2017版高考数学专题7不等式54与不等式有关的创新题型理

合集下载

2017数学(理)一轮对点训练:7-4-2 基本不等式的综合应用 Word版含解析

2017数学(理)一轮对点训练:7-4-2 基本不等式的综合应用 Word版含解析

1.在等腰梯形ABCD 中,已知AB ∥DC ,AB =2,BC =1,∠ABC=60°.动点E 和F 分别在线段BC 和DC 上,且BE →=λBC →,DF →=19λDC →,则AE →·AF →的最小值为________.答案 2918解析 以点A 为坐标原点,AB 所在的直线为x 轴建立平面直角坐标系,则B (2,0),C ⎝ ⎛⎭⎪⎫32,32,D ⎝ ⎛⎭⎪⎫12,32.又BE →=λBC →,DF →=19λDC →,则E ⎝ ⎛⎭⎪⎫2-12λ,32λ,F ⎝ ⎛⎭⎪⎫12+19λ,32,λ>0,所以AE →·AF →=⎝ ⎛⎭⎪⎫2-12λ⎝ ⎛⎭⎪⎫12+19λ+34λ=1718+29λ+12λ≥1718+229λ·12λ=2918,λ>0,当且仅当29λ=12λ,即λ=23时取等号,故AE →·AF →的最小值为2918.2.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).答案 160解析 设池底长x m ,宽y m ,则xy =4,所以y =4x ,则总造价为:f (x )=20xy +2(x +y )×1×10=80+80x +20x =20⎝ ⎛⎭⎪⎫x +4x +80,x ∈(0,+∞).所以f (x )≥20×2x ·4x +80=160,当且仅当x =4x ,即x =2时,等号成立.所以最低总造价是160元.3.在△ABC 中,已知AB →·AC →=9,sin B =cos A sin C ,S △ABC =6,P为线段AB 上的点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则xy 的最大值为________.答案 3解析 由AB →·AC →=9,得bc cos A =9.由sin B =cos A sin C ,得b =c cos A .由S △ABC =6,得12bc sin A =6,由上述三式可解得b =3,c =5,cos A=35,sin A =45,由余弦定理得a 2=32+52-2×3×5×35=16,a =4,可见△ABC 是直角三角形,以C 为坐标原点,CA ,CB 分别为x 轴、y 轴建立平面直角坐标系,则CA →=(3,0),CB →=(0,4),CA →|CA →|=(1,0),CB →|CB →|=(0,1),则CP →=x ·CA →|CA →|+y ·CB →|CB →|=x (1,0)+y (0,1)=(x ,y ),又P 在直线AB 上,故有x 3+y 4=1(x >0,y >0). ∵1=x 3+y 4≥2x 3·y4,∴xy ≤3.当且仅当x 3=y 4=12,即x =32,y =2时等号成立.4.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?解 (1)由题意可知,二氧化碳每吨的平均处理成本为y x =12x +80000x -200≥212x ·80000x -200=200, 当且仅当12x =80000x ,即x =400时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)不获利.设该单位每月获利为S 元,则S =100x -y =100x -⎝ ⎛⎭⎪⎫12x 2-200x +80000=-12x 2+300x -80000=-12(x -300)2-35000,因为x ∈[400,600],所以S ∈[-80000,-40000].故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损.。

2019-2020年三维设计江苏专用2017届高三数学一轮总复习第七章不等式第一节不等关系与不等式课件理

2019-2020年三维设计江苏专用2017届高三数学一轮总复习第七章不等式第一节不等关系与不等式课件理

编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
-1a>b-1b;④ln a2>ln b2中,正确的序号是______.
解①<a1法 显 因析中b④ 可,二 然 为:,中 得即a:|法因,ab+①因 l所|1+2n因为一因>b正为 以bab=为:a为22==+>④确l1a-由0n1<blb,错;n-13<a1b1a<(,2<a<误而0-=2<01b,=a,0.1<2lbyn,)a0=-=2故(b,=-根>l112可n0可l<,1据n,0)x取2知此,4=在所>yab=时所00其=以<,,x①以a定-2<a在正 ②0+义11.,(错 确b-域b误 ;<∞上=0;,,为-0增2a1).b上函>为数0,减,故函有数,a+1 b ②故因中②所 由为,错以 以因误上aln综-为;分b上1a2b析=><所ln,a-述<a知102,-, ,①②-故所③1④1④以正=错错-确0误,误b.>,.-①a>③0,正则确-.b>|a|,即|a|+b<0, ③b中-,1b=因答-为案2b-<:a-①<102③,=又-1a32<,1b<所0以,③所正以确a-;1a>b-1b,故③正确;

2017届高考数学大一轮 第六章 不等式与推理证明 第3课时 二元一次不等式(组)与简单的线性规划问题 理

2017届高考数学大一轮 第六章 不等式与推理证明 第3课时 二元一次不等式(组)与简单的线性规划问题 理

1.(2015·高考陕西卷)某企业生产甲、乙两种产品均需用A,
B两种原料.已知生产1吨每种产品所需原料及每天原料的可用限
额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4
万元,则该企业每天可获得最大利润为( )
A.12万元
A(吨) B(吨)
甲 乙 原料限额
32
12
12
8
B.16万元
C.17万元
主干回顾 夯基固源 考点研析 题组冲关 素能提升 学科培优
课时规范训练
第3课时 二元一次不等式(组)与简单的线性规划问题
1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
1.(2015·高考湖南卷)若变量x,y满足约束条件
x2+x-y≥y≤-11,, 则z=3x-y的最小值为(
)
y≤1.
A.-7 C.1
B.-1 D.2
解析:画出可行域,如图中阴影部分所示.目标函数z=3x-
y可化为y=3x-z,其斜率为3,纵截距为-z,平移直线y=3x知
当直线y=3x-z经过点A时,其纵截距最大,z取得最小值.由
1.二元一次不等式表示的平面区域 (1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标 系中表示直线Ax+By+C=0某一侧的所有的点组成的平面区域 (半平面) 不含 边界直线,不等式Ax+By+C≥0所表示的平 面区域(半平面)含有边界直线.
(2)对于直线Ax+By+C=0同一侧的所有的点(x,y),使得Ax
解析 当m≥0时,若平面区域存在,则平面区域内的点在第 二象限,平面区域内不可能存在点P(x0,y0)满足x0-2y0=2,因此 m<0.

【步步高】(江苏专用)2017版高考数学一轮复习 第十四章 系列4选讲 14.4 课时2 不等式的证明课件 理

【步步高】(江苏专用)2017版高考数学一轮复习 第十四章 系列4选讲 14.4 课时2 不等式的证明课件 理

2.几个常用基本不等式 (1)柯西不等式: ①柯西不等式的代数形式:设 a , b , c , d 均为实数,则 (a2 + b2)(c2 +
2 2 ( ac + bd ) d )≥
(当且仅当ad=bc时,等号成立).
②柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α· β| , 等号当且仅当α,β共线时成立.
解 因为 6=x+2y+3z≤ x2+y2+z2· 1+4+9,
2 2 2
18 y z 所以 x +y +z ≥ 7 ,当且仅当 x=2=3
3 6 9 18 2 2 2 即 x=7,y=7,z=7时,x +y +z 有最小值 7 .
思维升华
解析答案
跟踪训练3
x2 y2 已知大于 1 的正数 x, y, z 满足 x+y+z=3 3.求证: + x+2y+3z y+2z+3x z 3 + ≥2. z+2x+3y
所以3(ab+bc+ca)≤1,
1 即 ab+bc+ca≤3.
解析答案
a2 b2 c2 (2) b + c + a ≥1.
证明 a2 b2 c2 因为 b +b≥2a, c +c≥2b, a +a≥2c,
a2 b2 c2 故 b + c + a +(a+b+c)≥2(a+b+c),
a b c 即 b + c + a ≥a+b+c.
解析答案
1
2
3
4
5
6
1 1 ∴x+y x+y min=4,即-λ≤4,λ≥-4.
1
2
3
解析答案
返回
题型分类 深度剖析
题型一
用综合法与分析法证明不等式
1 (1)已知 x,y 均为正数,且 x>y,求证:2x+ 2 2≥2y+3; x -2xy+y

2017版高考数学课件:6.4 基本不等式

2017版高考数学课件:6.4  基本不等式

b a
=ba-2
D. ab< a b
2
答案 C A中虽有a,b∈R+,但lg a、lg b却未必都大于0,故不正确;B
中a、b异号时不符合均值定理的条件;D中未对a、b限制符号且不等式
c 不成立;C中推理完全正确.故选C.
第四页,编辑于星期六:二十点 二十三分。
2.若正实数a,b满足a+b=1,则 ( )
A. 1 + 1有最大值4
ab
B.ab有最小值 1
4
C. a+ b有最大值 2 D.a2+b2有最小值 2
2
答案 C ab≤ a2 b2= (a b)2 2ab,所以ab≤ ,1故B错;
2
2
4
+1= 1
ab
a= b ≥1
ab ab
4,故A错; a b≤ a b= ,1即
2
22
=1-2ab≥1-2× =1 ,1故D错.故选C.
也是基本不等式的应用之一,但应注意各个不等式等号成立条件是否同
时满足.
第十三页,编辑于星期六:二十点 二十三分。
1-1 (2015学军中学仿真考,15,4分)已知a<b,二次不等式ax2+bx+c≥0对
任意实数x恒成立,则M= a 2b 的4c最小值为
.
ba
答案 8
解析 由条件知a>0,b-a>0.由题意得Δ=b2-4ac≤0,解得c≥
4.利用基本不等式求最值问题
已知x>0,y>0,则
(1)如果积xy是定值p,那么当且仅当x=y时,x+y有最小值,是2 .(简记p :积
定和最小)
(2)如果和x+y是定值s,那么当且仅当x=y时,xy有最大值,是 .(简s记2 :和定

专题04数列与不等式2017年高考数学(理)试题分项版解析

专题04数列与不等式2017年高考数学(理)试题分项版解析

【2017课标1,理4】记nS为等差数列{}na的前n项和.若4524a a+=,648S=,则{}na的公差为A.1 B.2 C.4 D.8【答案】C【解析】试题分析:设公差为d,45111342724a a a d a d a d+=+++=+=,611656615482S a d a d⨯=+=+=,联立112724,61548a da d+=⎧⎨+=⎩解得4d=,故选C.秒杀解析:因为166346()3()482a aS a a+==+=,即3416a a+=,则4534()()24168a a a a+-+=-=,即5328a a d-==,解得4d=,故选C.【考点】等差数列的基本量求解【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}na为等差数列,若m n p q+=+,则m n p qa a a a+=+.2.【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】【考点】等比数列的应用;等比数列的求和公式【名师点睛】用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时,要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后经过数学推理与计算得出的结果,放回到实际问题中进行检验,最终得出结论。

3.【2017课标1,理12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么 该款软件的激活码是A .440B .330C .220D .110【答案】A【考点】等差数列、等比数列的求和.【名师点睛】本题非常巧妙的将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.4.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】C 【解析】试题分析:由d d a d a S S S =+-+=-+)105(22110211564,可知当0>d ,则02564>-+S S S ,即5642S S S >+,反之,02564>⇒>+d S S S ,所以为充要条件,选C .【考点】 等差数列、充分必要性【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若q p ⇒,则p 是q 的充分条件,若q p ⇐,则p 是q 的必要条件,该题“0>d ”⇔“02564>-+S S S ”,故为充要条件.5.【2017课标II ,理5】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .9 【答案】A 【解析】【考点】 应用线性规划求最值【名师点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大。

第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析

第54题+不等式的概念与性质-2018精品之高中数学(理)黄金100题系列+Word版含解析

第54题 不等式的概念与性质I .题源探究·黄金母题【例1】已知0,0,a b c >><求证:c c a d>. 【证明】10,0,0a b ab ab>>∴>>.于是11,a b ab ab ⋅>⋅即11,b a >由0c <,得c c a d>. 精彩解读【试题来源】人教版A 版必修5P 74例1.【母题评析】本题考查了不等式的重要性质.作为基础题,不等式性质的应用,是历年来高考的一个常考点. 【思路方法】熟记不等式性质,应用不等式的性质解题.II .考场精彩·真题回放【例2】【2017高考山东理7】若0a b >>,且1ab =,则下列不等式成立的是 ( ) A .()21log 2a b a a b b +<<+ B .()21log 2a b a b a b<+<+ C .()21log 2a ba ab b +<+< D .()21log 2a b a b a b +<+<【答案】B【解析】因为0a b >>,且1ab =,所以221,01,1,log ()log 1,2aba b a b ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+,所以选B . 【例3】【2016高考新课标I 】若101a b c >><<,,则 ( ) A .cca b < B .ccab ba < C .log log b a a c b c < D .log log a b c c < 【答案】C【命题意图】这类题主要考查不等式的性质、指数函数、对数函数、幂函数的性质.本题能较好的考查考生分析问题、解决问题的能力等. 【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等偏易,考查基础知识的识记与理解.【难点中心】比较指数式或对数式的大小,若幂的底数相同或对数的底数相同或幂的指数相同,通常利用指数函数或对数函数或幂函数的单调性进行比较;若底数不同,可考虑利用中间量进行【解析】用特殊值法.令3a =,2b =,12c =,得112232>,选项A错误;11223223⨯>⨯,选项B 错误;2313log 2log 22<,选项C 正确;3211log log 22>,选项D 错误,故选C . 【例4】【2017高考北京理13】能够说明“设,,a b c 是任意实数.若a b c >>,则a b c +>”是假命题的一组整数,,a b c 的值依次为______________________________. 【答案】1,2,3---.【解析】()123,1233->->--+-=->-相矛盾,∴验证是假命题. 【例5】【2017高考北京文14】某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (1)男学生人数多于女学生人数; (2)女学生人数多于教师人数; (3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为__________. ②该小组人数的最小值为__________. 【答案】6,12【解析】设男生数,女生数,教师数为,,a b c ,则2,,,c a b c a b c >>>∈N第一小问:max 846a b b >>>⇒=;第二小问:min 3,635,412.c a b a b a b c =>>>⇒==⇒++=比较.也可以利用特殊值法.III .理论基础·解题原理1.比较法原理:0,0,0.a b a b a b a b a b a b ->⇔>-<⇔<-=⇔= 2.a b b a >⇔<(反对称性); 3.若,,a b b c >>则a c >(传递性)4.若a b >,则a c b c +>+;5.若,0a b c >>,则ac bc >;若,0a b c ><,则ac bc <; 6.若,a b c d >>,则a c b d +>+; 7.若0,0a b c d >>>>,则ac bd >;9.若0a b >>,则(),2n n a b n N n >∈≥;IV .题型攻略·深度挖掘【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,一般难度较小,往往考查对基础知识的识记与理解. 【技能方法】解决此类问题的关键是在不等式的求解证明中,必须在不等式的常见性质体系下进行分析.(1)用作差比较法比较数式的大小关键是变形,常将两个代数式作差后变形为常数或平方和的形式或几个因式积的形式等,常有的变形技巧有因式分解、配方、通分、分母(分子)有理化等.作差比较法的一般步骤:作差——变形——与0比较大小——下结论.(2)当用作差法难以比较数式的大小时,可以试用作商比较法(前提是两个代数式同号).作商比较法的一般步骤:作商——变形——与1比较大小——下结论.(3)在运用不等式的性质时,一定要掌握它们成立的条件.如两边同乘以(或除以)一个正数,不等号的方向不变,若同乘以(或除以)一个负数,则不等号的方向改变.因此在分式不等式中,若不能肯定分母是正数还是负数,则不要轻易去分母.又如,同向不等式相乘、不等式两边同时乘方或(或开方)时,要求不等式两边都是正数.(4)应用不等式的性质解题的常见类型及方法:①注意观察从已知不等式到目标不等式的变化,它是如何变形的,这些变形是否符合不等式的性质及性质的条件;②若比较大小的两式是指数或对数模型,注意联想单调性;③恰当运用赋值法和淘汰法探究解答选择题、填空题. 【易错指导】(1)比较大小时,要把各种可能的情况都考虑进去,对不确定的因素进行分类讨论,每一步运算都要准确,每一步推理都要有充分的依据.(2)不等式性质的等价性:在不等式的基本性质中,对表达不等式性质的各不等式,要注意“箭头”是单向还是双向,也就是说每条性质是否具有可逆性.(3)由于同向不等式相加或相乘会使范围变大,所以在求有关不等式取值范围的问题时,尽量少用不等式相加或相乘,次数越少越好,最好“一次性”不等关系的运算求得待求整体的范围,这是避免出错的一条捷径.V .举一反三·触类旁通考向1 利用不等式的性质判定大小【例1】【2018河南焦作高三第四次模拟】已知0a b >>,则下列不等式中成立的是( )A .11a b >B .22log log a b <C .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .1122a b -->【答案】C【例2】【2018河北衡水中学高三十五模】已知330c c a b<<,则下列选项中错误的是( ) A .b a > B .ac bc > C .0a b c -> D .ln 0ab> 【答案】D【解析】330c c a b <<,当0c <时,110a b >>,即b 0a >>,∴b a >,ac bc >,0a bc->成立,此时01a b <<,∴ln 0ab<,故选D . 【例3】【2018江西吉安一中、九江一中等八所重点中学高三4月联考】若1a >,01c b <<<,则下列不等式不正确的是( )A .log 2018log 2018a b >B .log log b c a a<C .()()aac b c c b b ->- D .()()cba c a a c a ->- 【答案】D【解析】根据对数函数的单调性可得log 20180log 2018a b >>,log log b c a a <,故A 、B 正确.∵1a >,01c b <<<,∴0a a c b <<,0c b -<,0c b a a <<,0a c ->, ∴()()aac b c c b b ->-,()()cba c a a c a -<-,则C 正确,D 错误.故选D .【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法. (2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性. 【跟踪练习】1.【2018北京丰台区高三一模】已知0a b <<,则下列不等式中恒成立的是A .11a b> B < C .22a b > D .33a b > 【答案】A2.【2018北京十一学校高三3月模拟】设 4.20.60.60.6,7,log 7a b c ===,则,,a b c 的大小关系是A .c b a <<B .c a b <<C .b c a <<D .a b c << 【答案】B【解析】0< 4.20.6<1,0.67>1,0.6log 7<0,所以b>a>c ,选B .3.【2018四川成都第七中学高三上学期模拟】设12523log 2,log 2,a b c e ===,则,,a b c 的大小关系是( )A .a b c <<B .b a c <<C .b c a <<D .c b a << 【答案】B【解析】因为()12523log 20,1,log 20,1a b c e=∈==,所以b a c <<,选B .考向2 求范围的问题【例4】【2018黑龙江双鸭山市一中高二4月月考】已知15,13a b a b ≤+≤-≤-≤,则32a b -的取值范围是 ( )A .[]6,14-B .[]2,14-C .[]2,10-D .[]6,10- 【答案】C【解析】设()()32x y a b a b a b -=++-,易得:1x 2=,5y 2=, ∴()()[]15322,1022a b a b a b -=++-∈-,故选C . 【名师点睛】根据不等式组确定二元目标式范围的方程有二,其一:利用待定系数法表示目标,直接加减一次即可;其二:利用线性规划的方法处理.【例5】三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,则ba的取值范围是________. 【答案】23,32⎡⎤⎢⎥⎣⎦【例6】【2018辽宁大连渤海高级中学高二上学期期中考试】设()2f x ax bx =+,且()112f -≤-≤,()214f ≤≤,求()2f -的取值范围.【答案】()1210f -≤-≤【解析】试题分析:由()2f x ax bx =+ 得()242f a b -=-.已知()()1,1f f - 的范围,用()()1,1f f -表示,a b ,再把()242f a b -=-化简,然后根据不等式的性质可得所求范围.试题解析:由已知得()()1{ 1f a b f a b-=-=+,∴()()()()112{112f f a f f b +-=--=,∴()()()()()11112424222f f f f f a b +----=-=⨯-⨯()()131f f =+-,∵()()112,3316f f -≤-≤∴-≤-≤,∵()214f ≤≤,∴()()113110,f f -≤+-≤∴()1210f -≤-≤.【名师点睛】利用不等式的性质可以求参数或某些代数式的取值范围,但在变换过程中要注意掌握、准确使用不等式的性质.求含有字母的代数式的取值范围时,要注意题设中的条件.如本例若忽视αβ<,则会导致取值范围变大. 【跟踪练习】1.【2018广西防城港市高中毕业班1月模拟】已知0,0,22a b a b >>+=,若24a b m +>恒成立,则实数m 的取值范围是__________. 【答案】4m <2.【2018江苏邗江中学高二下学期期中考试】若不等式(﹣1)n •a <3对任意的正整数n 恒成立,则实数a 的取值范围是_____. 【答案】【解析】分析:将不等式进行参数分离,求函数的最值即可得到结论. 详解:当为奇数时,不等式可化为,即,要使得不等式对任意自然数恒成立,则,当为偶数时,不等式可化为,要使得不等式对任意自然数恒成立,则,即,综上,.【名师点睛】本题主要考查了不等式恒成立问题,将不等式的恒成立转化为求式子的最值问题解决恒成立问题是解答恒成立问题的基本方法,着重考查分析问题和解答问题的能力.3.【2018北京市海淀区育英学校高一下期期中考试】若实数a ,b 满足02a <<,01b <<,则a b -的取值范围是__________. 【答案】()1,2-【解析】01,10b b <<∴-<-<,02,12a a b <<∴-<-<,故答案为()1,2-.4.设等差数列{a n }的前n 项和为S n ,若1≤a 5≤4,2≤a 6≤3,则S 6的取值范围是________. 【答案】[-12,42]【名师点睛】本题是一道易错题,如果根据1≤a 5≤4,2≤a 6≤3分别求出1,a d 的范围,再求S 6=6a 1+15d 的范围,实际上是错误的.这里涉及到不等式取等的问题,可以利用线性规划的知识,也可以利用解答中的整体代入的方法.考向3 不等式的性质与充要条件【例7】【2018广东省中山市高二上学期期末复习】若,a b 为实数,则22a b >是0a b >>的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不也不必要条件 【答案】B【解析】当0a b >>时,22a b >成立,当3,1a b =-=-时,满足22a b >,但0a b >>不成立,即“22a b >”是“0a b >>”的必要不充分条件,故选B .【例8】【2018广东中山市高二上学期理科数学期末考试】条件甲:24{03x y xy <+<<<;条件乙:01{23x y <<<<,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不也不必要条件 【答案】B 【解析】由01{23x y <<<<,根据不等式的性质可得24{ 03x y xy <+<<<;由01{23y x <<<<,而15,22x y ==时,24{03x y xy <+<<<成立,01{ 23y x <<<<不成立,所以甲是乙的必要不充分条件,故选B .【例9】下列四个不等式:①a <0<b ;②b <a <0;③b <0<a ;④0<b <a ,其中能使11a b<成立的充分条件有________. 【答案】①②④【解析】①a <0<b ⇒1a <0,1b >0⇒1a <1b ;②b <a <0⇒1a <1b ;③b <0<a ⇒1a >1b;④0<b <a ⇒1a <1b.故答案为:①②④. 【跟踪练习】1.【2018天津蓟州区第一中学高二第一学期第二次月考】①一个命题的逆命题为真,它的否命题一定也为真: ②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件; ④“”是“”的充分必要条件;以上说法中,判断错误的有_______________. 【答案】③④有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.2.【2018衡水金卷(四)】设p :3402x xx-≤,q :()22210x m x m m -+++≤,若p 是q 的必要不充分条件,则实数m 的取值范围为( )A .[]2,1-B .[]3,1-C .[)(]2,00,1-⋃D .[)(]2,10,1--⋃ 【答案】D【解析】设p :3402x xx-≤的解集为A ,所以A={x|-2≤x <0或0<x≤2},设q :()22210x m x m m -+++≤的解集为B ,所以B={x|m≤x≤m+1},由题知p 是q 的必要不充分条件,即得B 是A 的真子集,所以有010{01{ 2 1.122m m m m m m >+<⇒<≤⇒-≤<-+≤≥-或综合得m ∈[)(]2,10,1--⋃,故选D .3.设,x y R ∈,则4()0x y x -<是x y <的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A。

高考数学理科真题汇编解析:第七章不等式MMKl

高考数学理科真题汇编解析:第七章不等式MMKl

第七章 不等式第一节 不等式的性质与不等式的解法题型75 不等式的性质——暂无 题型76 比较数(式)的大小1.(2017北京理13)能够说明“设a b c ,,是任意实数.若a b c >>,则a b c +>”是假命题的一组整数a b c ,,的值依次为__________________.解析 由题知,取一组特殊值且,,a b c 为整数,如1a =-,2b =-,3c =-.2.(2017山东理7)若0a b >>,且1ab =,则下列不等式成立的是( ). A.()21log 2a b a a b b +<<+ B.()21log 2a b a b a b <+<+ C.()21log 2a ba ab b +<+< D.()21log 2a b a b a b +<+<解析 由题意知1a >,01b <<,所以12ab<,()22log log 1a b +>=, 12112log ()a ba ab a a b b b+>+>+⇒+>+.故选B. 评注 本题也可采用特殊值法,如13,3a b ==,易得结论.题型77 一元一次不等式与一元二次不等式的解法 题型78 分式不等式的解法——暂无第二节 二元一次不等式(组)与简单的线性规划问题题型79 二元一次不等式组表示的平面区域 题型80 求解目标函数的取值范围或最值1.(2017天津理2)设变量,x y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………,则目标函数z x y =+的最大值为( ).A.23 B.1 C.32D.3解析 变量,x y 满足约束条件2022003x y x y x y +⎧⎪+-⎪⎨⎪⎪⎩…………的可行域如图所示,目标函数z x y =+经过可行域的点A 时,目标函数取得最大值,由03x y =⎧⎨=⎩,可得(0,3)A ,目标函数z x y =+的最大值为3.故选D.32.(2017北京理4)若x ,y 满足32x x y y x ⎧⎪+⎨⎪⎩………,则2x y +的最大值为( ). A.1 B. 3 C.5 D.9解析作出不等式组的可行区域,如图所示,令2z x y =+,则22x zy -=+.当过A 点时z 取最大值,由()3,3A ,故max 369z =+=.故选D.3.(2017全国1理14)设x ,y 满足约束条件21210x y x y x y +⎧⎪+-⎨⎪-⎩………,则32z x y =-的最小值为 .解析不等式组21210x y x y x y +⎧⎪+-⎨⎪-⎩………表示的平面区域如图所示,由32z x y =-,得322zy x =-,求z 的最小值,即求直线322z y x =-的纵截距的最大值,当直线322zy x =-过图中点A 时,纵截距最大,由2121x y x y +=-⎧⎨+=⎩,解得点A 的坐标为(1,1)-,此时3(1)215z =⨯--⨯=-.4.(2017全国2理5)设x ,y 满足约束条件2330233030x y x y y +-⎧⎪-+⎨⎪+⎩………,则2z x y =+的最小值是( ). A .15- B .9- C .1 D .9解析 目标区域如图所示,当直线2y =x+z -过点()63--,时,所求z 取到最小值为15-. 故选A.(6,35.(2017全国3理12)若x ,y 满足约束条件0200x y x y y -⎧⎪+-⎨⎪⎩………,则34z x y =-的最小值为__________.解析 由题意,作出可行域如图所示.目标函数为34z x y =-,则直线344zy x =-的纵截距越大,z 值越小.由图可知z 在()1,1A 处取得最小值,故min 31411z =⨯-⨯=-.6.(2017山东理4)已知x ,y 满足3035030x y x y x -+⎧⎪++⎨⎪+⎩………,则2z x y =+的最大值是( ).A. 0B. 2C.5D.6解析 由303+5030x y x y x -+⎧⎪+⎨⎪+⎩………,作出可行域及直线20x y +=,如图所示,平移20x y +=发现,当其经过直线350x y ++=与3x =-的交点(3,4)-时,2z x y =+取最大值为max 3245z =-+⨯=.故选C.y=-3x-5x 27.(2017浙江理4)若x ,y 满足约束条件03020x x y x y ⎧⎪+-⎨⎪-⎩………,则2z x y =+的取值范围是( ). A.[]0,6 B.[]0,4 C.[)6,+∞ D.[)4,+∞ 解析 如图所示,22x zy =-+在点()2,1取到z 的最小值为2214z =+⨯=,没有最大值, 故[)4,z ∈+∞.故选D .题型81 求解目标函数中参数的取值范围——暂无题型82 简单线性规划问题的实际运用第三节 基本不等式及其应用题型83 利用基本不等式求函数的最值1.(2017江苏10)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是 .解析 一年的总运费与总存储费用之和为6003600644x x x x⨯+=+240=…, 当且仅当36004x x=,即30x =时取等号.故填30. 2.(2017浙江理17)已知a ∈R ,函数()4f x x a a x=+-+在区间[]14,上的最大值是5,则a 的取值范围是 . 解析 设4t x x=+,则()f t t a a =-+,[]4,5t ∈. 解法一:可知()f t 的最大值为{}max (4),(5)f f ,即(4)45(5)55f a a f a a ⎧=-+=⎪⎨=-+⎪⎩…或(4)45(5)55f a a f a a ⎧=-+⎪⎨=-+=⎪⎩…, 解得4.55a a =⎧⎨⎩…或 4.55a a ⎧⎨⎩……,所以 4.5a ….则a 的取值范围是(],4.5-∞. 解法二:如图所示,当0a <时,()5f t t a a t =-+=…成立; 当0a t <…时,()05f t a t a t =-+-=…成立;当a t >时,()5f t t a a a t a =-+=-+…成立,即 4.5a …. 则a 的取值范围是(],4.5-∞.题型84 利用基本不等式证明不等式——暂无a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
【步步高】(江苏专用)2017版高考数学 专题7 不等式 54 与不等
式有关的创新题型 理
训练目标 与不等式有关的创新题型,突破创新问题的解决方法.

训练题型
(1)不等式解法中的条件创新;(2)基本不等式应用形式的创新;(3)与其他知识
结合的创新.

解题策略
对不同条件进行综合分析、变形、转化,找出问题实质,使之化归为常见“模
型”,再应用相应的不等式知识使问题解决.
1.已知点An(n,an)(n∈N*)都在函数y=ax(a>0,a≠1)的图象上,则a3+a7与2a5的大小关
系是________.
2.(2015·北京西城区一模)在R上定义运算:x*y=x(1-y).若不等式(x-y)*(x+y)<1对
一切实数x恒成立,则实数y的取值范围是________.
3.(2015·福州质检)设函数y=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函

fK(x)= fx,fxK,K,fxK.取函数f(x)=2-x-e-x,恒有fK(x)=f(x),则K
的最小

值为________.
4.(2015·四川江陵第二次统考)若流程图如图所示,视x为自变量,y为函数值,可得函数
y=f(x)的解析式,则f(x)>f
(2)的解集为________.

5.(2015·重庆一诊)已知函数f(x)=x-4+9x+1,x∈(0,4),当x=a时,f(x)取得最小值
b,则函数g(x
)=(1a)|x+b|的图象为________.
2

6.在算式“4×△+1×○=30”中的△,○中,分别填入两个正整数,使它们的倒数和最小,
则这两个数构成的数对(△,○)应为__________.
7.用C(A)表示非空集合A中的元素个数,定义|A-B|=






CA-CB,CACB

CB-CA,CACB

若A={1,2},B={x||x2+2x-3|=a},且|A-B|=1,由a的所有可能值构成的集合为S,
那么C(S)=________.

8.如果关于x的不等式f(x)<0和g(x)<0的解集分别为(a,b)和1b,1a,那么称这两个不等
式为“对偶不等式”.如果不等式x2-43x·cos 2θ+2<0与不等式2x2+4x·sin 2θ+
1<0为对偶不等式,且θ∈π2,π,那么sin θ=________.
9.(2015·浙江五校联考)已知正实数x,y满足ln x+ln y=0,且k(x+2y)≤x2+4y2恒成
立,则k的最大值是________.

10.(2015·长沙二模)设不等式 x>0,y>0,y≤-nx+3n所表示的平面区域为Dn,记Dn内的格点
(x,y)(x,y∈Z)的个数为f(n)(n∈N*).(注:格点是指横坐标、纵坐标均为整数的点)
(1)求f(1),f(2)的值及f(n)的表达式;

(2)记Tn=fnfn+2n,若对于任意n∈N*,总有Tn≤m成立,求实数m的取值范围;

(3)设Sn为数列{bn}的前n项和,其中bn=2f(n),问是否存在正整数n,t,使Sn-tbnSn+1-tbn+1<116成
立?若存在,求出正整数n,t;若不存在,请说明理由.
3

答案解析
1.a3+a7>2
a
5

解析 因为所有的点An(n,an)(n∈N*)都在函数y=ax(a>0,a≠1)的图象上,

所以有an=an,故a3+a7=a3+a7,
因为a>0,a≠1,由基本不等式,
得a3+a7>2a3·a7=2a5,
又2a5=2a5,故a3+a7>2a5.

2.(-12,32)
解析 由题意知,(x-y)*(x+y)=(x-y)·[1-(x+y)]<1对一切实数x恒成立,
∴-x2+x+y2-y-1<0对于x∈R恒成立,
∴Δ=12+4(y2-y-1)<0,

∴4y2-4y-3<0,解得-123.1
解析 f′(x)=-1+e-x,
当x>0时f′(x)<0,当x<0时f′(x)>0,
∴f(x)在(-∞,0)上为增函数,在(0,+∞)上为减函数,
∴f(x)≤f(0)=1,当K≥1时,f(x)≤K,
依题意,此时恒有fK(x)=f(x),∴K的最小值为1.
4.(-∞,-2)∪(3.5,5]

解析 由流程图知f(x)= x2,x≤2,2x-3,25,
所以f(2)=4,所以由f(x)>f(2),
得 x2>4,x≤2,或 2x-3>4,24,x>5,
解得x<-2或3.55.②
4

解析 由基本不等式得f(x)=x+1+9x+1-5≥2 x+9x+1-5=1,
当且仅当x+1=9x+1,即x=2时,f(x)取得最小值1,
故a=2,b=1,因此g(x)=(1a)|x+b|=(12)|x+1|.
只需将y=(12)|x|的图象向左平移1个单位长度即可,
因为y=(12)|x|为偶函数,
故通过y=(12)x的图象即可得到y=(12)|x|的图象,
进而得到y=(12)|x+1|的图象.
6.(5,10)
解析 设数对为(a,b),则4a+b=30,

∴1a+1b=1301a+1b(4a+b)

=1305+ba+4ab≥310,

当且仅当 ba=4ab,4a+b=30,即 a=5,b=10时等号成立,
所以满足题意的数对为(5,10).
7.1
解析 由于|x2+2x-3|=a的根可能是2个,3个,4个,而|A-B|=1,
故|x2+2x-3|=a只有3个根,故a=4,所以C(S)=1.

8.12
解析 设方程x2-43x·cos 2θ+2=0的两个根分别为x1,x2,
则x1+x2=43cos 2θ,x1x2=2;
设方程2x2+4x·sin 2θ+1=0的两个根分别为x3,x4,

则x3+x4=-2sin 2θ,x3x4=12.
因为不等式x2-43x·cos 2θ+2<0与不等式2x2+4x·sin 2θ+1<0为对偶不等式,
所以x3+x4=1x1+1x2=x1+x2x1x2=43cos 2θ2
5

=23cos 2θ=-2sin 2θ,
所以3cos 2θ=-sin 2θ,即tan 2θ=-3,

因为θ∈π2,π,所以2θ∈(π,2π),

所以2θ=53π,即θ=56π,所以sin θ=12.
9.2
解析 ∵正实数x,y满足ln x+ln y=0,
∴ln xy=0,即xy=1.
可得x+2y≥22xy=22(当且仅当x=2y=2时,“=”成立).
∵k(x+2y)≤x2+4y2恒成立,

即k≤x2+4y2x+2y=x+2y2-4x+2y

=(x+2y)-4x+2y恒成立,
即求(x+2y)-4x+2y的最小值.
令t=x+2y,则t≥22.
令f(t)=t-4t(t≥22),
则f(t)在[22,+∞)上单调递增,
∴t=22时,f(t)min=f(22)=22-422=2,
∴k≤2,则k的最大值为2.
10.解 (1)f(1)=3,f(2)=6.
由x>0,0又x∈N*,所以x=1或x=2.
当x=1,0当x=2,0故f(n)=n+2n=3n.

(2)由(1)知Tn=9nn+2n,则Tn+1=n+n+2n+1,

则Tn+1-Tn=n+-n2n+1.
所以当n≥3时,Tn+16

又T1=9(3)假设存在满足题意的n和t,
由(1)知bn=23n=8n,故Sn=n-7.

则Sn-tbnSn+1-tbn+1=n--7t·8nn+1--7t·8n+1<116.
变形得8n-7t-88n+1-7t-8<116,即8n-7t-152[8n-7t-1]<0.
所以1<8n(8-7t)<15.
由于n,t均为正整数,所以n=t=1.

相关文档
最新文档