高中数学(人教版A版必修三)配套课时作业:第二章 统计 2.1.2

合集下载

高中数学(人教版A版必修三)配套课时作业第二章 统计 章末复习课 Word版含答案

高中数学(人教版A版必修三)配套课时作业第二章 统计 章末复习课 Word版含答案

章末复习课课时目标.巩固本章主干知识点.提高知识的综合应用能力..某质检人员从编号为~这件产品中,依次抽出号码为,…,的产品进行检验,则这样的抽样方法是().简单随机抽样.系统抽样.分层抽样.以上都不对.某单位有职工人,其中青年职工人,中年职工人,老年职工人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为人,则样本容量为().....若某校高一年级个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()和.和.和.和.某人次上班途中所花的时间(单位:分钟)分别为,.已知这组数据的平均数为,方差为,则-的值为().....如果数据,,…,的平均数为,方差为,则++,…,+的平均数和方差分别为()和.+和.+和.+和++.某棉纺厂为了了解一批棉花的质量,从中随机抽测了根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据均在区间[]中,其频率分布直方图如图所示,则在抽测的根中,有根棉花纤维的长度小于 .一、选择题.为了调查参加运动会的名运动员的身高情况,从中抽查了名运动员的身高,就这个问题来说,下列说法正确的是().名运动员是总体.每个运动员是个体.抽取的名运动员是样本.样本容量是.某高级中学高一年级有十六个班,人,高二年级有十二个班,人,高三年级有十个班,人,学校为加强民主化管理,现欲成立由人组成的学生代表会,你认为下列代表产生的办法中,最符合统计抽样原则的是().指定各班团支部书记、班长为代表.全校选举出人.高三选举出人,高二选举出人,高一选举出人.高三人,高二人,高一人均在各年级随机抽取.一个容量为的样本,分成若干组,已知某组的频数和频率分别为和,则的值是().....观察新生婴儿的体重,其频率分布直方图如图所示,则新生婴儿的体重在[ ]的频率为()。

高中数学(人教版A版必修三)配套课时作业:第二章 统计 2.2.2 Word版含答案

高中数学(人教版A版必修三)配套课时作业:第二章 统计 2.2.2 Word版含答案

2.2.2 用样本的数字特征估计总体的数字特征课时目标 1.会求样本的众数、中位数、平均数、标准差、方差.2.理解用样本的数字特征来估计总体数字特征的方法.3.会应用相关知识解决简单的统计实际问题.1.众数、中位数、平均数 (1)众数的定义:一组数据中重复出现次数________的数称为这组数的众数. (2)中位数的定义及求法把一组数据按从小到大的顺序排列,把处于最______位置的那个数称为这组数据的中位数.①当数据个数为奇数时,中位数是按从小到大顺序排列的__________那个数. ②当数据个数为偶数时,中位数为排列的最中间的两个数的________. (3)平均数①平均数的定义:如果有n 个数x 1,x 2,…,x n ,那么x =____________,叫做这n 个数的平均数. ②平均数的分类:总体平均数:________所有个体的平均数叫总体平均数. 样本平均数:________所有个体的平均数叫样本平均数. 2.标准差、方差 (1)标准差的求法:标准差是样本数据到平均数的一种平均距离,一般用s 表示.s =________________________________________________________________________. (2)方差的求法:标准差的平方s 2叫做方差.s 2=________________________________________________________________________.一、选择题1.下列说法正确的是( )A .在两组数据中,平均值较大的一组方差较大B .平均数反映数据的集中趋势,方差则反映数据离平均值的波动大小C .方差的求法是求出各个数据与平均值的差的平方后再求和D .在记录两个人射击环数的两组数据中,方差大的表示射击水平高2.已知10名工人生产同一零件,生产的件数分别是16,18,15,11,16,18,18,17,15,13,设其平均数为a ,中位数为b ,众数为c ,则有( ) A .a>b>c B .a>c>b C .c>a>b D .c>b>a3.甲、乙两位同学都参加了由学校举办的篮球比赛,他们都参加了全部的7场比赛,平均得分均为16分,标准差分别为5.09和3.72,则甲、乙两同学在这次篮球比赛活动中,发挥得更稳定的是( )A .甲B .乙C .甲、乙相同D .不能确定4.一组数据的方差为s 2,将这组数据中的每个数据都扩大3倍,所得到的一组数据的方差是( ) A .13s 2 B .s 2 C .3s 2 D .9s 25.如图是2010年某校举行的元旦诗歌朗诵比赛中,七位评委为某位选手打出分数的茎叶统计图,去掉一个最高分和一个最低分,所剩数据的平均数和方差分别为() A.84,4.84 B.84,1.6C.85,1.6 D.85,0.46.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B则()A.x A>x B,s A>s BB.x A<x B,s A>s BC.x A>x B,s A<s BD.x A<x B,s A<s B题号 1 2 3 4 5 6答案7.已知样本9,10,11,x,y的平均数是10,方差是4,则xy=________.8.甲、乙两名射击运动员参加某大型运动会的预选赛,他们分别射击了5次,成绩如下表(单位:环):甲10 8 9 9 9乙10 10 7 9 9如果甲、乙两人只能有9.若a1,a2,…,a20,这20个数据的平均数为x,方差为0.20,则数据a1,a2,…,a20,x这21个数据的方差为________.三、解答题10.甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:(1)请填写表:平均数方差中位数命中9环及9环以上的次数甲乙(2)①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和中位数相结合看(分析谁的成绩好些);③从平均数和命中9环及9环以上的次数相结合看(分析谁的成绩好些);④从折线图上两人射击命中环数的走势看(分析谁更有潜力).能力提升11总经理大厨二厨采购员杂工服务员会计3 000元450元350元400元320元320元410元(2)计算出的平均工资能反映一般工作人员一周的收入水平吗?(3)去掉总经理的工资后,再计算剩余人员的平均工资,这能代表一般工作人员一周的收入水平吗?12.师大附中三年级一班40人随机平均分成两组,两组学生一次考试的成绩情况如下表:统计量组别平均成绩标准差第一组90 6第二组80 41.平均数、众数、中位数都是描述数据的集中趋势的,其中平均数是最重要的量.众数体现了样本数据的最大集中点,但它对其他数据信息的忽视使得无法客观地反映总体特征;中位数是样本数据所占频率的等分线,它不受少数几个极端值的影响,这在某些情况下是优点,但它对极端值的不敏感有时也成为缺点,因为这些极端值有时是不能忽视的.由于平均数与每一个样本的数据有关,所以任何一个样本数据的改变都会引起平均数的改变,这是众数、中位数不具有的性质.也正因为这个原因,与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息.但平均数受数据中的极端值的影响较大,使平均数在估计总体时可靠性降低.2.在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.3.极差、方差、标准差是描述数据的离散程度的,即各数据与其平均数的离散程度.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.答案:2.2.2 用样本的数字特征估计总体的数字特征知识梳理1.(1)最多 (2)中间 ①中间位置的 ②平均数 (3)①x 1+x 2+…+x nn②总体中 样本中2.(1)1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2] (2)1n [(x 1-x )2+(x 2-x )2+…+(x n-x )2] 作业设计1.B [A 中平均值和方差是数据的两个特征,不存在这种关系;C 中求和后还需取平均数;D 中方差越大,射击越不平稳,水平越低.]2.D [由题意a =110(16+18+15+11+16+18+18+17+15+13)=15710=15.7,中位数为16,众数为18,即b =16,c =18,∴c>b>a.]3.B [方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B .]4.D [s 20=1n [9x 21+9x 22+…+9x 2n -n(3x )2]=9·1n (x 21+x 22+…+x 2n -n x 2)=9·s 2(s 20为新数据的方差).]5.C [由题意x =15(84+84+86+84+87)=85.s 2=15[(84-85)2+(84-85)2+(86-85)2+(84-85)2+(87-85)2]=15(1+1+1+1+4)=85=1.6.]6.B [样本A 数据均小于或等于10,样本B 数据均大于或等于10,故x A <x B , 又样本B 波动范围较小,故s A >s B .] 7.91解析 由题意得8.甲 解析 x 甲=9,2S 甲=0.4,x 乙=9,2S 乙=1.2,故甲的成绩较稳定,选甲.9.0.19解析 这21个数的平均数仍为20,从而方差为121×[20×0.2+(20-20)2]≈0.19.10.解 由折线图,知甲射击10次中靶环数分别为:9,5,7,8,7,6,8,6,7,7.将它们由小到大重排为:5,6,6,7,7,7,7,8,8,9.乙射击10次中靶环数分别为:2,4,6,8,7,7,8,9,9,10.也将它们由小到大重排为:2,4,6,7,7,8,8,9,9,10.(1)x甲=110×(5+6×2+7×4+8×2+9)=7010=7(环),x乙=110×(2+4+6+7×2+8×2+9×2+10)=7010=7(环),s2甲=110×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]=110×(4+2+0+2+4)=1.2,s2乙=110×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2]=110×(25+9+1+0+2+8+9)=5.4.(2)①∵平均数相同,2S甲<2S乙,∴甲成绩比乙稳定.②∵平均数相同,甲的中位数<乙的中位数,∴乙的成绩比甲好些.③∵平均数相同,命中9环及9环以上的次数甲比乙少,∴乙成绩比甲好些.④甲成绩在平均数上下波动;而乙处于上升势头,从第四次以后就没有比甲少的情况发生,乙较有潜力.11.解(1)平均工资即为该组数据的平均数x=17×(3 000+450+350+400+320+320+410)=17×5 250=750(元).(2)由于总经理的工资明显偏高,所以该值为极端值,因此由(1)所得的平均工资不能反映一般工作人员一周的收入水平.(3)除去总经理的工资后,其他工作人员的平均工资为:x ′=16×(450+350+400+320+320+410) =16×2 250=375(元). 这个平均工资能代表一般工作人员一周的收入水平. 12.解 设第一组20名学生的成绩为x i (i =1,2,…,20), 第二组20名学生的成绩为y i (i =1,2,…,20),依题意有:x =120(x 1+x 2+…+x 20)=90,y =120(y 1+y 2+…+y 20)=80,故全班平均成绩为:140(x 1+x 2+…+x 20+y 1+y 2+…+y 20) =140(90×20+80×20)=85; 又设第一组学生成绩的标准差为s 1,第二组学生成绩的标准差为s 2,则s 21=120(x 21+x 22+…+x 220-20x 2),s 22=120(y 21+y 22+…+y 220-20y 2) (此处,x =90,y =80),又设全班40名学生的标准差为s ,平均成绩为z (z =85),故有s 2=140(x 21+x 22+…+x 220+y 21+y 22+…+y 220-40z 2) =140(20s 21+20x 2+20s 22+20y 2-40z 2) =12(62+42+902+802-2×852)=51. s =51.所以全班同学的平均成绩为85分,标准差为51.。

2020年年高中数学人教A版必修三课时作业第2章统计2Word版含答案(3)

2020年年高中数学人教A版必修三课时作业第2章统计2Word版含答案(3)
A.甲B.乙
C.甲、乙相同D.不能确定
答案:B
解析:方差或标准差越小,数据的离散程度越小,表明发挥得越稳定.∵5.09>3.72,故选B.
二、填空题
7.已知样本9、10、11、x、y的平均数是10,方差是2,则xy=________.
答案:96
解析:由平均数得9+10+11+x+y=50,
∴x+y=20,又由(9-10)2+(10-10)2+(11-10)2+(x-10)2+(y-10)2=( )2×5=10,
则s= [4(k1- )2+4(k2- )2+…+4(k8- )2]=4×3=12.
三、解答题
10.甲、乙两台机床同时加工直径为10mm的零件,为了检验零件的质量,从零件中各随机抽取6件测量,测得数据如下(单位:mm):
甲:99,100,98,100,100,103;
乙:99,100,102,99,100,100.
9.若k1,k2,…,k8的方差为3,则2(k1-3),2(k2-3),…,2(k8-3)的方差为________.
答案:12
解析:设k1,k2,…,k8的平均数为 ,则 [(k1- )2+(k2- )2+…+(k8- )2]=3,
而2(k1-3),2(k2-3),…,2(k8-3)的平均数为2( -3),
s = [s + (x9- 8)2]= [22+ (4-5)2]= .
13.下图为我国10座名山的“身高”统计图,请根据图中信息回答下列问题。
(1)这10座名山“身高”的极差和中位数分别是多少?
(2)这10座名山“身高”在1000 m到2000 m之间的频率是多少?
(3)这10座名山中,泰山、华山、衡山、恒山、嵩山并称“五岳”,求“五岳”的平均“身高”.

高中数学人教A版必修三课时习题:第2章统计2.1习题课含答案

高中数学人教A版必修三课时习题:第2章统计2.1习题课含答案

习题课随机抽样的综合应用课时目标掌握三种抽样方法的差别与联系,能娴熟地应用三种抽样方法进行抽样.课时作业一、选择题1.用随机数法进行抽样有以下几个步骤:①将整体中的个体编号②获得样本号码③选定开始的数字④选定读数的方向这些步骤的先后次序应为()A.①②③④ B .①③④②C.③②①④ D .④③①②答案: B2.某次考试有70000 名学生参加,为了认识这70000 名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计剖析,在这个问题中,有以下四种说法:①1000 名考生是整体的一个样本;②可用 1000 名考生数学成绩的均匀数预计整体均匀数;③70000 名考生是整体;④样本容量是 1000.此中正确的说法有:()A.1种 B .2种C.3种 D .4种答案: B3.中央电视台“动画城节目”为了对本周的热情小观众赐予奖赏,要从已确立编号的一万名小观众中抽出十名好运小观众.现采纳系统抽样的方法抽取,每组容量为() A.10 B .100C.1 000 D .10 000答案: C4.某小礼堂有 25 排座位,每排有 20 个座位.一次心理座礼堂中坐了学生,会后了认识相关状况,留下了座位号是 15 的所有的 25 名学生.里运用的抽方法是()A.抽法 B .随机数表法C.系抽法 D .分抽法答案: C5.某校修球程的学生中,高一年有30 名,高二年有40 名.用分抽的方法在70 名学生中抽取一个本,已知在高一年的学生中抽取了 6 名,在高二年的学生中抽取的人数()A.6 B .8C.10 D .12答案: B分析:由分抽的比率都等于本容量比体容量可知:若高二年抽取x 人,6x有30=40,解得 x=8.6.采纳系抽方法从960 人中抽取 32 人做卷.此将他随机号1,2 ,⋯,960,分后在第一采纳随机抽的方法抽到的号9. 抽到的32 人中,号落入区 [1,450]的人做卷A,号落入区[451,750]的人做卷B,其他的人做卷C.抽到的人中,做卷B的人数()A.7 B .9C.10 D .15答案: C分析:从 960 人顶用系抽方法抽取32 人,每 30 人抽取一人,因第一抽到的号 9,第二抽到的号39,第n抽到的号a n=9+30( n-1)=30n-21,由236257≤n≤10,因此n=16,17,⋯,25,共有25-16+1=10人,451≤30 n-21≤750,得15C.二、填空7.某学生高一、高二、高三年的学生人数之比3∶3∶4,用分抽的方法从校高中三个年的学生中抽取容量50 的本,从高二年抽取________名学生.答案: 1533分析:高二年学生人数占数的3+3+4=10. 本容量 50,高二年抽取:350×10= 15( 名 ) 学生.8.已知某商新 3 000 袋奶粉,其三聚胺能否达,采纳系抽的方法从中抽取150 袋,若第一抽出的号是11,第六十一抽出的号________.答案: 1 2113 000=20,因为第一抽出号11,第 61 抽出号11+分析:分段隔是150(61 -1) ×20= 1 211.9.了认识某地域癌症的病状况,从地域的 5 000 人中抽取200 人行剖析,在个中 5 000 人是指 ________.答案:体分析: 5 000 人是体, 5 000 是体容量要注意区,200 人是本, 200 是本容量.三、解答10.我要观察某企业生的500 g 盒装水果罐的量能否达,从800 盒水果罐中抽取60 盒行,用适合的方法取本.解:用随机数法:第一步,先将 800 盒水果罐号,能够000,001,002 ,⋯,799;第二步:在随机数表中任一个数,比如从本附的随机数表中第5行第 10列4;第三步:从定的数 4 开始向右,获得一个三位数438,因为 438<799,明号438在体中,将它拿出;向右,获得548,246,223,162,430,990,因为990>799,将它去掉,依据种方法向右,又拿出061,325 ,⋯,挨次下去,直到本的60 个号所有拿出.我就获得一个容量60 的本.11.某位在工共624 人,了工人用于上班途中的,位工会决定抽取 10%的工人行,怎样采纳系抽法达成一抽?解: (1) 将 624 名工用随机方式号由000 至 623.(2) 利用随机数法从体中剔除 4 人.(3) 将剩下的620 名工从头号由000 至 619.620(4)分段,取隔 k=62=10,将体分红62,每含10人.(5)从第一段,即 000 到 009 号随机抽取一个号l .(6)按号将 l, 10+ l, 20+ l ,⋯,610+ l ,共62个号出,62 个号所的工成本.能力提高12.了认识 1 203 名学生学校某教改的意,打算从中抽取一个容量40的本,采纳取的号隔一的系抽方法来确立所取本,抽隔k=________.答案: 40分析:因为1 203 1 200不是整数,因此从 1 203 名学生中随机剔除 3 名,则分段间隔k=4040=30.13.某校 500 名学生中 O型血有 200 人, A 型血有125 人, B 型血有125 人, AB型血有50 人;为了研究血型与色弱的关系,要从中抽取一个容量为20 的样本.(1)问:该抽样过程宜采纳什么样的抽样方法;(2)各样血型的人应分别抽取多少?(3)写出详细的抽样过程.解: (1) 该抽样过程宜采纳分层抽样的抽样方法;(2) 因为在整个抽样过程中,每个个体被抽到的概率为201=,因此 O型血的人应抽取500251的人数为 200×25= 8;1A 型血的人应抽取的人数为125×25= 5;1B 型血的人应抽取的人数为125×25= 5;1AB型血的人应抽取的人数为50×25= 2.(3) 详细的抽样过程为:①将整体按血型分为O型、 A 型、 B型、 AB型四类;②分别计算 O型、 A 型、 B 型、 AB型的个体数与整体数的比,挨次为2111 5,4,4,10;③按 O型、 A 型、 B型、 AB型的个体数与整体数的比确立O型、 A 型、 B 型、 AB型应抽取的样本容量,挨次为8、 5、 5、 2;④分别在 O型、 A 型、 B 型、 AB型人中进行简单随机抽样,挨次抽取8 人、5人、5 人、2 人构成样本.。

高中数学(人教版A版必修三)配套课时作业:第二章 统计 §2.2 习题课

高中数学(人教版A版必修三)配套课时作业:第二章 统计 §2.2 习题课

§2.2 习题课课时目标 1.进一步巩固基础知识,学会用样本估计总体的思想、方法.2.提高学生分析问题和解决实际应用问题的能力.1.要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的( )A .平均数B .方差C .众数D .频率分布2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差等于( )A .3.5B .-3C .3D .-0.53.对于样本频率分布直方图与总体密度曲线的关系,下列说法中正确的是( )A .频率分布直方图与总体密度曲线无关B .频率分布直方图就是总体密度曲线C .样本容量很大的频率分布直方图就是总体密度曲线D .如果样本容量无限增大,分组的组距无限减小,那么频率分布直方图就会无限接近于总体密度曲线4.容量为组号 1 2 3 4 5 6 7 8频数 10 13 x 14 15 13 12 9A .14和0.14B .0.14和14C .114和0.14D .13和1145.某中学高三(2)班甲、乙两名同学自高中以来每次考试成绩的茎叶图如图,下列说法正确的是( )A .乙同学比甲同学发挥稳定,且平均成绩也比甲同学高B .乙同学比甲同学发挥稳定,但平均成绩不如甲同学高C .甲同学比乙同学发挥稳定,且平均成绩比乙同学高D .甲同学比乙同学发挥稳定,但平均成绩不如乙同学高6.数据70,71,72,73的标准差是________.一、选择题1.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000中再用分层抽样方法抽出100人作出一步调查,则在[2 500,3 000](元)/月收入段应抽出的人数为( )A.20 B.25 C.40 D.502.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是()A.55.2,3.6 B.55.2,56.4C.64.8,63.6 D.64.8,3.63.一容量为20的样本,其频率分布直方图如图所示,样本在[30,60)上的频率为()A.0.75 B.0.65 C.0.8 D.0.94.甲、乙两种冬小麦试验品种连续5年的平均单位面积产量如下(单位:t/km2):品种第1年第2年第3年第4年第5年甲9.8 9.9 10.1 10 10.2乙9.4 10.3 10.8 9.7 9.8其中产量比较稳定的小麦品种是()A.甲B.乙C.稳定性相同D.无法确定5.某校在“创新素质实践行”活动中组织学生进行社会调查,并对学生的调查报告进行了评比,下面是将某年级60篇学生调查报告进行整理,分成5组画出的频率分布直方图(如图所示).已知从左至右4个小组的频率分别为0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于或等于80分为优秀且分数为整数)()A.18篇B.24篇题号 1 2 3 4 5答案6.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.7.将容量为n的样本中的数据分成6组,绘制频率分布直方图,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n=________.8.某地区为了解中学生的日平均睡眠时间(单位:h),随机选择了n位中学生进行调查,根据所得数据画出样本的频率分布直方图如图所示,且从左到右的第1个、第4个、第2个、第3个小长方形的面积依次相差0.1,又第一小组的频数是10,则n=________.三、解答题9.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:甲27 38 30 37 35 31乙33 29 38 34 28 36(1)画出茎叶图,(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?10.潮州统计局就某地居民的月收入调查了10 000人,并根据所得数据画出了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?能力提升11.为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95].由此得到频率分布直方图如图,则由此估计该厂工人一天生产该产品数量在[55,70)的人数约占该厂工人总数的百分率是________.1.方差反映了一组数据偏离平均数的大小,一组数据方差越大,说明这组数据波动越大.即方差反应了样本偏离样本中心(x ,y )的情况.标准差可以使其单位与样本数据的单位一致,从另一角度同样衡量这组数据的波动情况.2.在求方差时,由于对一组数据都同时加上或减去相同的数只是平均数发生了变化,其方差不变,因此可以转化为一组较简单的新数求方差较为简捷.答案: §2.2 习题课双基演练 1.D [样本的平均数、方差、众数都不能反应样本在某一范围的个数所占样本容量的比例,故选D .]2.B [少输入90,9030=3,平均数少3,求出的平均数减去实际的平均数等于-3.] 3.D4.A [频数为100-(10+13+14+15+13+12+9)=14;频率为14100=0.14.] 5.A [从茎叶图可知乙同学的成绩在80~90分分数段的有9次,而甲同学的成绩在80~90分分数段的只有7次;再从题图上还可以看出,乙同学的成绩集中在90~100分分数段的最多,而甲同学的成绩集中在80~90分分数段的最多.故乙同学比甲同学发挥较稳定且平均成绩也比甲同学高.] 6.52解析 X =70+71+72+734=71.5, s =14×[(70-71.5)2+(71-71.5)2+(72-71.5)2+(73-71.5)2] =52.作业设计1.B [由题意可知:在[2 500,3 000](元)/月的频率为0.000 5×500=0.25,故所求的人数为0.25×100=25.]2.D [每一个数据都加上60时,平均数也应加上60,而方差不变.]3.B [由图可知,样本在[30,60)上的频率为0.02×10+0.025×10+0.02×10=0.2+0.25+0.2=0.65,故选择B .]4.A [方法一 x 甲=15×(9.8+9.9+10.1+10+10.2)=10, x 乙=15×(9.4+10.3+10.8+9.7+9.8)=10, 即甲、乙两种冬小麦的平均单位面积产量的均值都等于10,其方差分别为s 2甲=15×(0.04+0.01+0.01+0+0.04)=0.02, s 2乙=15×(0.36+0.09+0.64+0.09+0.04)=0.244, 即s 2甲<s 2乙,表明甲种小麦的产量比较稳定. 方法二 (通过特殊的数据作出合理的推测)表中乙品种在第一年的产量为9.4,在第三年的产量为10.8,其波动比甲品种大得多,所以甲种冬小麦的产量比较稳定.]5.D [第5个小组的频率为1-0.05-0.15-0.35-0.30=0.15,∴优秀的频率为0.15+0.30=0.45∴优秀的调查报告有60×0.45=27(篇).]6.24 23解析 x 甲=110(10×2+20×5+30×3+17+6+7)=24, x 乙=110(10×3+20×4+30×3+17+11+2)=23. 7.60解析 ∵第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,∴前三组频数为2+3+420·n =27,故n =60. 8.100解析 设第1个小长方形的面积为S ,则4个小长方形的面积之和为S +(S +0.1)+(S +0.2)+(S +0.3)=4S +0.6.由题意知,4S +0.6=1,∴S =0.1.又10n=0.1,∴n =100. 9.解 (1)画茎叶图、中间数为数据的十位数.从茎叶图上看,甲、乙的得分情况都是分布均匀的,只是乙更好一些.乙发挥比较稳定,总体情况比甲好.(2)x 甲=27+38+30+37+35+316=33. x 乙=33+29+38+34+28+366=33. s 2甲=16[(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]≈15.67. s 2乙=16[(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]≈12.67. 甲的极差为11,乙的极差为10.综合比较以上数据可知,选乙参加比赛较合适.10.解 (1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15.(2)∵0.000 2×(1 500-1 000)=0.1,0.000 4×(2 000-1 500)=0.2,0.000 5×(2 500-2 000)=0.25,0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元). (3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25,所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人),再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人). 11.52.5%解析 结合直方图可以看出:生产数量在[55,65)的人数频率为0.04×10=0.4,生产数量在[65,75)的人数频率为0.025×10=0.25,而生产数量在[65,70)的人数频率约为0.25×12=0.125,那么生产数量在[55,70)的人数频率约为0.4+0.125=0.525,即52.5%.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

高中数学(人教版A版必修三)配套课时作业第2章 统计 2.1.3 Word版含答案

高中数学(人教版A版必修三)配套课时作业第2章 统计 2.1.3 Word版含答案

2.1.3分层抽样课时目标 1.理解分层抽样的概念.2.掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样.1.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法()A.抽签法B.随机数表法C.系统抽样D.分层抽样2.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为()A.70 B.20C.48 D.23.某工厂生产A、B、C三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为() A.50 B.60C.70 D.804.下列问题中,最适合用分层抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验5.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为()A.5个B.10个C.20个D.45个6.某小学三个年级共有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2, (270)如果抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265;②7,34,61,88,115,142,169,196,223,250;③30,57,84,111,138,165,192,219,246,270;④11,38,60,90,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为()A.①②B.②③C.①③D.①④二、填空题7.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.8.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.9.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.三、解答题10.某小学有1 800名学生,6个年级中每个年级的人数大致相同,男女生的比例也大致相同,要从中抽取48名学生,测试学生100米跑的成绩.你认为应该用什么样的方法?怎样抽样?为什么要用这个方法?11.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?能力提升12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.13.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.1.分层抽样的概念和特点当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.分层抽样的优点是使样本具有较强的代表性,而且在各层抽样时又可灵活地选用不同的抽样法.2.三种抽样方法的选择简单随机抽样、系统抽样及分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会都相等,体现了抽样方法的公平性和客观性.其中简单随机抽样是最基本的抽样方法,在系统抽样和分层抽样中都要用到简单随机抽样.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当已知总体是由差异明显的几部分组成时,常采用分层抽样.2.1.3 分层抽样课时目标 1.理解分层抽样的概念.2.掌握分层抽样的使用条件和操作步骤,会用分层抽样法进行抽样.1.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A .抽签法B .随机数表法C .系统抽样D .分层抽样答案 D2.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A .70B .20C .48D .2答案 B解析 由于70070=10,即每10所学校抽取一所, 又因中学200所,所以抽取200÷10=20(所).3.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( )A .50B .60C .70D .80答案 C解析 由分层抽样方法得:33+4+7×n =15, 解得n =70.4.下列问题中,最适合用分层抽样方法抽样的是( )A .某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B .从10台冰箱中抽出3台进行质量检查C .某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D .从50个零件中抽取5个做质量检验答案 C解析 A 的总体容量较大,宜采用系统抽样方法;B 的总体容量较小,用简单随机抽样法比较方便;C 总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D 与B 类似.5.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A .5个B .10个C .20个D .45个答案 A解析 由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个). 6.某小学三个年级共有学生270人,其中一年级108人,二、三年级各81人,现要用抽样方法抽取10人形成样本,将学生按一、二、三年级依次统一编号为1,2,…,270,如果 抽得号码有下列四种情况:①5,9,100,107,111,121,180,195,200,265;②7,34,61,88,115,142,169,196,223,250;③30,57,84,111,138,165,192,219,246,270;④11,38,60,90,119,146,173,200,227,254;其中可能是由分层抽样得到,而不可能是由系统抽样得到的一组号码为( )A .①②B .②③C .①③D .①④答案 D解析 按照分层抽样的方法抽取样本,一、二、三年级抽取的人数分别为:10827,8127,8127,即4人,3人,3人;不是系统抽样即编号的间隔不同,观察①、②、③、④知:①④符合题意,②是系统抽样,③中三年级人数为4人,不是分层抽样.二、填空题7.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________. 答案 7,4,6解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 8.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C 中抽取________个个体.答案 20解析 由题意可设A 、B 、C 中个体数分别为5k,3k,2k ,所以C 中抽取个体数为2k 5k +3k +2k×100=20.9.某工厂生产A 、B 、C 、D 四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号有16件,那么此样本的容量n 为________.答案 88解析 在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n =2+3+5+12×16=88. 三、解答题10.某小学有1 800名学生,6个年级中每个年级的人数大致相同,男女生的比例也大致相同,要从中抽取48名学生,测试学生100米跑的成绩.你认为应该用什么样的方法?怎样抽样?为什么要用这个方法?解 应该用分层抽样的方法.因为小学的不同年级之间,男女生之间百米跑的成绩有较大差异,所以将1 800名学生按不同年级、性别分成12组,每组随机抽取4名,一共抽取48名学生.这样的抽样方法可使样本的结构与总体的结构保持一致.11.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?解 总体中的个体数N =3 000+4 000+8 000=15 000,样本容量n =150,抽样比例为n N=15015 000=1100,所以应该在第1条流水线生产的产品中随机抽取3 000×1100=30(件)产品,在第2条流水线生产的产品中随机抽取4 000×1100=40(件)产品,在第3条流水线生产的产品中随机抽取8 000×1100=80(件)产品.这里因为每条流水线所生产的产品数都较多,所以,在每条流水线的产品中抽取样品时,宜采用系统抽样方法.能力提升12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.解 因为采用系统抽样和分层抽样时不用剔除个体,所以n 是36的约数,且36n是6的约数,即n 又是6的倍数,n =6,12,18或36,又n +1是35的约数,故n 只能是4,6,34,综合得n =6,即样本容量为6.13.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.解 (1)总体容量较小,用抽签法.①将30个篮球编号,号码为00,01, (29)②将以上30个编号分别写在完全一样的小纸条上,揉成小球,制成号签;③把号签放入一个不透明的袋子中,充分搅拌;④从袋子中逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样法.①确定抽取个数.因为3010=3,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个);②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数法.①将300个篮球用随机方式编号,编号为000,001, (299)②在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始.任选一个方向作为读数方向,比如向右读;③从数“7”开始向右读,每次读三位,凡不在000~299中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大宜用系统抽样法.①将300个篮球用随机方式编号,编号为001,002,003,…,300,并分成30段,其中每一段包含30030=10(个)个体;②在第一段001,002,003,…,010这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,组成样本1.分层抽样的概念和特点当总体由有明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常采用分层抽样.分层抽样的优点是使样本具有较强的代表性,而且在各层抽样时又可灵活地选用不同的抽样法.2.三种抽样方法的选择简单随机抽样、系统抽样及分层抽样的共同特点是在抽样过程中每一个个体被抽取的机会都相等,体现了抽样方法的公平性和客观性.其中简单随机抽样是最基本的抽样方法,在系统抽样和分层抽样中都要用到简单随机抽样.当总体中的个体数较少时,常采用简单随机抽样;当总体中的个体数较多时,常采用系统抽样;当已知总体是由差异明显的几部分组成时,常采用分层抽样.。

高中数学(人教版A版必修三)配套课时作业第2章 统计 2.1.2 Word版含答案

高中数学(人教版A版必修三)配套课时作业第2章 统计 2.1.2 Word版含答案

2.1.2 系统抽样课时目标 1.理解系统抽样的概念、特点.2.掌握系统抽样的方法和操作步骤,会用系统抽样法进行抽样.1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本. 2.系统抽样的步骤 假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.一、选择题1.下列抽样问题中最适合用系统抽样法抽样的是( )A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C .从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D .从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )A .2B .3C .4D .53.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了()A.抽签法B.随机数表法C.系统抽样D.有放回抽样4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,325.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是()A.抽签法B.有放回抽样C.随机数法D.系统抽样6.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体() A.3 B.4C.5 D.6二、填空题7.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.8.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.9.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.三、解答题10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).11.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.能力提升12.某种体育彩票五等奖的中奖率为10%,已售出1 000 000份,编号为000000~999999,则用简单随机抽样需要随机抽取____________个号码,若要在某晚报上公布获奖号码,约要________版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格).而用系统抽样,应该在0~________内随机抽取一个数字,个位数是这个数字的号码中奖.13.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.1.系统抽样的特点(1)适用于总体中个体数较大且个体差异不明显的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样.每个个体被抽到的可能性相等.2.系统抽样与简单随机抽样之间的关系(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本和具体的编号相联系;而简单随机抽样所得样本的代表性与个体的编号无关;(3)系统抽样的实质是简单随机抽样.(4)系统抽样比简单随机抽样的应用更广泛.3.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的.也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.2.1.2 系统抽样课时目标 1.理解系统抽样的概念、特点.2.掌握系统抽样的方法和操作步骤,会用系统抽样法进行抽样.1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k); (4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.一、选择题1.下列抽样问题中最适合用系统抽样法抽样的是( )A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C .从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D .从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况答案C解析A中总体容量较小,样本容量也较小,可采用抽签法;B中总体中的个体有明显的差异,也不适宜采用系统抽样;D中总体容量较大,样本容量较小也不适用系统抽样.2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2 B.3C.4 D.5答案A解析由1 252=50×25+2知,应随机剔除2个个体.3.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了()A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.5.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是()A.抽签法B.有放回抽样C.随机数法D.系统抽样答案D6.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体() A.3 B.4C.5 D.6答案B解析由于只有524÷4没有余数,故选B.二、填空题7.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________. 答案 16解析 用系统抽样的方法是等距离的.42-29=13,故3+13=16.8.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.答案 3 20解析 因为1 003=50×20+3,所以应剔除的个体数为3,间隔为20.9.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.答案 7840~7999 0054,0214,0374,0534,0694解析 因8000÷50=160,所以最后一段的编号为编号的最后160个编号.从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.三、解答题10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).解 该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤: 可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l ,则每个班的l,10+l,20+l,30+l,40+l(如果l =6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.11.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.解 总体中个体个数达8 000,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易进行操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:(1)将总体中的个体编号为1,2,3,…,8 000;(2)把整个总体分成100段,每段长度为k =8 000100=80;(3)在第一段1~80中用简单随机抽样确定起始编号l ,例如抽到l =25;(4)将编号为l ,l +k ,l +2k ,l +3k ,…,l +99k (即25,105,185,…,7 945)的个体抽出,得到样本容量为100的样本.能力提升12.某种体育彩票五等奖的中奖率为10%,已售出1 000 000份,编号为000000~999999,则用简单随机抽样需要随机抽取____________个号码,若要在某晚报上公布获奖号码,约要________版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格).而用系统抽样,应该在0~________内随机抽取一个数字,个位数是这个数字的号码中奖. 答案 100 000 40 913.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10, 其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为02.1.系统抽样的特点(1)适用于总体中个体数较大且个体差异不明显的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样.每个个体被抽到的可能性相等.2.系统抽样与简单随机抽样之间的关系(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本和具体的编号相联系;而简单随机抽样所得样本的代表性与个体的编号无关;(3)系统抽样的实质是简单随机抽样.(4)系统抽样比简单随机抽样的应用更广泛.3.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的.也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.。

高中数学人教A版必修三课时习题:第2章 统计 2.1.1含答案

高中数学人教A版必修三课时习题:第2章 统计 2.1.1含答案

2.1.1 简单随机抽样
课时目标
1.掌握简单随机抽样的定义及其特点.
2.能准确地应用抽签法及随机数表法解决问题.
识记强化
1.从总体中抽出的若干个个体组成的集合叫做总体的一个样本,样本中个体的数量叫做样本容量.
2.简单随机抽样的定义
一般地,设一个总体有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.
3.简单随机抽样的分类
简单随机抽样⎩⎪⎨⎪⎧
抽签法抓阄法随机数表法 4.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.
课时作业
一、选择题
1.为了了解全校240名高一学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.2 系统抽样课时目标 1.理解系统抽样的概念、特点.2.掌握系统抽样的方法和操作步骤,会用系统抽样法进行抽样.1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本. 2.系统抽样的步骤 假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.一、选择题1.下列抽样问题中最适合用系统抽样法抽样的是( )A .从全班48名学生中随机抽取8人参加一项活动B .一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C .从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D .从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况答案 C解析 A 中总体容量较小,样本容量也较小,可采用抽签法;B 中总体中的个体有明显的差异,也不适宜采用系统抽样;D 中总体容量较大,样本容量较小也不适用系统抽样.2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )A .2B .3C .4D .5答案 A解析由1 252=50×25+2知,应随机剔除2个个体.3.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了()A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.4.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.5.一个年级有12个班,每个班有50名同学,随机编号1,2,…,50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是()A.抽签法B.有放回抽样C.随机数法D.系统抽样答案D6.总体容量为524,若采用系统抽样,当抽样的间距为下列哪一个数时,不需要剔除个体() A.3 B.4C.5 D.6答案B解析由于只有524÷4没有余数,故选B.二、填空题7.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.8.采用系统抽样的方法,从个体数为1 003的总体中抽取一个容量为50的样本,则在抽样过程中,被剔除的个体数为________,抽样间隔为________.答案320解析因为1 003=50×20+3,所以应剔除的个体数为3,间隔为20.9.采用系统抽样从含有8 000个个体的总体(编号为0000,0001,…,7999)中抽取一个容量为50的样本,则最后一段的编号为____________,已知最后一个入样编号是7894,则开头5个入样编号是__________________.答案 7840~7999 0054,0214,0374,0534,0694解析 因8000÷50=160,所以最后一段的编号为编号的最后160个编号.从7840到7999共160个编号,从7840到7894共55个数,所以从0000到第55个编号应为0054,然后逐个加上160得,0214,0374,0534,0694.三、解答题10.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案(写出实施步骤).解 该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤: 可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l ,则每个班的l,10+l,20+l,30+l,40+l(如果l =6,即6,16,26,36,46)号学生入样,即组成一个容量为150的样本.11.某学校有8 000名学生,需从中抽取100个进行健康检查,采用何种抽样方法较好,并写出过程.解 总体中个体个数达8 000,样本容量也达到100,用简单随机抽样中的抽签法与随机数法都不易进行操作,所以,采用系统抽样方法较好.于是,我们可以用系统抽样法进行抽样.具体步骤是:(1)将总体中的个体编号为1,2,3,…,8 000;(2)把整个总体分成100段,每段长度为k =8 000100=80; (3)在第一段1~80中用简单随机抽样确定起始编号l ,例如抽到l =25;(4)将编号为l ,l +k ,l +2k ,l +3k ,…,l +99k (即25,105,185,…,7 945)的个体抽出,得到样本容量为100的样本.能力提升12.某种体育彩票五等奖的中奖率为10%,已售出1 000 000份,编号为000000~999999,则用简单随机抽样需要随机抽取____________个号码,若要在某晚报上公布获奖号码,约要________版(每版可排100行,每行可排175个数字或空格,每个编号后需留1个空格).而用系统抽样,应该在0~________内随机抽取一个数字,个位数是这个数字的号码中奖. 答案 100 000 40 913.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1 200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:1 20030=40; 确定随机数字:取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解 (1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:30030=10, 其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个),确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为02.1.系统抽样的特点(1)适用于总体中个体数较大且个体差异不明显的情况;(2)剔除多余个体及第一段抽样都用简单随机抽样,因而与简单随机抽样有密切联系;(3)是等可能抽样.每个个体被抽到的可能性相等.2.系统抽样与简单随机抽样之间的关系(1)系统抽样比简单随机抽样更容易实施,可节约抽样成本;(2)系统抽样所得样本和具体的编号相联系;而简单随机抽样所得样本的代表性与个体的编号无关;(3)系统抽样的实质是简单随机抽样.(4)系统抽样比简单随机抽样的应用更广泛.3.当总体容量不能被样本容量整除时,可以先从总体中随机剔除几个个体.但要注意的是剔除过程必须是随机的.也就是总体中的每个个体被剔除的机会均等.剔除几个个体后使总体中剩余的个体数能被样本容量整除.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

在中学阶段,至关重要!!以学生作为学习的主体,学生自己做主,不受别人支配,不受外界干扰通过阅读、听讲、研究、观察、实践等手段使个体可以得到持续变化(知识与技能,方法与过程,情感与价值的改善和升华)的行为方式。

如何培养中学生的自主学习能力?01学习内容的自主性1、以一个成绩比自己好的同学作为目标,努力超过他。

2、有一个关于以后的人生设想。

3、每学期开学时,都根据自己的学习情况设立一个学期目标。

4、如果没有达到自己的目标,会分析原因,再加把劲。

5、学习目标设定之后,会自己思考或让别人帮助分析是否符合自己的情况。

6、会针对自己的弱项设定学习目标。

7、常常看一些有意义的课外书或自己找(课外题)习题做。

8、自习课上,不必老师要求,自己知道该学什么。

9、总是能很快选择好对自己有用的学习资料。

10、自己不感兴趣的学科也好好学。

11、课堂上很在意老师提出的重点、难点问题。

12、会花很多时间专攻自己的学习弱项。

02时间管理13、常常为自己制定学习计划。

14、为准备考试,会制定一个详细的计划。

15、会给假期作业制定一个完成计划,而不会临近开学才做。

16、常自己寻找没有干扰的地方学习。

17、课堂上会把精力集中到老师讲的重点内容上面。

18、做作业时,先选重要的和难一点的来完成。

19、作业总是在自己规定的时间内完成。

20、作业少时,会多自学一些课本上的知识。

03 学习策略21、预习时,先从头到尾大致浏览一遍抓住要点。

22、根据课后习题来预习,以求抓住重点。

23、预习时,发现前面知识没有掌握的,回过头去补上来。

24、常常归纳学习内容的要点并想办法记住。

25、阅读时,常做标注,并多问几个为什么。

26、读完一篇文章,会想一想它主要讲了哪几个问题。

27、常寻找同一道题的几种解法。

28、采用一些巧妙的记忆方法,帮助自己记住学习内容。

29、阅读时遇到不懂的问题,常常标记下来以便问老师。

30、常对学过的知识进行分类、比较。

31、常回忆当天学过的东西。

32、有时和同学一起“一问一答”式地复习。

33、原来的学习方法不管用时,马上改变方法。

34、注意学习别人的解题方法。

35、一门课的成绩下降了,考虑自己的学习方法是否合适。

36、留意别人好的学习方法,学来用用。

37、抓住一天学习的重点内容做题或思考。

38、不断试用学习方法,然后找出最适合自己的。

04学习过程的自主性39、解题遇到困难时,仍能保持心平气和。

40、在学习时很少烦躁不安。

41、做作业时,恰好有自己喜欢的电视节目,仍会坚持做作业。

相关文档
最新文档