Relativistic Kinetic Equation for Induced Compton Scattering of Polarized Radiation

合集下载

[精彩]量子力学英语词汇

[精彩]量子力学英语词汇

1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-partic le system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equati on 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical partic les塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。

CALPHAD软件介绍

CALPHAD软件介绍

Abstract
The phase-field method has become an important and extremely versatile technique for simulating microstructure evolution at the mesoscale. Thanks to the diffuse-interface approach, it allows us to study the evolution of arbitrary complex grain morphologies without any presumption on their shape or mutual distribution. It is also straightforward to account for different thermodynamic driving forces for microstructure evolution, such as bulk and interfacial energy, elastic energy and electric or magnetic energy, and the effect of different transport processes, such as mass diffusion, heat conduction and convection. The purpose of the paper is to give an introduction to the phase-field modeling technique. The concept of diffuse interfaces, the phase-field variables, the thermodynamic driving force for microstructure evolution and the kinetic phase-field equations are introduced. Furthermore, common techniques for parameter determination and numerical solution of the equations are discussed. To show the variety in phase-field models, different model formulations are exploited, depending on which is most common or most illustrative. c 2007 Elsevier Ltd. All rights reserved.

连续介质力学

连续介质力学
3、教学方式方面:
该课程主要通过课堂讲授来进行教学,采用电子课件和板书相结合的方式。值得一提的是,本研究生课程完全独立地完成了大部分电子课件的建设,为进一步提高教学质量打下了基础。
4、教材方面:
本课程教材的选用经过了多次权衡和对比。一本为本系编著的油印教材《张量分析》,该书具有便于学生接受的特点;另外一本是国际著名学者J.N.Reddy主编的连续介质力学,是本领域的经典教材之一。
37
断裂力学、细观力学等
李振环
教授
固体力学
44
微纳米力学
黄敏生
副教授
固体力学
31
微纳米力学
课程负责教师教育经历及学术成就简介:
罗俊:博士、教授、湖北省力学学会理事、工程力学教研室主任。1997年和2000年于上海交通大学获工学学士和固体力学专业硕士学位,2004年获新加坡南洋理工大学博士学位。2003年到2005年在新加坡南洋理工大学从事博士后研究。目前主要从事断裂力学、细观力学、生物固体力学、电子产品冲击动力学等领域的研究工作。先后主持国家自然科学基金、教育部博士点新教师基金、留学回国人员基金、华中科技大学自主创新基金和人才引进基金等项目的研究工作,同时参与国家自然科学基金、教育部博士点基金、新加坡ASTAR基金等多项项目的研究。在国内外重要学术刊物上发表学术论文近30篇,其中SCI收录的有20余篇,发表的论文两次获湖北省自然科学优秀学术论文二等奖。目前是IJSS等9个国际主流期刊和1个国内权威期刊的审稿人。主讲张量分析与连续介质力学、材料力学、工程力学等本科和研究生课程。
5、其它:
在国际化课程建设项目的资助下,课程负责人邀请到了张量分析和连续介质力学领域的著名专家吴茂熙和匡震邦教授来校讲学。该项目的建设对本课程教学内容的编排和教学质量的提高起到了极大的推动作用。

薛定谔方程 英语

薛定谔方程 英语

薛定谔方程英语English: The Schrödinger equation, also known as the Schrödinger wave equation, is a fundamental equation in quantum mechanics that describes how the quantum state of a physical system changes over time. It is named after the Austrian physicist Erwin Schrödinger, who first formulated it in 1926. The equation is a partial differential equation that describes how the wave function of a physical system evolves over time, and it is central to the understanding of quantum mechanics. The Schrödinger eq uation is used to calculate the probability distribution of a particle in a given region of space, and it has been immensely successful in explaining the behavior of particles at the atomic and subatomic levels.中文翻译: 薛定谔方程,也被称为薛定谔波动方程,是量子力学中的基本方程,描述了一个物理系统的量子状态随时间的变化。

它以奥地利物理学家埃尔温·薛定谔的名字命名,他在1926年首次提出了这个方程。

一类非线性偏微分方程的唯一解的证明

一类非线性偏微分方程的唯一解的证明

一类非线性偏微分方程的唯一解的证明一类非线性偏微分方程的唯一解的研究可以追溯到上世纪六十年代,当时有不少研究者投身于此,其中最有名的便是拉内克史凯什(Learning Sanchez)。

他曾提出了一种推广力学方法,该方法具有计算简便、易于理解、能够解决复杂偏微分方程问题的特点,并且在许多具体问题上取得了良好的效果。

之后,史凯什的推广力学方法成为一类非线性偏微分方程唯一解证明的基础。

为了解决一类非线性偏微分方程的唯一解问题,史凯什提出了一个叫做“参数依赖性”的概念,即所求解的非线性偏微分方程应当具有参数依赖性,即通过改变参数对所求解的非线性偏微分方程的结构进行把握。

这一思路有助于解决一类非线性偏微分方程的唯一解问题,但这样的问题也有一定的局限性,即它仅能够解决具有参数依赖性的非线性偏微分方程。

针对一类非线性偏微分方程而言,有两种不同的方法可以证明其唯一解的存在性。

第一种方法是基于史凯什的推广力学方法,只要满足参数依赖性,就可以证明一类非线性偏微分方程的唯一解的存在。

第二种方法则是基于山梨准则(Shanley criterion),它主要利用一类非线性偏微分方程的一些性质,如逐步可求解性、渐近平衡性等,通过山梨准则可以较容易地证明一类非线性偏微分方程的唯一解的存在。

值得一提的是,最近几年,研究人员又提出了一种新的方法,即模型校正技术,这种方法可以用来分析一类非线性偏微分方程的数学模型,优化解的性能,并最终证明该类非线性偏微分方程的唯一解的存在。

以上就是关于一类非线性偏微分方程唯一解的证明的主要思路,目前,研究人员已经取得一定的进展,为解决一类非线性偏微分方程唯一解问题提供了有效的方法。

希望未来研究人员在该领域继续努力,使得唯一解证明更加容易,更有效。

麦克斯韦方程组 英文

麦克斯韦方程组 英文

麦克斯韦方程组英文English: The Maxwell's equations are a set of fundamental equations in classical electromagnetism that describe how electric and magnetic fields interact with each other and with electric charges and currents. They were formulated by the physicist James Clerk Maxwell in the 19th century and played a crucial role in the development of electromagnetic theory. The equations consist of four equations: Gauss's law for electric fields, Gauss's law for magnetic fields, Faraday's law of electromagnetic induction, and Ampère's law with Maxwell's addition. These equations are mainly concerned with the spatial and temporal changes of electric and magnetic fields, and they are usually written in differential form or integral form. In the differential form, the equations express how the fields change at each point in space, while in the integral form, they describe the flux of the fields through closed surfaces or the circulation of the fields along closed paths. The Maxwell's equations have important implications in many areas of physics and engineering, as they govern the behavior of electromagnetic waves, the propagation of signals through transmission lines, the behavior of antennas, the operation of electric motors and generators, andvarious other electromagnetic phenomena. In addition, the Maxwell's equations also played a crucial role in the development of the theory of relativity, as they led to the realization that electric and magnetic fields are two different manifestations of a single electromagnetic field, and they can transform into each other under certain conditions. Overall, the Maxwell's equations are of fundamental importance in understanding the behavior of electric and magnetic fields and their interactions with matter, and they have paved the way for numerous technological advancements and scientific discoveries.中文翻译: 麦克斯韦方程组是经典电磁学中描述电场、磁场与电荷电流相互作用的一组基本方程。

一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程

一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程

应用数学MATHEMATICA APPLICATA2022,35(3):511-523一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程杨怡,方钟波(中国海洋大学数学科学学院,山东青岛266100)摘要:本文研究一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程齐次Dirichlet初边值问题解的适定性及定性性质.借助于正则解的适定性并结合稠密性理论导出局部弱解的适定性,且利用修正能量泛函技巧,建立当p<γ时整体适定性.同时,利用反证技巧,证明当p>γ时解的有限时刻爆破现象.关键词:半线性波动方程;基尔霍夫型弱阻尼;对数非线性;整体适定性;爆破中图分类号:O175.29AMS(2010)主题分类:35L20;35A01;35B44文献标识码:A文章编号:1001-9847(2022)03-0511-131.引言我们考虑一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程u tt−∆u−σ(∥∇u∥22)|u t|γ−2u t=|u|p−2u log|u|,(x,t)∈Ω×(0,+∞),(1.1)给出齐次Dirichlet边界条件和初始条件u(x,t)=0,(x,t)∈∂Ω×(0,+∞),(1.2)u(x,0)=u0(x),u t(x,0)=u1(x),x∈Ω,(1.3)其中Ω⊂R N(N≥1)为具有光滑边界∂Ω的有界区域,基尔霍夫型阻尼系数σ,参数p和γ满足(H1)非局部阻尼系数σ∈C1([0,+∞)),对任意s∈[0,+∞),存在正常数b使得σ(s)≥b;;若N=1,2,则2<γ,p<+∞.(H2)参数γ,p满足:若N≥3,则2<γ,p<2N−2N−2我们的模型(1.1)出现于弹性力学理论,量子力学理论等.比如,在一维和二维空间中,具有常数阻尼系数(σ(∥∇u∥2)≡1)的模型(1.1)分别表示服从于粘性效应的均匀弦的横向振动2)=1))的非局部弱阻尼和均匀杆的纵向振动.特别是,当γ=2时,不为常数系数(σ(∥∇u∥22)u t模拟了作用在物体上的摩擦机制,该机制取决于u自身平均值.[1]同时,在量子场项σ(∥∇u∥22理论中,对数非线性项出现在膨胀宇宙学以及超对称场理论中.本文中,我们的目的在于分析在模型(1.1)-(1.3)中基尔霍夫型弱阻尼项σ(∥∇u∥2)|u t|γ−2u t2和对数非线性项|u|p−2u log|u|之间的相互作用与竞争关系对解的适定性及定性性质的影响.为了陈述研究动机,我们回顾此类问题的研究背景.实际上,具有常数系数阻尼项和乘幂型源项的如下半线性波动方程已被许多学者广泛关注且已有许多进展.[2−3]u tt−∆u+g(u t)=|u|p−2u.(1.4)∗收稿日期:2021-06-01基金项目:山东省自然科学基金面上项目(ZR2019MA072);中央高校基本科研基金(201964008)作者简介:杨怡,女,汉族,山东人,研究方向:偏微分方程.通讯作者:方钟波.512应用数学2022比如,Georgiev和Todorova[2]研究了方程(1.4)中g(u t)=a|u t|γ−2u t情形且在齐次Dirichlet边界条件下,证明了问题解的整体存在性及有限时刻爆破现象.之后,文[3]给出了具有任意负初始能量及正初始能量解的爆破现象.关于具有基尔霍夫阻尼系数(σ(∥∇u∥22)=1))的问题的研究方面,大部分集中于基尔霍夫型拟线性波动方程及四阶波动方程解的长时间动力行为,而很少有文献研究爆破现象.比如, Jorge和Narciso[4]在研究如下可扩展梁方程时首次提出了基尔霍夫型阻尼系数u tt+∆2u−κϕ(∥∇u∥22)∆u+σ(∥∇u∥22)g(u t)+f(u)=h(x),其中g(u t)≈|u t|γu t.他们在Dirichlet边界条件和铰接边界条件下建立了强解的适定性并给出了解的长时间动力行为.最近,ZHANG等[5]研究了具有退化非局部非线性阻尼项和乘幂型源项的半线性波动方程Dirichlet初边值问题u tt−∆u+σ(∥∇u∥22)|u t|γ−2u t=|u|p−2u,且利用位势井理论得到了能量的衰减估计和有限时刻解的爆破现象.另一方面,关于具有常数阻尼系数和对数非线性项的半线性波动方程研究也有一些新的进展,其主要难点在于对数非线性源项的单调性和符号无法确定.Cazenave和Haraux[6]首次考虑了具有对数非线性项的Schrˆo dinger方程及Klein-Gordon方程Cauchy问题解的存在性与唯一性.之后,ZHANG等[7]考虑了具有弱阻尼的模型Dirichlet初边值问题并得到了问题解的整体存在性及能量的指数衰减估计值.最近,我们在文[8]中研究了具有对数源和强阻尼的半线性波动方程Dirichlet初边值问题u tt−∆u−∆u t=u log|u|2,(1.5)且利用位势井理论和对数Sobolev不等式,得到了问题的整体可解性及能量衰减和无限爆破结果.文[9]的作者将方程(1.5)推广到具有更一般形式对数非线性项情形.LIAN和XU[10]考虑了具有强弱阻尼和对数源项的非线性波动方程Dirichlet初边值问题u tt−∆u−ω∆u t+µu t=u ln|u|,他们利用压缩映射原理,位势井方法及微分不等式技巧,证明了问题的可解性,能量衰减及解的无限爆破现象.此外,关于具有时滞阻尼的板模型问题的最新进展,我们阅读了文[11].综上所述,关于基尔霍夫型弱阻尼项和对数非线性项竞争的半线性波动方程初边值问题(1.1)-(1.3)的研究尚未得到完善.本文中,我们考虑与文[12]中相同意思下的正则解与弱解且有以下主要难点:1)当p>2时无法利用对数-Sobolev不等式来估计对数所在的项;2)局部弱解的适定性无法直接导出,需考虑更强的解的结果;3)分析两个非线性项之间的竞争关系,即基尔霍夫型非线性弱阻尼项与对数非线性项时遇到难度.为了克服这些困难,启发于文[2,13]的思想,从问题正则解的局部适定性出发,利用稠密性理论和紧性理论导出局部弱解的适定性.并通过修正能量泛函技巧将局部解推广到了整体解.同时利用反证技巧,得到具有负初始能量解的有限时刻爆破现象.本文的剩余部分结构如下:第二节,我们将证明问题(1.1)-(1.3)弱解的局部适定性;第三节中,给出当p<γ时弱解的整体适定性.关于p>γ时具有负初始能量解在有限时刻发生爆破的结论,在第四节中导出.整文中,C及C i(i=1,···)在不同表达式中可能表示不同的正常数.同时,记空间H:= {u∈H10(Ω):∆u∈L2(Ω)},且赋予内积(u,v)H:=(∇u,∇v)+(∆u,∆v),其中(·,·)表示L2(Ω)的内积.此外,H1(Ω)中的模取为∥∇u∥2.2.弱解的局部适定性本节中,我们将先证明问题(1.1)-(1.3)正则解的存在唯一性,之后,通过稠密性理论得到局部弱解的存在唯一性.注意到,得到弱解局部适定性之前,先证明正则解的原因在于:证明基尔霍夫型非局部阻尼项的收敛性时,需用正则解的一些结果.第3期杨怡等:一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程513定理2.1假设(H1),(H2)成立且令(u 0,u 1)∈H 10(Ω)×L 2(Ω),则对某些T >0,问题(1.1)-(1.3)存在唯一弱解并满足正则性u ∈C ([0,T ];H 10(Ω))∩C 1([0,T ];L 2(Ω)),u t ∈L γ(0,T ;L γ(Ω)),u tt ∈L 2(0,T ;H −1(Ω)).证我们先分四个步骤来证明问题(1.1)-(1.3)正则解u ∈L ∞([0,T ];H 10(Ω)),u t ∈L ∞(0,T ;H 10(Ω))∩L γ(0,T ;L γ(Ω)),u tt ∈L ∞(0,T ;L 2(Ω))的存在唯一性结论.第一步逼近问题.令{ωj }∞j =1为H 的一组完备正交基且定义有限维子空间V m :=span {ω1,ω2,···,ωm },m ∈N .我们定义近似解u m (x,t ):=∑mj =1b jm (t )ωj (x ),其中u m (x,t )为如下Cauchy 问题的解:∫Ωu mtt ωj d x +∫Ω∇u m ∇ωj d x +σ(∥∇u m ∥22)∫Ω|u mt |γ−2u mt ωj d x =∫Ω|u m |p −2u m log |u m |ωj d x,(2.1)u m (0)=u 0m =m ∑j =1b jm (0)ωj →u 0,在H 中,(2.2)u mt (0)=u 1m =m ∑j =1b jmt (0)ωj →u 1,在L 2(γ−1)(Ω)∩H 10(Ω)中.(2.3)由ODE 标准理论可知,上述Cauchy 问题(2.1)-(2.3)在区间[0,T m ),T m >0上存在唯一解b jm (t ),我们将通过接下来的先验估计将解延伸到[0,T ].第二步先验估计.第一先验估计对(2.1)两边乘b ′jm (t ),关于j =1,2,···,m 求和并关于时间变量从0到t ≤T m 积分可得¯E m (t )+∫t0σ(∥∇u m (s )∥22)∥u ms (s )∥γγd s =¯E m (0)+∫t 0∫Ω|u m (s )|p −2u m (s )log (|u m (s )|)u ms (s )d x d s,(2.4)其中¯Em (t )=12[∥u mt ∥22+∥∇u m ∥22].且由(2.2)(2.3)可得¯Em (0)<+∞.另一方面,经过简单计算,我们易得log |u (x )|<|u (x )|ααa.e.x ∈Ω,∀α>0.(2.5)结合Young 不等式可以导出∫Ω|u m |p −2u m u mt log |u m |d x ≤1α∫Ω|u m |p +α−1u mt d x,≤14ε1α2γ−1γ∫Ω|u m |(p +α−1)γγ−1d x +ε1γ∫Ω|u mt |γd x.(2.6)根据p 和γ的选择,我们可取α满足:若N ≥3,则0<α<2N(γ−1)(N −2)γ+1−p ;若N =1,2,则0<α<+∞.且应用嵌入H 10(Ω) →L γ(p +α−1)γ−1(Ω),(2.6)可改写为∫Ω|u m |p −2u m u mt log |u m |d x ≤C (p +α−1)γγ−1s (γ−1)4ε1α2γ∥∇u m ∥(p +α−1)γγ−12+ε1γ∥u mt ∥γγ,(2.7)其中C s 为最优嵌入常数.将(2.7)代入(2.4),应用(H1)我们导出12[∥u mt ∥22+∥∇u m ∥22]+(b −ε1γ)∫t 0∥u ms (s )∥γγd s514应用数学2022≤¯E m (0)+C (p +α−1)γγ−1s (γ−1)4ε1α2γ∫t∥∇u m (s )∥(p +α−1)γγ−12d s,≤¯Em (0)+C (p +α−1)γγ−1s(γ−1)4ε1α2γ2β∫t0¯E βm (s )d s,其中β=(p +α−1)γγ−1>1.选取ε1使得ε1γ<b,则由非线性Gronwall 不等式可得:存在正常数L 1使得∥u mt ∥22+∥∇u m ∥22+∫t∥u ms (s )∥γγd s ≤L 1,∀m ∈N ,∀t ∈[0,T ].(2.8)因此,由(2.8)我们得到{u m }在L ∞(0,T ;H 10(Ω))中有界,(2.9){u mt }在L ∞(0,T ;L 2(Ω))中有界,(2.10){u mt }在L γ(0,T ;L γ(Ω))中有界.(2.11)第二先验估计首先我们估计∥u mtt (0)∥22.在(2.1)中,取t =0且ωj =u mtt (0),我们有∥u mtt (0)∥22+σ(∥∇u m (0)∥22)∫Ω|u mt (0)|γ−2u mt (0)u mtt (0)d x −∫Ωu mtt (0)∆u m (0)d x =∫Ω|u m (0)|p −2u m (0)u mtt (0)log |u m (0)|d x.(2.12)利用H¨o lder 不等式,我们可得∥u mtt (0)∥22≤[∥∆u 0m ∥22+σ(∥∇u 0m ∥22)∥u 1m ∥2(γ−1)+∥∇u 0m ∥2]∥u mtt (0)∥2,再由σ的连续性及(2.2),(2.3)可得∥u mtt (0)∥2≤L 2,∀m ∈N ,(2.13)其中L 2为与m 无关的常数.紧接着,将(2.1)两边关于时间t 求导并乘b ′′jm (t ),关于j 求和并关于时间变量从0到t ≤T m 积分可得E m (t )+1γ−1∫t 0σ(∥∇u m (s )∥22)∫Ω|u ms (s )|γ−2|u mss |2d x = E m (0)−2∫t 0σ′(∥∇u m (s )∥22)∫Ω∇u m (s )×∇u ms (s )d x ∫Ω|u mt |γ−2u mt u mss (s )d x d s +∫t 0∫Ω|u m (s )|p −3u m (s )u ms (s )u mss (s )d x d s+(p −1)∫t 0∫Ω|u m (s )|p −3u m (s )u ms (s )u mss (s )log |u m (s )|d x d s,(2.14)其中 E m (t ):=12[∥u mtt ∥22+∥∇u mt ∥22].且由(2.2)和(2.3)可得 E m (0)<+∞.结合(2.9)和(H1),(2.14)可重写为E m (t )+1γ−1b ∫t 0∫Ω|u ms |γ−2|u mss |2d x d s ≤ E m (0)+C 1∫t 0∫Ω∇u m (s )×∇u ms (s )d x3d s +I 1+I 2+I 3,(2.15)其中I 1:=−2∫tσ′(∥∇u m (s )∥22)∫Ω∇u m (s )∇u ms (s )d x∫Ω|u ms |γ−2u ms u mss (s )d x d s,第3期杨怡等:一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程515I 2:=∫t 0∫Ω|u m (s )|p −3u m (s )u ms (s )u mss (s )d x d s,I 3:=(p −1)∫t 0∫Ω|u m (s )|p −3u m (s )u ms (s )u mss (s )log |u m (s )|d x d s.下面,我们估计I 1∼I 3.首先,由H¨o lder 不等式可得∫t 0∫Ω|u ms |γ−2u ms u mss (s )d x d s ≤∫t 0∫Ω|u ms |γ−1|u mss |d x d s≤(∫t 0∥u ms (s )∥γγd s)12(∫t 0∫Ω|u ms (s )|γ−2|u mss (s )|2d x d s )12.(2.16)利用Young 不等式,σ′的连续性及(2.9),我们可以估计I 1如下:I 1≤L 121C 3(∫t 0∫Ω|u ms (s )|γ−2|u mss (s )|2d x d s)12∫t 0∫Ω∇u m (s )∇u ms (s )d x d s ≤L 121C 3ε1∫t 0∫Ω|u ms (s )|γ−2|u mss (s )|2d x d s +L 121C 3ε1∫t 0(∫Ω∇u m (s )∇u ms (s )d x )2d s.(2.17)对I 2应用p −22(p −1)+12(p −1)+12=1的H¨o lder 不等式,嵌入H 10(Ω) →L 2(p −1)(Ω)及(2.9),我们导出I 2≤∫t 0(∫Ω|u m (s )|2(p −1)d x )p −22(p −1)(∫Ω|u ms (s )|2(p −1)d x )12(p −1)(∫Ω|u mss (s )|2d x )12d s≤∫t 0∥∇u m (s )∥p −22∥∇u ms (s )∥2∥u mss (s )∥2d s ≤L p −221∫t∥∇u ms (s )∥2∥u mss (s )∥2d s≤12L p −221∫t∥∇u ms (s )∥22+∥u mss (s )∥22d s.(2.18)接下来,应用(2.5)并选取适当α满足:若N ≥3,则α<2N −2N −2−p ;若N =1,2,则0<α<+∞.我们可类似于(2.18)的过程来导出I 3≤p −12αL p +α−221∫t 0∥∇u ms (s )∥22+∥u mss (s )∥22d s.(2.19)将(2.17)-(2.19)代入(2.15)并整理得E m (t )+(b γ−1−L 121C 3ε1)∫t 0∫Ω|u ms (s )|γ−2|u mss (s )|2d x d s≤12L p −221∫t 0∥∇u ms (s )∥22+∥u mss (s )∥22d s + E m (0)+12(p −1αL p +α−221+L p −221)∫t 0∥∇u ms (s )∥22d s +L 121C 3ε1∫t 0(∫Ω∇u m (s )∇u ms (s )d x )2d s +12(p −1αL p +α−221+L p −221)∫t 0∥u mss (s )∥22d s.选取ε1<b (γ−1)L 121C 3,则存在正常数C 1,C 2使得 E m (t )≤C 1+C 2∫t 0E m d s.由非线性Gronwall 不等式可得,存在正常数L 3使得∥u mtt ∥22+∥∇u mt ∥22≤L 3,∀m ∈N ,(2.20)且知{u mt }在L ∞(0,T ;H 10(Ω))中有界,(2.21){u mtt }在L ∞(0,T ;L 2(Ω))中有界.(2.22)516应用数学2022第三步取极限.结合(2.9)-(2.11)即(2.21)-(2.22),存在函数u 及{u m }∞m =1的子序列(方便起见,仍记为{u m }∞m =1)使得u m W ∗−→u,在L ∞(0,T ;H 10(Ω))中,(2.23)u mt W ∗−→u t ,在L ∞(0,T ;H 10(Ω))中,(2.24)u mt W −→u t ,在L γ(0,T ;L γ(Ω))中,(2.25)u mtt W ∗−→u tt ,在L ∞(0,T ;L 2(Ω))中.(2.26)由(2.23),(2.24)及Aubin-Lions 引理可得u m −→u,在C ([0,T ];H 10(Ω))中.(2.27)因此u m −→u,a.e.(x,t )∈Ω×(0,T ].这表明σ(∥∇u m ∥22)−→σ(∥∇u ∥22),a.e.(x,t )∈Ω×(0,T ],|u m |p −2u m log |u m |−→|u |p −2u log |u |,a.e.(x,t )∈Ω×(0,T ].另一方面,由(2.5),(2.9)及嵌入不等式,我们导出∫Ω |u m |p −2u m log |u m | 2d x ≤∫{x ∈Ω||u m |≤1}|u m |p −2u m log |u m | 2d x +1µ∫{x ∈Ω||u m |>1}|u m |2(p −1+µ)d x,≤[1(p −1)e ]2|Ω|+1µ∥u m ∥2(p −1+µ)2(p −1+µ),≤[1(p −1)e ]2|Ω|+21µB 2(p −1+µ)µ−1∥∇u m ∥2(p −1+µ)2≤C 5,(2.28)其中选择合适的正数µ使其满足:若N ≥3,则0<µ<N2(N −2)+1−p ;若N =1,2,则0<µ<+∞,且对0<x <1,应用不等式|x p −1log x |≤(e (p −1))−1,我们得到|u m |p −2u m log |u m |W ∗−→|u |p −2u log |u |,在L ∞(0,T ;L 2(Ω))中.另外,由H ×(L 2(γ−1)(Ω)∩H 10(Ω))在H 10(Ω)×L 2(Ω)中的稠密性可知(u 0m ,u 1m )→(u 0,u 1),在H 10(Ω))×L 2(Ω)中.在(2.1)-(2.3)中取极限可得u tt −∆u +σ(∥∇u ∥22)g (u t )=|u |p −2u log |u |,在u tt ∈L ∞(0,T ;L 2(Ω))中,u (x,0)=u 0(x ),u t (x,0)=u 1(x ).第四步唯一性.令u 1和u 2是问题(1.1)-(1.3)的解并记z :=u 1−u 2,则由(1.1)我们可知z 满足如下的方程:∫Ωz tt ωj d x +∫Ω∇z ∇ωj d x +∫Ωσ(∥∇u 1∥22)|u 1t |γ−2u 1t ωj d x −∫Ωσ(∥∇u 2∥22)|u 2t |γ−2u 2t ωj d x =∫Ω|u 1|p −2u 1log |u 1|ωj d x −∫Ω|u 2|p −2u 2log |u 2|ωj d x,(2.29)用z t 代替上式中的ωj ,我们得到12d d t (∥z t ∥22+∥∇z ∥22)+I 4=I 5+I 6,(2.30)其中I 4=σ(∥∇u 1∥22)∫Ω(|u 1t |γ−2u 1t −|u 2t |γ−2u 2t )z t d x,I 5=−(σ(∥∇u 1∥22)−σ(∥∇u 2∥22))·∫Ω|u 2t |γ−2u 2t z t d x,I 6=∫Ω(|u 1|p −2u 1log |u 1|−|u 2|p −2u 2log |u 2|)z t d x.下面,我们将估计I 4∼I 6.首先,应用平均值定理,存在θ∈(0,1),我们导出(|u 1t |γ−2u 1t −|u 2t |γ−2u 2t )z t =∫1(θu 1t +(1−θ)u 2t )γ−2z t d θz t第3期杨怡等:一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程517=1γ−1(|θu 1t +(1−θ)u 2t |γ−2(θu 1t +(1−θ)u 2t )) 10z t =1γ−1(12(|u 1t |γ−2+|u 2t |γ−2)(u 1t −u 2t )+12(|u 1t |γ−2−|u 2t |γ−2)(u 1t +u 2t ))z t =12(γ−1)((|u 1t |γ−2+|u 2t |γ−2)|z t |2+(|u 1t |γ−2−|u 2t |γ−2)(|u 1t |2−|u 2t |2))≥12(γ−1)((|u 1t |γ−2+|u 2t |γ−2)|z t |2.结合(H1),我们可以对I 4估计如下:I 4≥b 2(γ−1)∫Ω(|u 1t |γ−2+|u 2t |γ−2)|z 2t |d x.(2.31)然后,利用(H1),H¨o lder 不等式和Young 不等式,我们可估计I 5如下:I 5=−(σ(∥∇u 1∥22)−σ(∥∇u 2∥22))∫Ω|u 2t |γ−2u 2t z t d x≤C ∥∇z ∥2∫Ω|u 2t |z t d x +C ∥∇z ∥2∫Ω|u 2t |γ−1z t d x ≤C ∥u 2t ∥2∥∇z ∥2∥z t ∥2+C ε2∥u 2t ∥γγ∥∇z ∥22+ε2∫Ω(|u 1t |γ−2+|u 2t |γ−2)|z t |2d x.(2.32)对I 6,用H¨o lder 不等式得到I 6≤∥G (u 1)−G (u 2)∥2∥z t ∥2,(2.33)其中G (s )=|s |p −2s log |s |.再由平均值定理及(2.5),存在ξ∈(0,1)使得|G (u 1)−G (u 2)|=|G ′(ξu 1+(1−ξ)u 2)z |≤[1+(p −1)log |ξu 1+(1−ξ)u 2|]|ξu 1+(1−ξ)u 2|p −2|z |≤|ξu 1+(1−ξ)u 2|p −2|z |+(p −1)α3|ξu 1+(1−ξ)u 2|p +α3−2|z |≤|u 1+u 2|p −2|z |+(p −1)α3|u 1+u 2|p +α3−2|z |,(2.34)其中选取合适的α3使其满足:若N ≥3,则0<α3≤p −22(p −1)(2N N −2+2(1−p ));若N =1,2,则0<α3<+∞.对(2.34)右边的两项利用H¨o lder 不等式和Sobolev 嵌入不等式,我们分别导出∫Ω|u 1+u 2|2(p −2)|z |2d x ≤C 1(∫Ω|u 1+u 2|2(p −1)d x )p −2p −1(∫Ω|z |2(p −1)d x)1p −1≤C 1[∥u 1∥2(p −1)2(p −1)+∥u 2∥2(p −1)2(p −1)]p−2p −1∥z ∥22(p −1)≤C 2[∥∇u 1∥2(p −1)2+∥∇u 2∥2(p −1)2]p −2p −1∥∇z ∥22(2.35)∫Ω|u 1+u 2|2(p +α3−2)|z |2d x ≤C 3[∥∇u 1∥p ∗2+∥∇u 2∥p ∗2]p −2p −1∥∇z ∥22,(2.36)其中p ∗=2(p −1)+2α3(p −1)p −2.现在,我们把(2.34)-(2.36)代入到(2.33)并整理得到I 6≤C 4{[∥∇u 1∥2(p −1)2+∥∇u 2∥2(p −1)2]p −2p −1+[∥∇u 1∥p ∗2+∥∇u 2∥p ∗2]p −2p −1}(∥∇z ∥22+∥z t ∥22).(2.37)选取ε2<b2(γ−1),将(2.31),(2.32)和(2.37)代入到(2.30)且结合(2.23)得到d d t(∥∇z ∥22+∥z t ∥22)≤C (1+∥u 2t ∥γγ)(∥∇z ∥22+∥z t ∥22).518应用数学2022对上式从0到t 上积分,应用(2.25)和Gronwall 不等式,可知存在正常数L 4使得∥z t ∥22+∥∇z ∥22≤L 4(∥z 1∥22+∥∇z 0∥22),∀m ∈N ,且∥z t ∥22=∥∇z ∥22=0,即可得唯一性的结论.下面,我们应用稠密性理论,从局部正则解u ∈L ∞([0,T ];H 10(Ω)),u t ∈L ∞(0,T ;H 10(Ω))∩L γ(0,T ;L γ(Ω)),u tt ∈L ∞(0,T ;L 2(Ω))的适定性中导出局部解u ∈C ([0,T ];H 10(Ω))∩C 1([0,T ];L 2(Ω)),u t ∈L γ(0,T ;L γ(Ω)),u tt ∈L 2(0,T ;H −1(Ω))的适定性.由H 在H 10(Ω)中稠密,L 2(γ−1)(Ω)∩H 10(Ω)在L 2(Ω)中稠密及条件(u 0,u 1)∈H 10(Ω)×L 2(Ω)易知,存在{u 0η}⊂H 及{u 1η}⊂(L2(γ−1)(Ω)∩H 10(Ω))使得u 0η→u 0,在H 10(Ω)中,u 1η→u 1,在L 2(Ω)中,当η→+∞.(2.38)且对任意η∈N ,问题(1.1)-(1.3)存在以{u 0η,u 1η}为初值的正则解,且满足u η∈L ∞(0,T ;H 10(Ω)),u ηtt ∈L ∞(0,T ;L 2(Ω)),u ηt ∈L ∞(0,T ;H 10(Ω))∩L γ(0,T ;L γ(Ω)).类似于前述的正则解的存在性证明中第一先验估计的导出过程,并令η2≥η1是两个任取的自然数且记z η:=u η2−u η1则易知∥z ηt ∥22+∥∇z η∥22≤C 1(∥z 1η∥22+∥∇z 0η∥22),∀0≤t <+∞.结合(2.38),我们得到z η(0)=u η1(0)−u η2(0)→0,在H 10(Ω)中,z ηt (0)=u tη1(0)−u tη2(0)→0,在L 2(Ω)中,∥z ηt ∥22+∥∇z η∥22→0,且u η→u,在C 0([0,T ];H 10(Ω))中,(2.39)u ηt →u t ,在C 0([0,T ];L 2(Ω))中.(2.40)因此,以上收敛性并结合(2.28)允许我们对问题(1.1)-(1.3)取极限,且得到弱解满足u tt −∆u +σ(∥∇u ∥22)g (u t )=|u |p −2u log |u |,在u tt ∈L 2(0,T ;H −1(Ω)),u (0)=u 0,u t (0)=u 1,x ∈Ω,此外,关于局部弱解的唯一性需要用正则化方法,且可由Visik-Ladyzenskaya 的标准方法来得到.[14]14−16综上所述,我们得到问题(1.1)-(1.3)存在唯一的局部弱解.注2.1局部弱解的唯一性不可用常见的唯一性证明方法的原因在于:对偶积⟨H −1(Ω),L 2(Ω)⟩没有意义.3.弱解的整体适定性本节中,当p <γ时,结合连续性原理,我们得到与第一节中的局部弱解相同正则性的意思下问题(1.1)-(1.3)整体适定性.我们先给出下面引理,将在证明中起到关键作用.引理3.1假设(H1),(H2)成立,对任意的u ∈H 10(Ω)\{0},存在只依赖于Ω的正常数C >1使得∥u ∥s p ≤C (∥∇u ∥22+∥u ∥pp ),其中2≤s ≤p.证当∥u ∥p ≤1时,由Sobolev 嵌入定理可知∥u ∥s p ≤∥u ∥2p ≤C ∥∇u ∥22.同时,当∥u ∥p >1时,我们有∥u ∥s p ≤∥u ∥pp .由此可知,引理3.1成立.定理3.1假设(H1),(H2)成立,p <γ,令(u 0,u 1)∈H 10(Ω)×L 2(Ω),则问题(1.1)-(1.3)存在唯一整体弱解并满足正则性u ∈C ([0,+∞);H 10(Ω))∩C 1([0,+∞);L 2(Ω)),u t ∈L γ(0,+∞;L γ(Ω)),u tt ∈L 2(0,+∞;H −1(Ω)).第3期杨怡等:一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程519证已证明了弱解的局部存在性定理,因此可证明连续性原理(见文[15]).这表明,解的生命跨度T max =∞或T max 有限且满足lim t →T −max ∥u t ∥22+∥∇u ∥22=+∞.然而,用通常的能量泛函E (t ):=12∥u t ∥22+12∥∇u ∥22−1p ∫Ω|u |p log |u |d x +1p 2∥u ∥pp ,来分析对数源项和基尔霍夫型非线性弱阻尼项之间的相互作用遇到困难,故我们引入如下修正能量泛函:F (t )=12∥u t ∥22+12∥∇u ∥22−1p ∫Ω|u |p log |u |d x +1p 2∥u ∥p p +2pµ∥u ∥p +µp +µ,其中µ满足适当条件且我们只需证明F (t )满足指数形式有界,即通常的能量E (t )得到控制.由简单计算,易知E (t )关于时间变量单调递减,即d d tE (t )=−σ(∥∇u ∥22)∥u t ∥γγ≤0.对F (t )直接求导,结合上式,(H1)和Young 不等式,我们导出F ′(t )=−σ(∥∇u ∥22)∥u t ∥γγ+2(p +µ)pµ∫Ω|u |p +µ−2uu t d x ≤−σ(∥∇u ∥22)∥u t ∥γγ+2(p +µ)pµ∫Ω|u |p +µ−1u t d x ≤−b ∥u t ∥γγ+2(p +µ)pµC ε3∥u ∥p +µp +µ+2(p +µ)pµε3∥u t ∥p +µp +µ,其中ε3>0且C ε3是只依赖于ε3的正常数.注意到p <γ,我们可选µ足够小使得p +µ≤γ.因此,可用嵌入L γ →L p +µ可得F ′(t )≤−b ∥u t ∥γγ+2(p +µ)pµC ε3∥u ∥p +µp +µ+C 1ε3∥u t ∥p +µγ,且F ′(t )≤C 2+2(p +µ)pµC ε3∥u ∥p +µp +µ.(3.1)事实上,当∥u t ∥γγ>1时,我们可选取ε3足够小使得−b ∥u t ∥γγ+C 1ε3∥u t ∥p +µγ≤0且有F ′(t )≤2(p +µ)pµC ε3∥u ∥p +µp +µ;当∥u t ∥γγ≤1时,我们易知F ′(t )≤2(p +µ)pµC ε3∥u ∥p +µp +µ+C 1ε3.由此可知(3.1)显然成立.另一方面,由(2.5)可得如下F (t )的估计:F (t )=12∥u t ∥22+12∥∇u ∥22−1p ∫Ω|u |p log |u |d x +1p 2∥u ∥p p+2pµ∥u ∥p +µp +µ>12∥u t ∥22+12∥∇u ∥22+1p 2∥u ∥p p +1pµ∥u ∥p +µp +µ>1pµ∥u ∥p +µp +µ.(3.2)结合(3.1)和(3.2),可得F ′(t )≤C 2+C 4F (t ),其中C 4=2(p +µ)C ε3pµ且F (t )≤(F (0)+C 2C 4)e C 4t .上式与连续性原理结合,即可得整体解的存在性.事实上,我们只需证明:如果T max <+∞,则lim t →T −max ∥u t ∥22+∥∇u ∥22=+∞就可.利用反证技巧,假设上述结论不成立,即T max <+∞且lim t →T −max ∥u t ∥22+∥∇u ∥22<+∞.则存在一个序列{t n ,n =1,2,···}和一个正常数K 使得当n →+∞时t n →T max 且满足∥u t ∥22+∥∇u ∥22<K,n =1,2,···.由前述证明可知,对每一个n ∈N ,初值为u (x,t n )的问题(1.1)-(1.3)的解在[t n ,t n +T ∗]上存在且唯一,其中正常数T ∗依赖于K 但不依赖于n ∈N .因此,对足够大的n ∈N ,我们可得到T max <t n +T ∗.这与T max 是解的最大存在时间矛盾.定理3.1证毕.4.爆破现象本节中,我们利用反证技巧得到,当p >γ时问题(1.1)-(1.3)具有负初始能量的解在有限时刻发生爆破.引理4.1[11]若满足∫Ω|u |plog |u |d x >0.则存在一个只依赖于Ω的正常数C 使得下式成立∥u ∥p p ≤C [∫Ω|u |plog |u |d x +∥∇u ∥22],∀u ∈L p (Ω).(4.1)520应用数学2022现在,我们陈述有限时刻发生爆破结论.定理4.1假设(H1),(H2)成立,p >γ且令(u 0,u 1)∈H 10(Ω)×L 2(Ω),E (0)<0,则问题(1.1)-(1.3)的解在有限时刻发生爆破,即T max <+∞.证利用反证技巧,假设问题(1.1)-(1.3)解整体存在,即T max =+∞.我们引入辅助函数K (t ):=∥u (t )∥22,H (t ):=−E (t ),∀0≤t ≤T 1,其中正常数T 1将在之后给出.且由E (t )的单调性可知:H ′(t )=−E ′(t )≥0,且H (t )≥H (0)=−E (0)>0,∀0≤t ≤T 1.(4.2)我们记G (t ):=∫Ωσ(∥∇u ∥22)u |u t |γ−2u t d x,∀0≤t ≤T 1.现在,由问题解的整体存在性假设知∥∇u ∥22≤C 1,∥u t ∥22≤C 0,∀0≤t ≤T 1.(4.3)并由条件(H1)中σ(s )的连续性,我们有σ(∥∇u ∥22)≤max 0≤∥∇u ∥22≤C 1σ(∥∇u ∥22):=σ1,∀0≤t ≤T 1.(4.4)结合H¨o lder 不等式和Young 不等式,我们导出|G (t )|= ∫Ωσ(∥∇u ∥22)u |u t |γ−2u t d x =σ(∥∇u ∥22)∫Ω|u ||u t |γ−1d x ≤(σ(∥∇u ∥22)∥u t ∥γγη−γγ−1)γ−1γ(σ(∥∇u ∥22)1γ∥u ∥γη)≤γ−1γη−γγ−1σ(∥∇u ∥22)∥u t ∥γγ+1γηγσ(∥∇u ∥22)∥u ∥γγ≤γ−1γη−γ−1γH ′(t )+1γηγ∥u ∥γγσ1,(4.5)其中正常数η将在之后给出.接下来,对K (t )直接求导得到K ′(t )=2∫Ωuu t d x,K ′′(t )=2dd t ∫Ωuu t d x,且令y (t ):=H 1−ξ+γ2γ(t )+ε4∫Ωuu t d x,其中正常数ε4将在之后给出.由p >γ知,我们可取正常数ξ满足γ(p −γ)p 2<ξ<p −γp<1.(4.6)且对y (t )直接求导,并利用(4.5)式,我们有y ′(t )=1−ξ+γ2γH 1−ξ−γ2γH ′(t )+12K ′′(t )ε4=1−ξ+γ2γH 1−ξ−γ2γH ′(t )+ε4∥u t ∥22−ε4∥∇u ∥22+ε4∫Ω|u |p log |u |d x −ε4σ(∥∇u ∥22)∫Ωu |u t |γ−2u t d x,≥[1−ξ+γ2γH 1−ξ−γ2γ(t )−ε4γ−1γηγ−1γ]H ′(t )+ε4∥u t ∥22−ε4∥∇u ∥22+ε4∫Ω|u |plog |u |d x −ε4ηγγσ1∥u ∥γγ.进一步,引入0<a <1,并将上式改写为y ′(t )≥[1−ξ+γ2γ−ε4γ−1γη−γ−1γH −1+ξ+γ2γ(t )]H 1−ξ−γ2γ(t )H ′(t )+ε4p (1−a )H (t )+ε4p (1−a )+22∥u t ∥22+ε4p (1−a )−22∥∇u ∥22+aε4∫Ω|u |plog |u |d x +(1−a )p ∥u ∥p p −ε41γηγH −ξ(t )H ξ(t )σ1∥u ∥γγ.(4.7)第3期杨怡等:一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程521现在,我们断言∫Ω|u |plog |u |d x >0.事实上,由能量函数E (t )的定义和单调性,我们有1p ∫Ω|u |p log |u |d x =12∥u t ∥22+12∥∇u ∥22+1p2∥u ∥pp −E (t )≥12∥u t ∥22+12∥∇u ∥22+1p2∥u ∥p p −E (0)≥0,(4.8)且引理4.1的条件成立.下面,我们估计(4.7)式右端最后一项.由引理4.1可得∥u ∥γγ≤C 2[(∫Ω|u |plog |u |d x )γp +∥∇u ∥2γp 2],并结合(4.2)和Young 不等式,我们导出H ξ(t )∥u ∥γγ≤(1p ∫Ω|u |plog |u |d x )ξ∥u ∥γγ≤C 3[(∫Ω|u |p log |u |d x )γp +ξ+(∫Ω|u |plog |u |d x )ξ∥∇u ∥2γp2]≤C 4[(∫Ω|u |p log |u |d x )γp +ξ+∥∇u ∥22+(∫Ω|u |p log |u |d x )ξpp −γ].(4.9)由(4.6),知γp<γ+pξp≤1,γp <ξp p −γ≤1,且利用(4.9)可得H ξ(t )∥u ∥γγ≤C 5(∫Ω|u |plog |u |d x +∥∇u ∥22).将上式代入到(4.7)并整理得到y ′(t )≥[1−ξ+γ2γ−ε4γ−1γη−γ−1γH −1+ξ+γ2γ(t )]H 1−ξ−γ2γ(t )H ′(t )+ε4p (1−a )H (t )+ε4p (1−a )+22∥u t ∥22+ε4(p (1−a )−22−1γηγH −ξ(t )σ1C 5)∥∇u ∥22+ε4(a −1γηγH −ξ(t )σ1C 5)∫Ω|u |plog |u |d x +ε4(1−a )p ∥u ∥p p .(4.10)此外,应用(2.5),(4.3),H (t )的定义和嵌入不等式,我们得到H (t )=−12∥u t ∥22−12∥∇u ∥22+1p ∫Ω|u |p log |u |d x −1p2∥u ∥p p≤1p 1δ∥u ∥p +δp +δ≤1p 1δB p +δδ∥∇u ∥p +δ2≤1p 1δB p +δδC p +δ21.且上式与(4.2)和(4.10)结合,我们导出y ′(t )≥ 1−ξ+γ2γ−ε4γ−1γη−γ−1γ(1p 1δB p +δδC p +δ21)−1+ξ+γ2γ H 1−ξ−γ2γ(t )H ′(t )+ε4p (1−a )H (t )+ε4p (1−a )+22∥u t ∥22+ε4(p (1−a )−22−1γηγH −ξ(0)σ1C 5)∥∇u ∥22+ε4(a −1γηγH −ξ(0)σ1C 5)∫Ω|u |plog |u |d x +ε4(1−a )p ∥u ∥p p .(4.11)可选取充分小的正数a 使得p (1−a )−22>0,并可选取η充分小,使得p (1−a )−22−1γηγH −ξ(0)σ1C 5>0,且a −1γηγH −ξ(0)σ1C 5>0.固定η和a 之后,我们现在可选取充分小的ε4使得1−ξ+γ2γ−ε4γ−1γη−γ−1γ(1p 1δB p +δδC p +δ21)−1+ξ+γ2γ>0,522应用数学2022(−E(0))1−ξ+γ2γ−C2ε4C1−12ε4C0≥0,(4.12)且H1−ξ+γ2γ(0)+ε4∫Ωu0u1d x>0.于是,由(4.11)知,存在正常数C6使得y′(t)≥C6[H(t)+∥u t∥22+∥∇u∥22+∥u∥p p]≥0,(4.13)且知y(t)在(0,T max)上单调递增且满足y(t)=H1−ξ+γ2γ(t)+ε4K′(t)≥H 1−ξ+γ2γ(0)+ε4K′(0)>0.再由(4.6)及p>γ知,0<ξ<1且令r:=γ1−ξ+γ2,则根据不等式:|a+b|r≤2r−1(|a|r+|b|r),r≥1,以及Young不等式,我们得到y r(t)≤2r−1(H(t)+ε4∥u(t)∥r2∥u t(t)∥r2)≤C7(H(t)+∥u(t)∥11−ξγ2+∥u t(t)∥22).(4.14)进一步,我们估计(4.14)右端第二项.由(4.6)知,1−ξ>γp,且应用如下不等式:xτ≤(1+1m)(m+x),x≥0,0≤τ≤1,m>0,并取x=∥u(t)∥p2,τ=γ(1−ξ)p<1,m=H(0),得到∥u(t)∥γ1−ξ2≤(1+1H(0))(H(0)+∥u(t)∥p2)≤C8(H(t)+∥u(t)∥pp).(4.15)将(4.15)代入到(4.14)中,我们有y r(t)≤C9(H(t)+∥u(t)∥pp+∥u t(t)∥22),由上式与(4.13),我们得到y′(t)≥C10y r(t),∀0≤t≤T1.(4.16)且对上式关于时间变量从0到t积分,我们有y(t)≥(y(0)1−r−C10(r−1)t)−1r−1,0≤t≤T1.我们可取T1≥T∗=y(0)1−rC10(r−1),且由r:=γ1−ξ+γ2>1和y(0)>0知,在[0,T1]上存在有限时刻T2≤T∗使得y(t)满足limt→T−2y(t)→+∞.(4.17)但是,我们断言:存在正常数使得C11≤y(t)≤C12,∀0≤t≤T1.(4.18)事实上,由(4.3),(4.4),Poincare不等式,H¨o lder不等式和Young不等式和嵌入不等式,我们导出y(t)=H1−ξ+γ2γ(t)+ε4∫Ωuu t d x=(∫tσ(∥∇u∥22)∥uτ∥γγdτ−E(u(0)))1−ξ+γ2γ+ε4∫Ωuu t d x≤(∫tσ1∥uτ∥22dτ−E(u(0)))1−ξ+γ2γ+C2ε4∥∇u∥22+12ε4∥u t∥22≤C11,且y(t)≥(∫tb∥uτ∥γγdτ−E(u(0)))1−ξ+γ2γ−C2ε4∥∇u∥22−12ε4∥u t∥22,≥(−E(0))1−ξ+γ2γ−12ε4C0−C2ε4C1≥C12>0,其中最后一式由(4.12)得到.显然,(4.17)与(4.18)产生矛盾且我们知T max<+∞.定理4.1证毕.参考文献:[1]LANGE H,PERLA M G.Rates of decay of a nonlocal beam equation[J].Differ.Integral Equ.,1997,10(6):1075-1092.第3期杨怡等:一类具有基尔霍夫型弱阻尼和对数非线性项的半线性波动方程523[2]GEORGIEV V,TODOROVA G.Existence of solutions of the wave equation with nonlinear dampingand source terms[J].J.Differential Equations,1994,109:295-308.[3]MESSAOUD S A.Blow up in a nonlinearly damped wave equation[J].Math.Nachr.,2001,231:105-111.[4]JORGE SILVA M A,NARCISO V.Long-time dynamics for a class of extensible beams with nonlocalnonlinear damping[J].Evol.Equ.Control Theory,2017,6(3):437-470.[5]ZHANG H W,LI D H,HU Q Y.Asymptotic stability and blow-up for the wave equation withdegenerate nonlocal nonlinear damping and source terms[J/OL].Appl.Anal.,2020[2021-06-01].DOI:10.1080/00036811.2020.1836354.[6]CAZENAVE T,HARAUX A.´Equations d’´e volution avec non-lin´e arit´e logarithmiqu[J].Ann.Fac.Sci.Toulouse Math.,1980,2(1):21-51.[7]ZHANG H W,LIU G W,HU Q Y.Exponential decay of energy for a logarithmic wave equation[J].J.Partial Diff.Equ.,2015,28(3):269-277.[8]MA L W,FANG Z B.Energy decay estimates and infinite blow-up phenomena for a strongly dampedsemilinear wave equation with logarithmic nonlinear source[J].Math.Method App.Sci.,2018,41(7): 2639-2653.[9]DI H F,SHANG Z F,SONG Z F.Initial boundary value problem for a class of strongly dampedsemilinear wave equations with logarithmic nonlinearity[J].Nonlinear Anal.Real World Appl.,2020, 51:102968.[10]LIAN W,XU R Z.Global well-posedness of nonlinear wave equation with weak and strong damp-ingterms and logarithmic source term[J].Nonlinear Anal.,2020,9:613-632.[11]KAFINI M,MESSAOUDI S.Local existence and blow up of solutions to a logarithmic nonlinearwave equation with delay[J].Appl.Anal.,2020,99(3):530-547.[12]LIU L,WANG M.Global existence and blow-up of solutions for some hyperbolic systems withdamping and source terms[J].Nonlinear Anal.,2006,64(1):69-91.[13]MESSAOUDI S A.Blow up and global existence in a nonlinear viscoelastic wave equation[J].Math.Nachr.,2003,260:58-66.[14]LIONS J L.Quelques Méthodes de R´e solution des Probl´e mes aux Limites Non Lin´eéairess[M].Paris:Dunod,1969.[15]SEGAL I.Nonlinear semigroups[J].Ann.Math.,1963,78:339-364.On a Semilinear Wave Equation with Kirchhoff-type Weak Damping Terms and Logarithmic NonlinearityYANG Yi,FANG Zhongbo(School of Mathematical Sciences,Ocean University of China,Qingdao266100,China) Abstract:Under homogeneous Dirichlet conditions,the well-posedness and qualitative propertiesfor a semilinear wave equation with Kirchhoff-type weak damping terms and logarithmic nonlinearity were considered.By improving the well-posedness for regular solution and density argument,a local existence of weak solutions was proved.Meanwhile,based on modified energy technique and contradiction argument, a global existence with p<γand thefinite time blow-up with p>γwere also established.Key words:Semilinear wave equation;Kirchhoff-type weak damping;Logarithmic nonlinearity; Global existence;Blow-up。

紧束缚近似公式(一)

紧束缚近似公式(一)

紧束缚近似公式(一)紧束缚近似公式紧束缚近似(Tight Binding Approximation)是一种描述电子在固体晶格中行为的数学方法。

在紧束缚近似中,电子波函数被表示为原子轨道的线性组合,通过求解薛定谔方程来得到能级结构和电子态密度等信息。

Bloch定理Bloch定理表明在理想晶体中,电子波函数可以表示为平面波和某个周期函数的乘积形式。

根据Bloch定理,电子波函数可以用下式表示:Ψk(r)=e ik⋅r u k(r)其中,e ik⋅r是平面波,u k(r)是周期函数。

紧束缚近似基本公式紧束缚近似基本公式是在Bloch定理的基础上,进一步假设电子波函数由最近邻原子的原子轨道线性组合构成。

根据紧束缚近似,电子在晶体中的波函数可以用下式表示:e ik⋅R n u n(r−R n)Ψk(r)=∑c nn其中,R n是最近邻原子的位置矢量,u n(r−R n)是最近邻原子的原子轨道。

紧束缚近似能带关系根据紧束缚近似基本公式,可以得到能带关系,即能量与波矢之间的关系。

能带关系可以用下式表示:E k=∑c n∗c n e ik⋅(R n−R m)ϵnmn其中,E k是能量,c n∗和c n是电子的系数,e ik⋅(R n−R m)是相位因子,ϵnm是最近邻原子间的相互作用能。

紧束缚近似的应用举例紧束缚近似在描述材料的能带结构和电子态密度等方面有广泛的应用。

以下是一些应用举例:1.能带计算:通过紧束缚近似,可以计算材料的能带结构,进而分析材料的导电性、绝缘性等特性。

2.电子态密度计算:紧束缚近似可以用于计算材料的电子态密度,这对于研究材料的化学反应等方面非常重要。

3.值得注意的是,紧束缚近似也有其局限性,适用于描述弱相互作用体系,如共价键、金属键等。

对于强相互作用系统,如强关联电子体系,紧束缚近似可能不适用。

总之,紧束缚近似是一种重要的描述电子在晶体中行为的方法,在材料科学和凝聚态物理等领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. Introduction
Compton scattering is an important physical process in many astrophysical systems, such as active galactic nuclei, X-ray binaries, and pulsar magnetospheres (see e.g. reviews by Blandford & Scharlemann 1975; Pozdnyakov, Sobol’, & Sunyaev 1983; Poutanen 1998). Inverse Compton scattering (i.e. scattering of soft photons by hot electron gas) is believed to be the main mechanism of the X-ray/gamma-ray production in accreting X-ray binaries (e.g. Sunyaev & Titarchuk 1980; Poutanen & Svensson 1996), gamma-ray bright active galactic nuclei (e.g. Sikora et al. 1997), and possibly gamma-ray bursts (Stern 1999; Ghisellini & Celotti 1999). The hard X-rays can interact with the cold material via classical Compton scattering losing their energy and producing a cutoff in the “Compton reflected” spectrum (e.g. George & Fabian 1991; Poutanen, Nagendra, & Svensson 1996). Induced (stimulated) Compton scattering becomes very important when the radiation brightness temperature is large kB Tb /mc2 ≫ 1/τT , where τT is Thomson optical thickness. Induced effects can distort the low frequency part of the radio-source spectra even when τT is small (Sunyaev 1971) and can influence the heating of electrons near active galactic nuclei and pulsars (Levich & Sunyaev 1971). The process of multiple scattering of radiation is described by a kinetic equation. This equation can be easily written if we neglect the induced scattering and/or the polarization (see, e.g. Nagirner & Poutanen 1994 and references therein). Induced scattering leads to the appearance of nonlinear terms in the kinetic equation. Since the polarization of radiation is described by four parameters, one must write a vector kinetic equation, i.e. a system of four equations. The kinetic equation combining these two effects (polarization and induced scattering) was not derived self-consistently up to now. The aim of the present paper is to fill up this gap. The first kinetic equation for Compton scattering with induced scattering was written by Kompaneets (1956) and is known under his name. He considered multiple scattering of homogeneous and isotropic radiation in infinite space filled with homogeneous, nondegenerate thermal electron gas. The gas was assumed to be non-relativistic (kB Te ≪ mc2 ), the radiation to be rather soft (hν ≪ mc2 ), and the intensity of radiation to be a sufficiently smooth function of frequency. Because of small changes of photon frequency in a single scattering, the scattering integral was transformed to a differential operator by the Fokker—Planck method. The equation was rediscovered by Weymann (1966). More general Fokker—Planck equations were deduced by Cooper (1971) and Barbosa (1982) for more energetic electrons and photons, and by Molodtsov (1994) for the anisotropic, degenerate and moving electrons. For very cold electron gas, the Fokker—Planck equation was derived by Ross et al. (1978).
February 1, 2008 Abstract. The relativistic kinetic equations describing time evolution and space dependence of the density matrices of polarized photons and electrons interacting via Compton scattering are deduced from the quantum Liouville equation. The induced scattering and exclusion principle are taken into account. The Bogoliubov method is used in the frame of quantum electrodynamics. The equation for polarized radiation scattered by unpolarized electrons is considered as a particular case and is reformulated in terms of the Stokes parameters. The expressions for the scattering amplitudes and cross-sections are derived simultaneously. Key words. methods: analytical – radiation mechanisms: general – plasmas – polarization – scattering
Dmitrij I. Nagirner1 and Juri Poutanen2,3
1
2
3
Sobolev Astronomical Institute, St. Petersburg State University, Staryj Peterhof, 198904 St. Petersburg, Russia e-mail: dinmax@ Stockholm Observatory, 106 91 Stockholm, Sweden e-mail: juri@astro.su.se Astronomy Division, P.O. Box 3000, 90014 University of Oulu, Finland
Astronomy & Astrophysics manuscript no. (will be inserted by hand later)
arXiv:astro-ph/0108357v1 22 Aug 2001
Relativistic Kinetic Equation for Induced Compton ring of Polarized Radiation
2
D. I. Nagirner and J. Poutanen: Relativistic Kinetic Equation for Induced Compton Scattering
The induced scattering effects strongly depend on the ang
相关文档
最新文档