150mm
前轮壳48.77 201.3 151.0 384.3300.0275.8后轮罩24.25 30.37 42.71 38.6657.3266.07顶盖37.4941.20125.2133.6289.3302.1后地板186.1350.2 307.7188.7204.3201.0横梁112.6211.8 173.4113.3113.5112.3纵梁81.9179.87 99.19105.4138.8119.3
6.结论
①六个典型工况下,白车身绝大部分零部件应力较小;
②一些部件出现应力集中区域,分析结果显示超过材料的屈服极限;
③前轮壳高应力集中区域为前轮壳与前地板连接处附近区域,可以考虑对此附近区域进
行加强;
④后地板高应力集中区域为座椅安装点附近区域,由于座椅及人采用集中质量单元,并
用rbe3单元加载的方法模拟,此处存在模拟不精确产生的虚假应力集中现象;
⑤制动、转向均按路面最大附着系数0.8计算(参见《汽车理论》),在实际汽车行驶中
几乎不会出现这些工况,所以在汽车实际运行时,其强度安全系数会高于仿真分析的安全系数。
⑥如有侵权请联系告知删除,感谢你们的配合!
⑦
⑧
⑨。