八年级数学下册课件(人教版):19.2.2第3课时

合集下载

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版

八年级数学下册第19章一次函数19.2一次函数19.2.2一次函数19.2.2.2一次函数的图象与性质课件新人教版
初中数学(人教版)
八年级 下册
第十九章 一次函数
知识点一 正比例函数的定义
定义
举例
正比例 一般地,形如y=kx(k是常数,k≠0)的函数,叫做 函数 正比例函数,其中k叫做比例系数
如y=-3x,y= 12 x均为正比例函数,比例系数 分别为-3, 12
知识 详解
(1)如果两个变量的比值是一个常数,那么这两个变量之间的关系就是正比例函数关系. (2)正比例函数y=kx(k是常数,k≠0)必须满足两个条件:①比例系数k≠0;②自变量x的次数 是1
3
选项中符合条件的数只有2.故选B.
2.(2016浙江丽水中考)在平面直角坐标系中,点M,N在同一个正比例函 数图象上的是 ( ) A.M(2,-3),N(-4,6) B.M(-2,3),N(4,6) C.M(-2,-3),N(4,-6) D.M(2,3),N(-4,6)
答案 A 设过点M的正比例函数图象对应的解析式为y=kx(k≠0).
x
⑤y=-1+x,即y=x-1,也不能化为y=kx(k≠0)的形式.只有②是正比例函数. 故选B. 答案 B 解题归纳 (1)判断一个函数是不是正比例函数,就是判断该函数能否 化成y=kx(k≠0)的形式;(2)若一个函数是正比例函数,则必有k为常数,k ≠0且x的次数为1,关于自变量x的代数式必为单项式.
2
2
分析 先确定函数自变量的取值范围,然后依次列表、描点、连线,即 可得到函数图象,再进行比较.
解析 列表:
x

-4
-2
0
2
4

y= 1 x 2

-2
-1
0
1
2

y=-1 x

19.2 特殊平行四边形 (第3课时)19.2.2菱形(菱形的性质)

19.2 特殊平行四边形 (第3课时)19.2.2菱形(菱形的性质)
∠ADC 。
证明:因为四边形ABCD是菱形, 证明:因为四边形ABCD是菱形, ABCD是菱形 所以AB=AD 菱形的四条边都相等)。 AB=AD( 所以AB=AD(菱形的四条边都相等)。 ABD中 在△ABD中, 又因为BO=DO BO=DO, 又因为BO=DO, B 所以AC⊥BD AC平分 BAD。 AC⊥BD, 平分∠ 所以AC⊥BD,AC平分∠BAD。 同理: AC平分 BCD; 平分∠ 同理: AC平分∠BCD; BD平分 ABC和 ADC。 平分∠ BD平分∠ABC和∠ADC。
矩形
两组对边 分别平行 平行 四边形
菱形
有一组邻边相等的平行四边形叫做菱形。 有一组邻边相等的平行四边形叫做菱形。 邻边相等 叫做菱形
AB=BC 四边形ABCD是菱形 是菱形 四边形 ABCD
如何利用折纸、剪切的方法,既快又准 如何利用折纸、剪切的方法, 确地剪出一个菱形的纸片? 确地剪出一个菱形的纸片?
他是这样做的: 他是这样做的:将一张长方形的纸 对折、再对折,然后沿图中的虚线剪下, 对折、再对折,然后沿图中的虚线剪下, 打开即可.你知道其中的道理吗? 打开即可 你知道其中的道理吗? 你知道其中的道理吗
D O A C B
菱形的性质Leabharlann 菱形的性质:(1)菱形具有平行四边形的一切性质; )菱形具有平行四边形的一切性质; (2)菱形的四条边都相等; )菱形的四条边都相等; (3)菱形的两条对角线互相垂直, )菱形的两条对角线互相垂直, 并且每一条对角线平分一组对角; 并且每一条对角线平分一组对角; (4)菱形是轴对对称图形;也是中心对称图形。 )菱形是轴对对称图形;也是中心对称图形。
?
1.已知菱形的周长是12cm, 1.已知菱形的周长是12cm,那 已知菱形的周长是12cm 3cm 么它的边长是______. 么它的边长是______. 2.菱形ABCD中 ABC=60度 2.菱形ABCD中∠ABC=60度, 菱形ABCD 60度 BAC= 60度 则∠BAC=_______. B

19.2.2一次函数(第三课时)

19.2.2一次函数(第三课时)
解:设一次函数的解析式为y=kx+b.
∵函数图象过点(3,5)与(-4,-9).

∴ 3k+b=5 代 解得 k=2 b=-1 -4k+b=-9 ∴这个一次函数的解析式为y=2x-1
求 写
象这样先设出函数解析式,再根据条件 确定解析式中未知的系数,从而具体写出 这个式子的方法,叫做待定系数法.
利用待定系数法求一次函数的一般步骤为:
y=2x
图1
3 y x +3 2
图2
2.分析与思考
确定正比例 函数的表达 式需要几个 一 条件?确定 一次函数的 表达式需要 两 几个条件?
原点的一条直线,因此是_______ 图(1)是经过____ 正比例 函数, ( 1 ,2 ) k=2 , 可设它的解析式为y=kx ____将点 _____ 代入解析式得_____ y=2x 。 从而确定该函数的解析式为______
y=kx+b ,因为此直线经过点 图(2)设直线的解析式是________ ( 0 ,3 ) ( 2,0) ,因此将这两个点的坐标代入可得关 ______ , _______ 于k,b方程组,从而确定k,b的值,确定了解析式。
例题:已知一次函数的图象经过点(3,5)与 (-4,-9).求这个一次函数的解析式.
-1 0 1 2 3 4
y=
{
5x
(0≤x ≤ 2),
4x+2 (x>2).
5
6
7
8
9 10 x
1、怎样用函数解决实际问题?
审清题意,明确有几个变量,理清变量之间 的关系,设合适的未知数,表示出函数表达 式。根据函数性质和自变量取值范围解决实 际问题。 2、怎样确定自变量取值范围?

2020年春人教版初中数学八年级下册同步课件 第十九章 19.2 19.2.2 第3课时 待定系数法

2020年春人教版初中数学八年级下册同步课件 第十九章  19.2  19.2.2  第3课时 待定系数法

x(千克)之间的函数图象由线段 OA 和射线 AB 组成,则一次
购买 3 千克这种苹果比分三次每次购买 1 千克这种苹果可
节省( )
A.1 元
B.2 元
C.3 元
D.4 元
八年级数学 ·下
返回导航 上页
下页
解析:设 OA 的解析式为 y1=k1x(k1≠0),∵OA 过 A(2,20),∴20=2k1,解得 k1=10, ∴y1=10x,∴x=1 时,y1=10;设 AB 的解析式为 y2=k2x+b(k2≠0),∵AB 过 A(2,20)、 B(4,36),
下页
2.如图所示,是“村村通”工程中,某村修筑的公路长度 y(米)与时间 x(天)之间的关 系的图象,根据图象可知 8 天共修筑的公路长为________.
八年级数学 ·下
返回导航 上页
下页
解析:当 x≥2 时设直线 AB 的函数解析式为 y=kx+b, ∵点(2,150),(4,250)在图象上, ∴24kk+ +bb= =125500 ,解得:kb= =5500 , ∴y=50x+50, 当 x=8 时,y=50×8+50=450.
得b3=k+2,b=0,
解得k=-23, b=2,
故直线 l 对应的函数解析式为 y=-23x+2.
返回导航 上页
下页
八年级数学 ·下
返回导航 上页
下页
知识点二 利用一次函数解决实际问题 [例 2] 某市规定了每月用水 18 立方米以内(含 18 立方米) 和用水 18 立方米以上两种不同的收费标准,该市的用户每 月应交水费 y(元)是用水量 x(立方米)的函数,其图象如图所 示. (1)若某月用水量为 18 立方米,则应交水费多少元? (2)求当 x>18 时,y 关于 x 的函数解析式,若小敏家某月交水费 81 元,则这个月用水 量为多少立方米?

2024八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第3课时一次函数解析式

2024八年级数学下册第十九章一次函数19.2一次函数19.2.2一次函数第3课时一次函数解析式
(1)求该函数的解析式及点C的坐标;
【解】(1)把点A(0,1),B(1,2)的坐标代入y=kx+
b(k≠0),得ቊ
= ,
= ,
解得ቊ
+ = ,
= ,
∴该函数的解析式为y=x+1.
由题意知点C的纵坐标为4,令y=4,解得x=3.
∴C(3,4).


(2)当x<3时,对于x的每一个值,函数y= x+n的值都大于
人教版八年级下
第 十 九 章
一 次 函 数
19.2
一次函数
19.2.2 一次函数
第3课时 一次函数解析式的求法
用待定系数法求一次函数解析式要明确两点
1.具备条件:一次函数y=kx+b(k≠0)中有两个不确定的系
数k,b,需要两个独立的条件确定两个关于k,b的方程,
解方程(组)求得k,b的值;
2.确定方法:将两对已知变量的对应值分别代入y=kx+b,



∵点Q(t-1,y2)在直线y=2x- 上,


∴y2=2(t-1)- =2t- .










∴y1-y2=- t+3-(2t- )=- t+ .


∵- <0,∴y1-y2随t的增大而减小.

∴当t=0时,y1-y2的值最大,最大值为 .

利用表格信息探求一次函数解析式解实际应用
直线y=kx+b的
k
不变;旋转时,要注意特殊点的坐
标变化.
6.[2023·无锡 母题·教材P91思考]将函数y=2x+1的图象向下
平移2个单位长度,所得图象对应的函数解析式是( A )
A.y=2x-1

人教版八年级数学下册《19.2.2 一次函数》教学课件精品PPT优秀公开课3

人教版八年级数学下册《19.2.2 一次函数》教学课件精品PPT优秀公开课3

∵一次函数图象经过点(2,1)
∴ 6+b=1
解得: b=-5
∴ 这个一次函数的解析式为 y=3x-5.
2.已知一次函数 y=kx+4 的图象经过点(-3,-2). (1)求这个函数的解析式; 解:(1)把点(-3,-2)代入 y=kx+4
则有:-3k+4=-2,解得:k=2
∴ 这个一次函数的解析式为y=2x+4.
千米.
解:设当 40≤t≤60 时,距离 y(千米)与时间 t(分)的函数 解析式为 y=kt+b(k≠0) ∵图象经过(40,2)、( 60,0 )
40k+b=2
∴ 60k+b=0
k=-0.1 解得:
b=6
∴ y与t之间的函数解析式为y=-0.1t+6.
∴ 当 t=45 时,y=-0.1×45+6=1.5.
应用一次函数解决实际问题的关键是:(1)确定函数 与自变量之间的解析式;(2)确定实际问题中自变量 的取值范围,即实际问题的答案要符合实际情况.
例5 “黄金1号”玉米种子的价格为 5 元/kg,如果一次 购买 2kg 以上的种子,超过 2kg 部分的种子价格打 8 折.
(1)填写表:
购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 ⋯
(2)画出函数的图象;
(2)一次函数解析式y=2x+4与x轴、 y轴的交点坐标为(-2,0)、(0,4).
y=2x+4
(3)判断点(3,5)是否在此函数的图象上. (3)∵一次函数解析式 y=2x+4
∴点(3,5)不在此函数的图象上
y=2x+4
课后作业 请完成课本后习题第1、2题。

人教版初中数学八年级下册19.2.2 PPT 课件

人教版初中数学八年级下册19.2.2 PPT 课件

而得到所求结果的方法,叫做 关于k、b的方程(组);
待定系数法
解:解方程(组)求得系数的值;
写:将k、b的值代回关系式中
并写出关系式
图示
19.2.2 一次函数(2)
栏目索引
例1 (2018福建厦门一模)如图19-2-2-2-1,在平面直角坐标系中,直线l经 过第一、二、四象限,点A(0,m)在直线l上. (1)在图中标出点A; (2)若m=2,且l过点(-3,4),求直线l的表达式.
栏目索引
分析 (1)先确定直线y=4x-3与x轴的交点坐标,然后利用待定系数法求 出一次函数的解析式;(2)由k,b的符号确定一次函数的图象经过的象限; (3)若要求一次函数的图象与坐标轴围成的三角形的面积,则先要求出 一次函数图象与两坐标轴的交点坐标,然后利用三角形的面积公式求 解.
19.2.2 一次函数(2)
制定了一套节水的管理措施,其中对居民生活用水收费做出如下规定:
月用水量(吨)
单价(元/吨)
不大于10吨的部分
1.5
大于10吨不大于m吨的部分(20≤m≤50)
2
大于m吨的部分
3
19.2.2 一次函数(2)
栏目索引
(1)若某用户六月份用水量为18吨,求其应缴纳的水费; (2)记该用户六月份用水量为x吨,缴纳水费为y元,试求出y与x的函数关 系式; (3)若该用户六月份用水量为40吨,缴纳水费y元的取值范围为70≤y≤9 0,试求m的取值范围. 分析 (1)由题表知月用水量为18吨时,缴纳的水费包括两部分:10吨以 内和超过10吨不大于m吨的部分(20≤m≤50); (2)利用月用水量的不同阶段的收费标准列出函数关系式即可; (3)将x=40代入(2)中求得函数的解析式,根据缴纳水费y元的取值范围为 70≤y≤90列出关于m的不等式,求解即可.

19.2.2 一次函数的概念 课件(共23张PPT)

19.2.2  一次函数的概念   课件(共23张PPT)
4.一个小球由静止开始沿一个斜坡向下滚动,其速度每秒 增加2 m/s.
(1)求小球速度v(单位:m/s) 关于时间t(单位:s)的函数解析式. 它是一次函数吗?
(2)求第2.5 s 时小球的速度; (3)时间每增加1 s,速度增加多少,速度增加量是否随着 时间的变化而变化?
解:(1)小球速度v关于时间t的函数解析式为v=2t,是一次函数. (2)当t=2.5时,v=2×2.5=5(m/s). (3)时间每增加1 s,速度增加2 m/s,速度增加量不随着 时间的变化而变化.
答:此人本月工资是4140元.
例4 如图,△ABC是边长为x的等边三角形.
(1)求BC边上的高h与x之间的函数解析式.h是x的
一次函数吗?如果是,请指出相应的k与b的值.
解: (1)因为BC边上的高AD也是BC边上的中线,
A
所以,BD=x/2.在Rt△ABD中,由勾股定理,得
h AD AB2 BD2 x2 1 x2 3 x,
度 t(单位:℃)有关,且 c 的值约是 t 的7 倍与35的差;
c=7t -35(20≤t≤25)
(2)一种计算成年人标准体重G(单位:kg)的方法是,
以厘米为单位量出身高值 h ,再减常数105,所得差是G 的
值;
G=h-105
(3)某城市的市内电话的月收费额 y(单位:元)包括月租 费22元和拨打电话 x min 的计时费(按0.1元/min收取);
y = k(常数) x + b(常数)
知识要点
一般地,形如y=kx+b (k, b 是常数,k≠0) 的函数,叫做一次函数. 思考:一次函数与正比例函数有什么关系? (1)当b=0时,y=kx+b 即y=kx(k≠0),此时该一次函数是 正比例函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档