应知复习(讲解版)

合集下载

高考物理复习考点知识专题讲解20 滑块-滑板模型(解析版)

高考物理复习考点知识专题讲解20 滑块-滑板模型(解析版)

高考物理复习考点知识专题讲解专题20 滑板-滑块模型一、单选题1.(2020·四川省高三三模)如图所示,质量均为M 的物块A 、B 叠放在光滑水平桌面上,质量为m 的物块C 用跨过轻质光滑定滑轮的轻绳与B 连接,且轻绳与桌面平行,A 、B 之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,下列说法正确的是( )A.若物块A 、B 未发生相对滑动,物块A 受到的摩擦力为2f Mmg F M m=+ B.要使物块A 、B 发生相对滑动,应满足关系1M m μμ>- C.若物块A 、B 未发生相对滑动,轻绳拉力的大小为mgD.若物块A 、B 未发生相对滑动时,轻绳对定滑轮的作用力为22Mmg F M m=+ 【答案】A【解析】A .若物块A 、B 未发生相对滑动,A 、B 、C 三者加速的大小相等,由牛顿第二定律得()2mg M m a =+对A ,由牛顿第二定律得f F Ma =解得2f Mmg F M m=+,故A 正确; B .当A 、B 发生相对滑动时,A 所受的静摩擦力达到最大,根据牛顿第二定律有Mg Ma μ=解得a g μ=以A 、B 、C 系统为研究对象,由牛顿第二定律得()2mg M m a =+ 解得21M m μμ=- 故要使物块A 、B 之间发生相对滑动,则21M m μμ>-,故B 错误; C .若物块A 、B 未发生相对滑动,设轻绳拉力的大小为F ,对C 受力分析,根据牛顿第二定律有mg F ma -=解得F mg ma mg =-<,故C 错误;D .若物块A 、B 未发生相对滑动时,由A 可知,此时的加速度为2fmg M mF a M ==+ 对C 受力分析,根据牛顿第二定律有mg F ma -=解得22Mmg F M m=+ 根据力的合成法则,可得轻绳对定滑轮的作用力2222+=2Mmg N F F M m=+ 故D 错误。

高考数学复习重点知识专题讲解与练习05 函数图象的辨析(解析版)

高考数学复习重点知识专题讲解与练习05 函数图象的辨析(解析版)

高考数学复习重点知识专题讲解与练习专题05 函数图象的辨析1.(2021·江西赣州·高三期中(文))已知函数||()122x xx f x =+,则函数()y f x =的大致图象为( )A .B .C .D .【答案】D 【分析】函数图像的识别,通常利用性质+排除法进行判断: 利用函数的奇偶性排除B ,利用特殊点的坐标排除A 、C. 【详解】 由||()22x xx f x -=+,得()f x 的定义域为R ,(0)0f =,排除A 选项. 而||()()22x xx f x f x --==+,所以()f x 为偶函数,图像关于y 轴对称,排除B 选项.()1141421,1152522f f ⎛⎫====< ⎪⎝⎭+,排除C 选项. 故选:D .2.(2021·浙江·高三月考)函数sin 2x y x=的图象可能是( )A .B .C .D .【答案】B 【分析】判断当3,22x x ππ==的符号,可排除AC ,求导,判断函数在()0,π上的单调性,可排除D ,即可得出答案. 【详解】解:由()()sin 02x y f x x x==≠得,1310,0223f f ππππ⎛⎫⎛⎫=>=-< ⎪ ⎪⎝⎭⎝⎭,故排除AC , ()2cos sin 2x x x f x x -'=,令()cos sin g x x x x =-,则()sin g x x x '=-,当0πx <<时,()0g x '<, 所以函数()g x 在()0,π上递减, 所以()()00g x g <=在()0,π上恒成立, 即()2cos sin 02x x xf x x-'=<在()0,π上恒成立, 所以函数()f x 在()0,π上递减,故排除D. 故选:B.3.(2021·江苏省前黄高级中学高三月考)已知215()sin ,()42f x x x f x π⎛⎫+⎪⎭'=+ ⎝为()f x 的导函数,则()f x '的图象是( )A .B .C .D .【答案】A 【分析】求出导函数,判断导函数的奇偶性,再利用特殊值即可得出选项. 【详解】22co 151()si s n424f x x x x x π⎛⎫=++= +⎪⎝⎭, ()1sin 2f x x x '∴=-,∴函数()f x '为奇函数,排除B 、D.又1024f ππ⎛⎫'=-< ⎪⎝⎭,排除C.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.4.(2021·浙江·高二开学考试)函数())ln cos f x x x x =+⋅在[]2,2ππ-上的图象可能是( )A .B .C .D .【答案】C 【分析】确定奇偶性,可排除两个选项,然后确定函数在3[,2]2ππ上的单调性可再排除一个选项,从而得正确选项. 【详解】())cos())cos ()f x x x x x x x f x -=-+-=--=-,()f x 是奇函数,排除AB ,在3[,2]2x ππ∈时,由复合函数单调性知)y x =是增函数,且)0y x =>,又cos y x =增函数,且cos 0y x =>,所以)cos y x x =是增函数,而y x =是增函数,所以()f x 是增函数,排除D . 故选:C .5.(2021·浙江金华·高三月考)函数|ln()|x ay x a +=-的图象,不可能是( )A .B .C .D .【答案】D 【分析】通过函数的定义域、值域以及特殊值对四个选项中的函数图像一一分析即可判断.【详解】对于A ,当0a =时,ln xy x=,其定义域为{}0,1x x x >≠,且0y >恒成立,故A 正确; 对于B ,由函数定义域可知,0a <,当0y =,x a =-,当x a >-时,0y >,当x a <-时,0y <,故B 正确;对于C ,由函数定义域可知,0a >,当1x a -=时,函数无意义,且0y ≥恒成立,故C 正确;对于D ,由函数定义域可知,0a <,当0y =,x a =-,当x a <-时,0y <,但图中0y >,不满足条件,故D 错误; 故选:D.6.(2021·全国·高三专题练习)函数2x y π=的图像大致是( )A .B .C .D .【答案】A 【分析】由02x <<时()0f x >,排除B 和C ;再探究出函数()f x 的图象关于直线1x =对称,排除D. 【详解】当02x <<时,sin 02x π>,所以()sin02xy f x π==>,故排除B 和C ;又(2)(2)sinsin()22x xf x f x ππ--===,所以函数()f x 的图象关于直线1x =对称,排除D. 故选:A. 【点睛】方法点睛:解决函数图象的识别问题的技巧:一是活用性质,常利用函数的定义域、值域、单调性与奇偶性来排除不合适的选项;二是取特殊点,根据函数的解析式选择特殊点,即可排除不合适的选项,从而得出正确的选项.7.(2021·天津市新华中学高三月考)函数23sin ()x x x x x f x e e--=+的图象大致为( )A .B .C .D .【答案】B 【分析】先判断函数的奇偶性排除A,D,再根据(1)0f >,排除C 即得解. 【详解】解:根据题意,23sin ()x x x x x f x e e--=+,其定义域为R ,有23sin ()()x xx x xf x f x e e---==+,则函数f (x )为偶函数,排除A ,D , 3sin11(1)01f e e-=>+,排除C , 故选:B . 【点睛】方法点睛:根据函数的解析式找图象,一般先找差异,再验证. 8.(2021·全国·高三专题练习)函数2()1cos e 1x f x x ⎛⎫=+⎪-⎝⎭的大致图象为( ) A . B .C .D .【答案】B 【分析】判断图像类问题,首先求定义域,其次判断函数的奇偶性()()f x f x -=-;再次通过图像或函数表达式找特殊值代入求值,()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =;也可通过单调性来判断图像.主要是通过排除法得解. 【详解】函数()f x 的定义域为{}0x x ≠,因为2e 12e 1()1cos cos cos e 1e 1e 1x x x x x f x x x x ⎛⎫⎛⎫-++⎛⎫=+⋅=⋅=⋅ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,并且()()00e 1e e 1e ()cos cos cos e 1e e 1ex x xx x xf x x x x f x --+++-=⋅-=⋅=⋅=----, 所以函数()f x 为奇函数,其图象关于原点对称,可排除A C ,;当()0f x =时,即e 1cos 0e 1x x x +⋅=-,此时只能是cos 0x =,而cos 0x =的根是2x x k k ππ⎧⎫=+∈⎨⎬⎩⎭Z ,,可排除D . 故选:B 【点睛】函数的定义域,奇偶性,特殊值,单调性等是解决这类问题的关键,特别是特殊值的选取很重要,要结合图像的特征来选取.9.(2022·全国·高三专题练习(理))函数()232sin log y x x x π=⋅⋅的图象大致为( )A .B .C .D .【答案】B 【分析】分析函数()232sin log y x x x π=⋅⋅的定义域、奇偶性及其在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】设()()()2322sin log sin log f x x x x x x ππ=⋅⋅=⋅,该函数的定义域为{}0x x ≠,()()()()22sin log sin log f x x x x x f x ππ-=-⋅-=⋅=-,函数()f x 为奇函数,排除AC 选项;当01x <<时,0x ππ<<,()sin 0x π>,则()0f x <,排除D 选项. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.10.(2022·全国·高三专题练习)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【分析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3loga f x x ax =-,必有30x ax -≠,则0x ≠且x ≠, 即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =,当x 时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间⎛⎝⎭上,()0g x '<,则()g x 在区间⎛ ⎝⎭上为减函数,在区间⎫+∞⎪⎪⎝⎭上,()0g x '>,则()g x 在区间⎫+∞⎪⎪⎝⎭上为增函数,0g =,则()g x 存在极小值3g a =-=⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A ,故选:B. 【点睛】函数图象的辨识可以从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.(2022·全国·高三专题练习)函数()122cos cos 4421x x f x x x ππ+-⎛⎫⎛⎫=+- ⎪ ⎪+⎝⎭⎝⎭的图象为( ) A . B .C .D .【答案】D【分析】先将()f x 的解析式化简,然后判断()f x 的奇偶性,再根据()f π的取值特点判断出对应的函数图象. 【详解】因为()12221cos cos 2442121x x x x f x x x x x x x ππ+⎫⎫--⎛⎫⎛⎫=+-=⋅⋅⋅+⎪⎪ ⎪ ⎪⎪⎪++⎝⎭⎝⎭⎝⎭⎝⎭()222121cos sin cos22121x x x x x x x --=⋅-=⋅++, 所以()()()2112cos 2cos22112x xx x f x x x f x -----=⋅-=⋅=-++且定义域为R 关于原点对称, 所以()f x 为奇函数,排除A 和C ;由()21cos2021f ππππ-=>+,排除B , 故选:D . 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.12.(2021·河南·温县第一高级中学高三月考(理))函数()ln |||sin |,(f x x x x ππ=+-≤≤且0)x ≠的图象大致是( )A .B .C .D .【答案】B 【分析】根据解析式判断奇偶性,在0x π>>上0x +→有()f x →-∞,利用导函数,结合函数图象分析0x π>>内极值点的个数,即可确定正确函数图象. 【详解】函数()ln |||sin()|ln |||sin |()f x x x x x f x -=-+-=+=,(x ππ-≤≤且0)x ≠是偶函数,A 不合要求. 当0x π>>时,()ln sin f x x x =+:当0x +→,()f x →-∞,C 不合要求;而1()cos 0f x x x'=+=时,1,cos y y x x==-在0x π>>上只有一个交点(如下图示),即区间内只有一个极值点. D不合要求,B 符合要求.故选:B. 【点睛】关键点点睛:利用导函数,应用数形结合分析函数的交点情况,判断函数在区间上极值点个数.13.(2021·全国·高三专题练习(文))已知函数()f x ,()g x 满足()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩,则()()()sin 2x h x f x g x π⎛⎫+ ⎪⎝⎭=⋅的图像大致是( ) A . B .C .D .【答案】C 【分析】依题意得()()()221=4x x f x g x e e --⋅,根据奇偶性定义知()h x 为奇函数,再结合特征点即可得答案. 【详解】因为()()()()x x f x g x e f x g x e -⎧+=⎪⎨-=⎪⎩解得()()()()11=,=22x x x xf x e eg x e e --+- 所以()()()221=4x x f x g x e e --⋅,则()()()22sin 4cos 2=x xx x h x f x g x e e π-⎛⎫+ ⎪⎝⎭=⋅- ()h x 定义域为{}0x x ≠因为()()224cos x xxh x h x e e --==--,故()h x 是奇函数,则B ,D 错;当02x π<<时,()224cos 0x xxh x e e -=>-,则C 正确,故选:C 【点睛】思路点睛:函数图象的识别可以以下方面入手: (1)从函数定义域判断; (2)从函数单调性判断; (3)从函数奇偶性判断; (4)从函数特征点判断.14.(2021·湖南·长郡中学二模)函数sin cos 4411()x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭的图像可能是( )A .B .C .D .【答案】A 【分析】本题首先可通过()()f x f x -=-判断出函数()f x 为奇函数,C 、D 错误,然后取04x π<≤,通过sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭判断出此时()0f x <,即可得出结果.【详解】 因为sin cos cos sin 44441111()()x x x x f x f x ee e e ππππ⎛⎫⎛⎫⎛⎫⎛⎫-+-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝==-⎭⎝⎭,x ∈R ,所以函数()f x 为奇函数,C 、D 错误,当04x π<≤,442x πππ<+≤,sin cos 44x x ππ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411x x e e ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,sin cos 4411()0x x f x ee ππ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎭<⎝,B 错误,故选:A. 【点睛】方法点睛:本题考查函数图像的判断,在判断函数的图像的时候,可以通过函数的单调性、奇偶性、周期性、函数值的大小、是否过定点等函数性质来判断,考查数形结合思想,是中档题.15.(2021·福建龙岩·高一期末)已知函数()cos6x xxf x e e -=-,则()f x 的图象大致是( )A .B .C .D .【答案】C 【分析】分析函数()f x 的奇偶性及其在区间0,12π⎛⎫⎪⎝⎭上的函数值符号,由此可得出合适的选项.【详解】 对于函数()cos6x xxf x e e-=-,0x x e e --≠,解得0x ≠,函数()f x 的定义域为{}0x x ≠, ()()()cos 6cos6x xx xx xf x f x e e e e----==-=---,所以,函数()f x 为奇函数,排除BD 选项, 当0,12x π⎛⎫∈ ⎪⎝⎭时,60,2x π⎛⎫∈ ⎪⎝⎭,则cos60x >且0x x e e -->,此时,()0f x >,排除A 选项. 故选:C. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.16.(2021·湖北武汉·高一期末)函数()32241x xxx y -=+的部分图像大致为( )A .B .C .D .【答案】A 【分析】研究函数奇偶性和区间(的函数值的正负,利用排除法即得结果. 【详解】函数()33222()4122x x xxxx x x y f x ---===++,定义域为R , 对于任意的自变量x ,()333222()()222222x xx x x x x xx x x x f x f x -------===++-=-+++,故函数()y f x =是奇函数,图象关于原点中心对称,故CD 错误;又(32()2222x x x xx x x x x y f x --+-===++,故(x ∈时,00,0,202x x x x x ->+>+>,,即()0y f x =<,故A 正确,B 错误. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象. 17.(2021·全国·高三专题练习(理))函数()x x f x -=的图象大致为( )A .B .C .D .【答案】A 【分析】分析函数()f x 的奇偶性,以及当0x >时,()f x 的符号,进而可得出合适的选项. 【详解】 设())lng x x =,对任意的x ∈Rx x >≥-0x >,则函数()g x 的定义域为R ,())ln xxg x x-==)()lnx g x ==-=-,所以,函数())ln g x x =为奇函数,令())ln0g x x ==1x =1x =-,所以,10x -≥,可得1x ≤1x =-可得()2211x x +=-,解得0x =. 所以,函数()x x f x -=的定义域为{}0x x ≠,()()()()2222x x x xf x f xg x g x --++-==-=--,所以,函数()f x 为奇函数,排除BD 选项,当0x >时,)ln ln10x >=,220x x -+>,所以,()0f x >,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.18.(2021·全国全国·高三月考(理))已知函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭,则其图象为( ) A . B .C .D .【答案】A 【分析】分析函数()f x 的定义域、奇偶性以及该函数在()0,1上的函数值符号,结合排除法可得出合适的选项. 【详解】 函数()31sin f x x x x ⎛⎫=-⋅ ⎪⎝⎭的定义域为{}0x x ≠,排除D 选项; ()()()()()()333111sin sin sin f x x x x x x x f x x x x ⎡⎤⎛⎫⎛⎫⎢⎥-=--⋅-=-+⋅-=-⋅= ⎪ ⎪⎝⎭⎝⎭⎢⎥-⎣⎦, 所以,函数()f x 为偶函数,排除B 选项;当01x <<时,433110x x x x--=<,sin 0x >,此时()0f x <,排除C 选项.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.19.(2020·全国全国·模拟预测(文))函数()()ee sin 32xx xf x -+⋅=在55,22⎡⎤-⎢⎥⎣⎦上的图象大致是( )A .B .C .D .【答案】B 【分析】先判断函数奇偶性得函数为奇函数,故排除A,再结合π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >排除C ,最后讨论函数在对应区间内的零点个数即可得答案. 【详解】∵()()()()()e e sin 3e e sin 322xx xx x f f xx x --+⋅-+⋅==-=--,∴()f x 是奇函数,排除A .当π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x >,排除C .由()0f x =得sin30x =,又15153,22x ⎡⎤∈-⎢⎥⎣⎦, ∴30x =或π±或2π±,∴()f x 在55,22⎡⎤-⎢⎥⎣⎦上有5个零点,排除D .故选:B . 【点睛】本题考查利用函数性质确定函数图象,考查了函数的奇偶性,考查数形结合思想,属于基础题.思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.20.(2020·山西·河津中学高三月考(理))函数(),()sin f x x g x x x ==+,则()()()h x f x g x =的图象大致为( )A .B .C .D .【答案】A 【分析】由()h x 为偶函数,故排除选项B ,当0x >时,()0,f x >且()f x 为增函数,()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=,所以当0x >时,()()()0h x f x g x =>,排除选项D ,从而可得出()h x 在(0,)+∞上为增函数,排除选项C ,得到答案.【详解】()(sin )h x x x x =+,则()()()()sin sin h x x x x x x x h x -=---=+=,所以()h x 为偶函数,故排除选项B. 当0x >时,()0,f x >且()f x 为增函数.()1cos 0g x x '=+≥恒成立,所以()g x 在(0,)+∞上为增函数,所以当0x >时,()()00g x g >=所以当0x >时,()()()0h x f x g x =>,排除选项D. 设120x x <<,则()()120f x f x <<,()()120g x g x << 则()()()()()()121122g g h x h x f x x f x x -=-()()()()()()()()11121222g g g g f x x f x x f x x f x x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+- ()()()()()()()()112212g g g f x x x x f x f x =-+-由条件()10f x >,()()12g g 0x x -<,则()()()()112g g 0f x x x -<()2g 0x >,()()120f x f x -<,则()()()()212g 0x f x f x -<所以()()()()()()()()112212g g g 0f x x x x f x f x -+-<,即()()12h x h x < 因此()h x 在(0,)+∞上为增函数,排除选项C 故选:A 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.。

历史七年级上册期末基础知识专项复习(部编版)专题07 战国时期的社会变化(解析版)

历史七年级上册期末基础知识专项复习(部编版)专题07 战国时期的社会变化(解析版)

专题07 战国时期的社会变化知识讲解1.战国七雄指齐、楚、燕、韩、赵、魏、秦。

(韩赵魏三家分晋,田氏代齐)2.战国时期著名战役有桂陵之战、马陵之战和长平之战3.商鞅变法的时间、内容和作用?时间:公元前356年商鞅变法开始。

内容:①政治:建立县制,由国君直接派官吏治理。

废除贵族的世袭特权改革户籍制度,加强对人民的管理严明法度,禁止私斗②经济:废除井田制,允许土地自由买卖;奖励耕织,生产粮食和布帛多的人可以免除徭役;统一度量衡③军事:奖励军功,对有军功者授予爵位并赏赐土地作用:经过商鞅变法,秦国的国力大为增强,提高了军队的战斗力,一跃成为最强盛的诸侯国,为以后秦统一全国奠定了基础。

4.战国时期,蜀郡太守李冰在成都平原上修建了著名水利工程都江堰,成都平原因而获得了“天府之国”的美称。

综合练习一.选择题(共15小题)1.《汉书•食货志》这样记载:及秦孝公用商君,坏井田,开阡陌,急耕战之赏……倾邻国而雄诸侯……至于始皇,遂并天下。

材料中的“至于始是,遂并天下”指的是()A.秦孝公用商君B.商鞅变法C.秦国成为诸侯中最强大的国家D.秦统一中国【分析】本题主要考查了商鞅变法相关知识,经过商鞅变法,秦国经济发展起来,军队的战斗力不断加强,发展成为战国后期最富强的国家,为秦统一六国奠定了基础。

【解答】战国时期,秦孝公为了增强秦国的实力,在争雄战争中处于有利地位,公元前356年,秦国商鞅在秦孝公的支持下进行变法。

经过商鞅变法,秦国的国力大为增强,提高了军队的战斗力,一跃成为最强盛的诸侯国,为以后秦国统一全国奠定了基础。

D符合题意,ABC错误。

故选:D。

2.如图反映了战国中期以后,通过不断兼并战争,诸侯国势力此消彼长先后崛起情况,其中逐渐成为势力最强大的诸侯国是()A.①B.②C.③D.④【分析】本题考查战国纷争,知道战国中期以后,逐渐成为势力最强大的诸侯国是秦国。

【解答】战国中期以后,逐渐成为势力最强大的诸侯国是秦国。

(部编人教版)小学三年级语文上册全册知识点梳理期末复习讲解教学课件

(部编人教版)小学三年级语文上册全册知识点梳理期末复习讲解教学课件
11.夏天,树木长得葱葱茏茏,密密层层的枝叶把森林封得严严实实的, 挡住了人们的视线,遮住了蓝蓝的天空。 _____“__葱__葱__茏__茏__”_“__密__密__层__层__”__写__出__了_夏__天__的__特__点__,_“__封__”__字_既__展__现__了__ _树__木__的__茂__盛__,_又__展_现__了__小__兴__安__岭__的__生__机__勃_勃__。_______________________
ቤተ መጻሕፍቲ ባይዱ
(部编人教版)小学三年级语文上册期末复习讲解教学课件
6.当他们重新聚到奶酪旁边时,蚂蚁队长命令年龄最小的一只蚂 蚁:“这点儿奶酪渣是刚才弄掉的,丢了可惜,你吃掉它吧!” ______这__是__蚂__蚁__队_长__对__最__小__的__一__只__蚂__蚁__说_的__话__,_既__表__现__了__蚂__蚁__队_长__对__属___ _下__的__关__爱__,_也__展__现_了__蚂__蚁__队__长__的__智__慧__与_气__度__。_______________________
(部编人教版)小学三年级语文上册期末复习讲解教学课件
五、按要求查字典。
“转”字用部首查字法应先查_车_____,再查_4_____画,“转” 字的第三画是___提___。用音序查字法应先查___Z___,再查音节 _z_h_u_ǎn__,组词_转__移___,“转”字还有一个读音是_z_h_u_à_n_,可以组词 __转_圈___。
(部编人教版)小学三年级语文上册期末复习讲解教学课件
2.根据《望洞庭》完成填空。 湖光秋月两相和 ,潭面无风镜未磨。
遥望洞庭山水色, 白银盘里一青螺 。 ⑴.《望洞庭》是 唐 代诗人 刘禹锡所作。在诗中,诗人采用了 比喻 的修辞手法 形象生动地描绘了诗人眼中的洞庭山水美景 ⑵.给下列诗句选择正确答案。 遥望洞庭山水色,白银盘里一青螺。 白银盘”指的是洞庭湖水。( × ) “白银盘”指的是洞庭湖面。( √ ) “青螺“指的是青色的田螺( × ) “青螺””指的是洞庭湖中的君山( √ )

初中数学中考复习考点知识与题型专题讲解11 一次函数 (解析版)

初中数学中考复习考点知识与题型专题讲解11 一次函数 (解析版)

初中数学中考复习考点知识与题型专题讲解专题11 一次函数【知识要点】考点知识一变量与函数变量:在一个变化过程中数值发生变化的量。

常量:在一个变化过程中数值始终不变的量。

【注意】1、变量是可以变化的,而常量是已知数,且它是不会发生变化的。

2、区分常量和变量就是在某个变化过程中该量的值是否发生变化。

函数的定义:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。

如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

【函数概念的解读】1、有两个变量。

2、一个变量的数值随另一个变量的数值变化而变化。

3、对于自变量每一个确定的值,函数有且只有一个值与之对应。

函数定义域:一般的,一个函数的自变量x允许取值的范围,叫做这个函数的定义域。

确定函数定义域的方法:(自变量取值范围)(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

函数值概念:如果在自变量取值范围内给定一个值a,函数对应的值为b,那么b叫做当自变量取值为a时的函数值。

函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。

函数的取值范围:使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

画函数图像的一般步骤:1、列表2、描点3、连线函数图像上点的坐标与解析式之间的关系:1、将点的坐标代入到解析式中,如解析式两边成立,则点在解析式上,反之,不在。

2、两个函数图形交点的坐标就是这两个解析式所组成的方程组的解。

函数的三种表示法及其优缺点1、解析法:两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

中考数学复习考点知识与题型专题讲解14--- 多边形(解析版)

中考数学复习考点知识与题型专题讲解14--- 多边形(解析版)

中考数学复习考点知识与题型专题讲解专题14 多边形【知识要点】多边形的相关知识:➢ 在平面中,由一些线段首尾顺次相接组成的图形叫做多边形,多边形中相邻两边组成的角叫做它的内角。

多边形的边与它邻边的延长线组成的角叫做外角。

➢ 连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

➢ 一个n 边形从一个顶点出发的对角线的条数为(n -3)条,其所有的对角线条数为2)3( n n凸多边形 :画出多边形的任何一条边所在的直线,如果多边形的其它边都在这条直线的同侧,那么这个多边形就是凸多边形。

正多边形 :各角相等,各边相等的多边形叫做正多边形。

(两个条件缺一不可,除了三角形以外,因为若三角形的三内角相等,则必有三边相等,反过来也成立)⏹ 多边形的内角和➢ n 边形的内角和定理:n 边形的内角和为(n −2)∙180°➢ n 边形的外角和定理:多边形的外角和等于360°,与多边形的形状和边数无关。

【考查题型】考查题型一多边形截角后的边数问题【解题思路】多边形减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.典例1.(2018·云南昭通市模拟)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16B.17C.18D.19【答案】A【详解】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.变式1-1.(2021·宁波市一模)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【答案】A【解析】当剪去一个角后,剩下的部分是一个四边形,则这张纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选A.考查题型二计算多边形的周长【解题思路】考查多边形的周长,解题在于掌握计算公式典例2.(2021·隆化县模拟)下列图形中,周长不是32 m的图形是( )A.B.C.D.【答案】B【提示】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.变式2-1.(2017·海南中考模拟)如图,□ABCD纸片,∠A=120°,AB=4,BC=5,剪掉两个角后,得到六边形AEFCGH ,它的每个内角都是120°,且EF=1,HG=2,则这个六边形的周长为( )A.12B.15C.16D.18【答案】B【解析】如图,分别作直线AB、BC、HG的延长线和反向延长线使它们交于点B、Q、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APH、△BEF、△DHG、△CQG都是等边三角形.∴EF=BE=BF=1,DG=HG=HD=2.∴FC=5-1=4,AH=5-2= 3,CG=CD-DG=4−2=2.∴六边形的周长为1+3+3+2+2+4=15.故选B.考查题型三计算网格中的多边形面积【解题思路】利用分割法即可解决问题典例3.(2021·辽宁葫芦岛市模拟)如图是边长为1的正方形网格,A、B、C、D均为格点,则四边形的面积为()A .7B .10C .152D .8 【答案】A 【提示】利用分割法即可解决问题.【详解】解:S 四边形ABCD =3×4﹣12×2×1×2﹣12×1×3×2=12﹣5=7,故选:A . 变式3-1.(2021·山东烟台市模拟)如图,在边长为1的小正方形网格中,△ABC 的三个顶点均在格点上,若向正方形网格中投针,落在△ABC 内部的概率是()A .12B .14C .38D .516【答案】D【提示】用正方形的面积减去四个易求得三角形的面积,即可确定△ABC 面积,用△ABC 面积除以正方形的面积即可.【详解】解:正方形的面积=4×4=16,三角形ABC 的面积=11116434221222-⨯⨯-⨯⨯-⨯⨯=5, 所以落在△ABC 内部的概率是516, 故选D .变式3-2.(2021·江西九年级零模)如图,在边长为1的小正方形网格中,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,②,③,④四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是()A .12S SB .23S S =C .124S S S +=D .134S S S +=【答案】B【提示】根据题意判断格点多边形的面积,依次将1234S S S S 、、、计算出来,再找到等量关系.【详解】观察图形可得12342.5,3,3,6,S S S S ====∴23234,6S S S S S =+==,故选:B .考查题型四 计算多边形对角线条数【解题思路】熟记n 边形从一个顶点出发可引出(n-3)条对角线是解答此题的关键.典例4.(2017·山东济南市·中考真题)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14D .15【答案】C【解析】解:根据题意,得:(n ﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7(73)2⨯-=14,故选C . 变式4-1.(2018·山东济南市·中考模拟)若凸n 边形的每个外角都是36°,则从一个顶点出发引的对角线条数是( )A .6B .7C .8D .9【答案】B【解析】360°÷36°=10,10−3=7.故从一个顶点出发引的对角线条数是7.故选:B.变式4-2.(2021·莆田市二模)从n边形的一个顶点出发可以连接8条对角线,则n ()A.8B.9C.10D.11【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可得n-3=8,求出n的值即可.【详解】解:由题意得:n-3=8,解得n=11,故选:D.变式4-3.(2021·湖南长沙市模拟)已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【答案】D【提示】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【详解】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有12(6×3)=9条,故选:D.变式4-4.(2021·广东茂名市·中考模拟)若一个多边形从同一个顶点出发可以作5条对角线,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】可根据n边形从一个顶点引出的对角线有n-3条,即可求解.【详解】解:设这个多边形的边数为n,则n-3=5,解得n=8,故这个多边形的边数为8,故选:C.变式4-5.(2021·河北模拟)过某个多边形的一个顶点的所有对角线,将这个多边形分成7个三角形,则这个多边形是()A.六边形B.七边形C.八边形D.九边形【答案】D【提示】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成n-2个三角形,依此可得n的值.【详解】解:设这个多边形是n边形,由题意得,n-2=7,解得:n=9,即这个多边形是九边形,故选:D.考查题型五多边形内角和问题【解题思路】考查多边形的内角和公式,解题关键是牢记多边形的内角和公式.典例5.(2018·山东济宁市·中考真题)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°【答案】A【解析】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数.解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=(∠BCD+∠CDE )=120°,∴∠P=180°﹣120°=60°.故选A .变式5-1.(2021·甘肃庆阳市·中考真题)如图,足球图片正中的黑色正五边形的内角和是( ).A .180°B .360°C .540°D .720°【答案】C【提示】根据多边形内角和公式2180()n -⨯︒即可求出结果.【详解】解:黑色正五边形的内角和为:5218540(0)-⨯︒=︒,故选C .变式5-2.(2021·湖南湘西土家族苗族自治州·中考真题)已知一个多边形的内角和是1080°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【答案】D【提示】根据多边形的内角和=(n ﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n ,∴(n ﹣2)•180°=1080°,解得n =8.故选D.考查题型六正多边形内角和问题【解题思路】掌握并能运用多边形内角和公式是解题的关键典例6.(2021·湖南怀化市·中考真题)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9【答案】C【提示】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案:n=8.故选C.变式6-1.(2021·湖北宜昌市·中考真题)游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行.成功的招数不止一招,可助我们成功的一招是().A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长【答案】A【提示】根据题意可知封闭的图形是正五边形,求出正五边形内角的度数即可解决问题.【详解】根据题意可知,从起点走五段相等直路之后回到起点的封闭图形是正五边形,∵正五边形的每个内角的度数为:(52)1801085-⨯︒=︒∴它的邻补角的度数为:180°-108°=72°,因此,每走完一段直路后沿向右偏72°方向行走,故选:A.变式6-2.(2021·河北中考真题)正六边形的一个内角是正n边形一个外角的4倍,则n=_________.【答案】12【提示】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n边形的外角为30°,再根据外角和定理即可求解.【详解】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n边形一个外角的4倍,∴正n边形的外角为30°,∴正n边形的边数为:360°÷30°=12.故答案为:12.∠变式6-3.(2021·福建中考真题)如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC 等于_______度.【答案】30【提示】先证出内部的图形是正六边形,求出内部小正六边形的内角,即可得到∠ACB的度数,根据直角三角形的两个锐角互余即可求解.【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC,BC=AF,∴CD=CF,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∴∠1=()1621801206-⨯︒=︒, ∴∠2=180°-120°=60°,∴∠ABC=30°,故答案为:30.考查题型七 截角后的内角和问题【解题思路】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个是解决本题的关键.典例7.(2021·五莲县一模)一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( )A .360°B .540°C .180°或360°D .540°或360°或180°【答案】D【提示】剪掉一个多边形的一个角,则所得新的多边形的角可能增加一个,也可能不变,也可能减少一个,根据多边形的内角和定理即可求解.【详解】n 边形的内角和是(n ﹣2)•180°,边数增加1,则新的多边形的内角和是(4+1﹣2)×180°=540°,所得新的多边形的角不变,则新的多边形的内角和是(4﹣2)×180°=360°,所得新的多边形的边数减少1,则新的多边形的内角和是(4﹣1﹣2)×180°=180°,因而所成的新多边形的内角和是540°或360°或180°,故选D .变式7-1.(2021·河北九年级其他模拟)一个多边形截去一个角后,形成另一个多边形的内角和为2520°,则原多边形的边数是( )A .17B .16C .15D .16或15或17【答案】D【详解】多边形的内角和可以表示成()2180n -⋅︒ (3n ≥且n 是整数),一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,根据()21802520,n -⋅︒=解得:n=16,则多边形的边数是15,16,17.故选D .变式7-2.(2021·贵州铜仁市·九年级零模)一个多边形切去一个角后得到的另一个多边形的内角和为900︒,那么原多边形的边数为()A .6或7或8B .6或7C .7或8D .7【答案】A【提示】首先求得内角和为900°的多边形的边数,即可确定原多边形的边数.【详解】解:设内角和为900°的多边形的边数是n ,则(n-2)•180°=900°,解得:n=7,如图,有如下几种切法,则原多边形的边数为6或7或8.故选:A .考查题型八 正多边形的外角问题【解题思路】解决问题的关键是掌握多边形的外角和等于360度.典例8.(2021·江苏无锡市·中考真题)正十边形的每一个外角的度数为()A.36︒B.30C.144︒D.150︒【答案】A【提示】利用多边形的外角性质计算即可求出值.【详解】解:360°÷10=36°,故选:A.变式8-1.(2021·江苏扬州市·中考真题)如图,小明从点A出发沿直线前进10米到达点B,向左转45︒后又沿直线前进10米到达点C,再向左转45︒后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米【答案】B【提示】根据题意,小明走过的路程是正多边形,先用360°除以45°求出边数,然后再乘以10米即可.【详解】解:∵小明每次都是沿直线前进10米后再向左转45︒,∴他走过的图形是正多边形,边数n=360°÷45°=8,∴小明第一次回到出发点A时所走的路程=8×10=80米.故选:B.变式8-2.(2021·湖南娄底市·中考真题)正多边形的一个外角为60°,则这个多边形的边数为()A.5B.6C.7D.8【答案】B【提示】根据正多边形的外角和以及一个外角的度数,求得边数.【详解】解:正多边形的一个外角等于60°,且外角和为360°,则这个正多边形的边数是:360°÷60°=6,故选:B.考查题型九多边形外角和的实际应用【解题思路】典例9.(2021·湖北黄冈市·中考真题)如果一个多边形的每一个外角都是36°,那么这个多边形的边数是()A.7B.8C.9D.10【答案】D【提示】根据多边形的外角的性质,边数等于360°除以每一个外角的度数.【详解】∵一个多边形的每个外角都是36°,∴n=360°÷36°=10.故选D.变式9-1.(2021·山东德州市·中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为()A.80米B.96米C.64米D.48米【答案】C【提示】根据多边形的外角和即可求出答案.【详解】解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.故选:C考查题型十多边形内角和与外角和的综合应用【解题思路】熟悉多边形的内角和公式:n边形的内角和是(n-2)×180°;多边形的外角和是360度.典例10.(2021·西藏中考真题)一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A.8B.9C.10D.11【答案】C【提示】利用多边形的内角和公式及外角和定理列方程即可解决问题.【详解】设这个多边形的边数是n,则有(n-2)×180°=360°×4,所有n=10.故选C.变式10-1.(2021·陆丰市模拟)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°【答案】C【提示】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:3605=72°.故选C.变式10-2.(2021·中江县模拟)已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8B.9C.10D.12【答案】A【解析】试题提示:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.变式10-3.(2021·西宁市模拟)一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【答案】C【解析】解:设这个多边形的边数是n,根据题意得,(n-2)•180°=2×360°+180°, n=7.故选C.考查题型十一平面镶嵌【解题思路】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.典例11.下列多边形中,不能够单独铺满地面的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】由镶嵌的条件知,在一个顶点处各个内角和为360°.【详解】∵正三角形的内角=180°÷3=60°,360°÷60°=6,即6个正三角形可以铺满地面一个点,∴正三角形可以铺满地面;∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;∵正五边形的内角=180°-360°÷5=108°,360°÷108°≈3.3,∴正五边形不能铺满地面;∵正六边形的内角=180°-360°÷6=120°,360°÷120°=3,即3个正六边形可以铺满地面一个点,∴正六边形可以铺满地面.故选C.变式11-1小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可能...是()A.正三角形B.正方形C.正五边形D.正六边形【答案】C【提示】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角,若能构成360,则说明能够进行平面镶嵌;反之则不能.【详解】解:因为用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,所以小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是正五边形.故选:C变式11-2.能够铺满地面的正多边形组合是()A.正六边形和正方形B.正五边形和正八边形C.正方形和正八边形D.正三角形和正十边形【答案】C【解析】A、正六边形的每个内角是120°,正方形的每个内角是90°,120m+90n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正五边形每个内角是180°-360°÷5=108°,正八边形每个内角为135度,135m+108n=360°,显然n 取任何正整数时,m不能得正整数,故不能铺满;C、正方形的每个内角为90°,正八边形的每个内角为135°,两个正八边形和一个正方形刚好能铺满地面;D、正三角形每个内角为60度,正十边形每个内角为144度,60m+144n=360°,显然n取任何正整数时,m不能得正整数,故不能铺满.故选C.变式11-3下列边长相等的正多边形能完成镶嵌的是()A.2个正八边形和1个正三角形B.3个正方形和2个正三角形C.1个正五边形和1个正十边形D.2个正六边形和2个正三角形【答案】D【提示】只需要明确几个几何图形在一点进行平铺就是几个图形与这一点相邻的所有内角之和等于360°即可。

中考语文复习考点1字音重点难点(解析版)

中考语文复习考点1字音重点难点(解析版)

字音课标要求语音、文字、书写都是重要的语文素养之一。

课标在“识字与写字”中明确指出:1.能熟练地使用字典、词典独立识字,会用多种检字方法.累计认识常用汉字3500个,其中3000个左右会写。

2.在使用硬笔熟练地书写正楷字的基础上,学写规范、通行的行楷字,提高书写的速度。

3.临摹名家书法,体会书法的审美价值。

考点梳理1.多音字【考点讲解】多音字,就是一个字有两个或两个以上的读音,不同的读音表达的意思不同,用法不同,词性也大多不同。

如:“数”有三种读音。

①shǔ 动词,数落;②shù作数词用,数字;③shuò副词,数次。

【解题技巧】辨别多音字的读音,最关键的是根据这个字在具体语境中的意义来判断。

1、根据词义来判断读音如:“差”,表示“不好,不够标准”时,读作chà,如“差等”、“成绩差”;表示“被派遣去做的事”时,读作“chāi”,如“出差”“公差”。

2、根据词性来判断读音如“处”,作名词时读chù,表示某个地方,如“处所”、“办事处”;作动词时读chǔ,表示与人的交往,或是置身在什么地方,如“相处”、“处境”等。

3、根据使用情况来判断读音如“似”:只有在表示跟某种情况或事物相似,与“的”连用时,读作“shì”;其余情况下读作“sì”,如“似乎”“相似”。

4、根据语体来判断读音如“血”:在口语中读xiě,在书面语中则读作xuè。

2.易误读常见字【考点讲解】易误读的常见字主要包括多音字、形近字和形声字。

平时学习时要注意读准字音,了解字义,并做到准确书写。

【解题技巧】1、多音字﹣﹣根据字意定音详见考点“多音字”考点卡片2、形近字﹣﹣仔细辨认字形形近字指几个字形结构相近,但含义不同的字。

误读形近字,大多是因为没有看清它们之间的细微差别。

如:“亨”与“享”、“概”与“慨”、“刺”与“剌”等。

3、形声字﹣﹣谨防声旁误导形声字由声旁与形旁两部分组成,声旁是表声的,但由于古今字音的差异,现代汉语中,有很多形声字都不能按声旁来确定读音了。

高考数学复习基础知识专题讲解与练习04 函数的性质综合应用(解析版)

高考数学复习基础知识专题讲解与练习04 函数的性质综合应用(解析版)

高考数学复习基础知识专题讲解与练习专题04函数的性质综合应用一、单选题1.(2021·黑龙江·牡丹江市第三高级中学高三月考(文))已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为() A .(-1,0) B .(-2,0) C .(0,1)D .1,02⎛⎫- ⎪⎝⎭【答案】C 【分析】由题设函数的定义域,应用换元法求出()f t 的定义域,进而求(21)f x -的定义域即可. 【详解】由题设,若1t x =+,则(1,1)t ∈-,∴对于(21)f x -有21(1,1)x -∈-,故其定义域为(0,1). 故选:C.2.(2021·湖南·高三月考)已知函数()f x 满足22()()326f x f x x x +-=++,则() A .()f x 的最小值为2B .x R ∃∈,22432()x x f x ++>C .()f x 的最大值为2D .x R ∀∈,22452()x x f x ++>【答案】D 【分析】先求得()f x ,然后结合二次函数的性质确定正确选项.【详解】因为22()()326f x f x x x +-=++(i ),所以用x -代换x 得22()()326f x f x x x -+=-+(ii ). (i )×2-(ii )得23()366f x x x =++, 即22()22(1)1f x x x x =++=++,从而()f x 只有最小值,没有最大值,且最小值为1.()2222222221243243122()222222x x x x x x f x x x x x x x ++-++++===-<++++++, ()2222222221245245122()222222x x x x x x f x x x x x x x +++++++===+>++++++. 故选:D.3.(2021·河南·孟津县第一高级中学高三月考(理))若函数()2021x x f x x ππ-=-+,则不等式(1)(24)0f x f x ++-≥的解集为() A .[1,)+∞ B .(,1]-∞ C .(0,1] D .[1,1]-【答案】A 【分析】判断出函数的奇偶性和单调性,再利用其性质解不等式即可 【详解】()f x 的定义域为R ,因为()2021(2021)()x x x x f x x x f x ππππ---=-=--+=--, 所以()f x 是奇函数,所以不等式(1)(24)0f x f x ++-≥可化为(1)(42)f x f x +≥-, 因为,,2021x x y y y x ππ-==-=在R 上均为增函数, 所以()f x 在R 上为增函数, 所以142x x +≥-,解得1x ≥, 故选:A.4.(2022·全国·高三专题练习)已知函数f (x 2+1)=x 4,则函数y =f (x )的解析式是( )A .()()21,0f x x x =-≥B .()()21,1f x x x =-≥C .()()21,0f x x x =+≥D .()()21,1f x x x =+≥【答案】B 【分析】利用凑配法求得()f x 解析式. 【详解】()()()2242211211f x x x x +==+-++,且211x +≥,所以()()22211,1f x x x x x =-+=-≥. 故选:B.5.(2021·湖南省邵东市第一中学高三月考)已知函数()f x 满足()()()222f a b f a f b +=+对,a b ∈R 恒成立,且(1)0f ≠,则(2021)f =() A .1010 B .20212C .1011D .20232【答案】B 【分析】利用赋值法找出规律,从而得出正确答案. 【详解】令0a b ==,则()()()()20020,00f f f f =+=,令0,1a b ==,则()()()()()221021,121f f f f f =+=,由于()10f ≠,所以()112f =.令1a b ==,则()()()221211f f f =+=, 令2,1a b ==,则()()()2133221122f f f =+=+=,令3,1a b ==,则()()()23144321222f f f =+=+=,以此类推,可得()202120212f =.故选:B.6.(2021·安徽·六安二中高三月考)设()f x 为奇函数,且当0x ≥时,()21x f x =-,则当0x <时,()f x =() A .21x -- B .21x -+C .21x ---D .21x --+【答案】D 【分析】根据题意,设0x <,则0x ->,由函数的解析式可得()21x f x --=-,结合函数的奇偶性分析可得答案. 【详解】根据题意,设0x <,则0x ->, 则()21x f x --=-,又由()f x 为奇函数,则()()21x f x f x ---=-+=,故选:D.7.(2021·河南·高三月考(理))||||2()x x x e f x e-=的最大值与最小值之差为()A .4-B .4eC .44e-D .0【答案】B 【分析】利用函数为奇函数,且其图像的对称性,利用导数可得函数的单调性和最值. 【详解】22()1xx xx e x f x ee-==-,设2()xx g x e=,则()()1g x f x =+则()g x 为奇函数,图像关于原点对称,其最大值与最小值是互为相反数,max max ()()1g x f x =+min ()()1min g x f x =+ max min ()()0g x g x +=max min max min max min max ()()(()1)(()1)()()2()f x f x g x g x g x g x g x ∴-=---=-=即()f x 的最大值与最小值之差为max 2()g x , 当0x >时2()xxg x e =,222(1)()x x x x g x e e --'==, 故2()xxg x e =的单调递增区间为(0,1),单调递减区间为(1,)+∞, 所以max 2()(1)g x g e==,所以()f x 的最大值与最小值之差为4e故选:B.8.(2021·黑龙江·牡丹江市第三高级中学高三月考(理))已知减函数()332f x x x =--,若()()320f m f m -+-<,则实数m 的取值范围为() A .(),3-∞ B .()3,+∞ C .(),3-∞- D .()3,-+∞【答案】C 【分析】根据函数奇偶性和单调性,列出不等式即可求出范围. 【详解】易知()f x 为R 上的奇函数,且在R 上单调递减, 由()()320f m f m -+-<,得()()()322f m f m f m -<--=, 于是得32m m ->,解得3m <-. 故选:C.9.(2021·陕西·西安中学高三期中)已知函数()(1ln 31xx a x f x x a +=++++-(0a >,1a ≠),且()5f π=,则()f π-=() A .5- B .2 C .1D .1-【答案】C 【分析】令()()3g x f x =-,由()()0g x g x -+=,可得()g x 为奇函数,利用奇函数的性质即可求解. 【详解】解:令()()(1ln 13x x a x g x f x x a +++=--+=,因为()()((11ln ln 011xxx x a a g x x x x x x aa g --++-++-++++=---+=,所以()g x 为奇函数,所以()()0g g ππ-+=,即()()330f f ππ--+-=, 又()5f π=, 所以()1f π-=, 故选:C.10.(2021·北京通州·高三期中)已知函数()f x 的定义域为R ,()54f =,()3f x +是偶函数,[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,则()A .()04f <B .()14f =C .()24f >D .()30f <【答案】B 【分析】根据条件可得()f x 关于直线3x =对称,()f x 在[)3,+∞上单调递增,结合()54f =可判断出答案. 【详解】由()3f x +是偶函数可得()f x 关于直线3x =对称 因为[)12,3,x x ∀∈+∞,有()()12120f x f x x x ->-,所以()f x 在[)3,+∞上单调递增因为()54f =,所以()()064f f =>,()()154f f ==,()()244f f =< 无法比较()3f 与0的大小 故选:B.11.(2021·北京朝阳·高三期中)若函数()()221x f x a a R =-∈+为奇函数,则实数a =().A .2-B .1-C .0D .1【答案】D【分析】由奇函数的性质()00f =求解即可 【详解】因为函数()()221x f x a a R =-∈+为奇函数,定义域为R ,所以()00f =,即02021a -=+,解得1a =,经检验符合题意,故选:D.12.(2022·上海·高三专题练习)函数()2020sin 2f x x x =+,若满足()2(1)0f x x f t ++-≥恒成立,则实数t 的取值范围为() A .[2,)+∞ B .[1,)+∞C .3,4⎛⎤-∞ ⎥⎝⎦D .(,1]-∞【答案】C 【详解】∵()2020sin 2()f x x x f x -=--=-,且()20202cos20f x x '=+>, ∴函数()f x 为单调递增的奇函数.于是,()2(1)0f x x f t ++-≥可以变为()2(1)(1)f x x f t f t +--=-,即21x x t +≥-,∴21t x x ≤++,而221331244x x x ⎛⎫++=++≥ ⎪⎝⎭,可知实数34t ≤, 故实数t 的取值范围为3,4⎛⎤-∞ ⎥⎝⎦.故选:C.13.(2021·江苏·海安高级中学高三月考)已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是() A .1,02⎛⎫- ⎪⎝⎭ B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭ 【答案】D 【分析】由题意可得()()()f x x f x x -=---,令()()2F x f x x =-,根据奇偶性的定义,可得()F x 为偶函数,利用导数可得()F x 的单调性,将题干条件化简可得()2(1)2(1)f a a f a a -≥---,即()(1)F a F a ≥-,根据()F x 的单调性和奇偶性,计算求解,即可得答案.【详解】由()()4f x f x x --=,得()2()2()f x x f x x -=---, 记()()2F x f x x =-,则有()()F x F x =-,即()F x 为偶函数, 又当(0,)x ∈+∞时,()()20F x f x ''=->恒成立, 所以()F x 在(0,)+∞上单调递增,所以由()()()1221f a f a a --≥-,得()2(1)2(1)f a a f a a -≥---, 即()(1)F a F a ≥-(||)(|1|)F a F a ⇔-,所以|||1|a a -,即2212a a a ≥+-,解得12a ,故选:D.14.(2021·黑龙江·哈尔滨三中高三期中(文))设函数222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩,则函数()1y f x =-的零点个数为() A .1个 B .2个C .3个D .0个【答案】B【分析】由已知函数()f x 的解析式作出图象,把函数()1y f x =-的零点转化为函数()f x 与1y =的交点得答案. 【详解】由函数解析式222,0()lg ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩由图可知,函数()1y f x =-的零点的个数为2个. 故选:B .15.(2020·广东·梅州市梅江区嘉应中学高三月考)已知函数()f x 是定义在R 上的奇函数,满足1(2)()f x f x +=,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+,则()2021f 等于() A .4 B .2C .2-D .2log 7【答案】C 【分析】求得()f x 是周期为4的周期函数,从而求得()2021f . 【详解】因为函数()f x 是定义在R 上的奇函数,()11(4)(2)2()1(2)()f x f x f x f x f x +=++===+, 其最小正周期为4,所以()()2021450511)()1(f f f f ⨯+===--.因为31,02⎛⎫-∈- ⎪⎝⎭,且当3,02x ⎛⎫∈- ⎪⎝⎭时,()2log (31)f x x =-+, 所以()2()log 13)1(12f -=--+=⨯,所以()202112()f f =--=-. 故选:C.16.(2021·江西·九江市柴桑区第一中学高三月考(文))已知函数()f x 是定义在[3,2]a --上的奇函数,且在[3,0]-上单调递增,则满足()()0f m f m a +->的m 的取值范围是()A .5,82⎛⎤ ⎥⎝⎦B .5,32⎛⎤⎥⎝⎦C .[]2,3D .[]3,3-【答案】B 【分析】根据奇函数的定义可知定义域关于原点对称可得320a -+-=,即可解出a ,由奇函数的性质可得函数()f x 在[]3,3-上递增,再将()()0f m f m a +->等价变形为()()f m f a m >-,然后根据单调性即可解出. 【详解】依题意可得320a -+-=,解得5a =,而函数f x ()在[3,0]-上单调递增,所以函数()f x 在[0,3]上单调递增,又函数()f x 连续,故函数()f x 在[]3,3-上递增,不等式()()0f m f m a +->即为()()5f m f m >-,所以333535m m m m-≤≤⎧⎪-≤-≤⎨⎪>-⎩,解得532m <≤.故选:B .17.(2021·浙江·高三期中)已知0a >,0b >,则“2ln 39b a a b>-”是“a b >”成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B 【分析】构造函数,利用函数的单调性,结合充分性、必要性的定义进行判断即可. 【详解】解:由()22ln ln 2ln 33b a a a b b=->-,得()2ln 23ln 3a b a b +>+,令()ln 3x f x x =+,()f x 在()0,∞+上单调递增,又()()2f a f b >,则2a b >.即当0a >,0b >时,2ln 392b a a a b b>-⇔>.显然,2a b a b >⇒>,但由2a b >不能得到a b >. 故选:B .18.(2021·重庆市实验中学高三月考)已知函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩,若函数()f x 在R 上为减函数,则实数a 的取值范围为()A .1,13⎡⎫⎪⎢⎣⎭B .11,32⎡⎤⎢⎥⎣⎦C .10,3⎛⎤⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭【答案】B 【分析】利用二次函数、指数函数的单调性以及函数单调性的定义,建立关于a 的不等式组,解不等式组即可得答案. 【详解】解:因为函数()()2312,1,1x x a x x f x a x ⎧-++<⎪=⎨≥⎪⎩在R 上为减函数,所以()213112011312a a a a +⎧≥⎪⎪<<⎨⎪-++≥⎪⎩,解得1132a ≤≤,所以实数a 的取值范围为11,32⎡⎤⎢⎥⎣⎦, 故选:B.19.(2021·全国·高三期中)已知()2f x +是偶函数,当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,设12a f ⎛⎫= ⎪⎝⎭,()3b f =,()4c f =,则a 、b 、c 的大小关系为() A .b a c << B .c b a << C .b c a << D .a b c <<【答案】A 【分析】分析可知函数()f x 在()2,+∞为增函数,由已知条件可得1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合函数()f x 的单调性可得出a 、b 、c 的大小关系. 【详解】当122x x <<时,()()()21210f x f x x x -->⎡⎤⎣⎦恒成立,则()()12f x f x <, 所以()f x 在()2,+∞为增函数.又因为()2f x +是偶函数,所以,()()22f x f x -+=+,即1722a f f ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,所以()()7342f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:A.20.(2021·宁夏·海原县第一中学高三月考(文))已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+,若()13f =,则()()()()1232022f f f f ++++=()A .2022B .0C .3D .2022-【答案】C 【分析】由条件可得()f x 是周期为4的周期函数,然后利用()()()()()()()()()()1232022505123412f f f f f f f f f f ++++=+++++⎡⎤⎣⎦算出答案即可.【详解】因为()f x 是定义域为()-∞+∞,的奇函数,所以()()f x f x -=-,()00f = 因为()()11f x f x -=+,所以()()()2f x f x f x -=+=-所以()()()42f x f x f x +=-+=,所以()f x 是周期为4的周期函数 因为()13f =,()()200f f ==,()()()3113f f f =-=-=-,()()400f f == 所以()()()()()()()()()()12320225051234123f f f f f f f f f f ++++=+++++=⎡⎤⎣⎦故选:C.21.(2021·河北·高三月考)已知函数()3()21sin f x x x x =+++,则()(32)4f x f x -+-<的解集为() A .(,1)-∞ B .(1,)+∞C .(,2)-∞D .(2,)+∞【答案】A 【分析】设3()()222sin g x f x x x x =-=++,然后可得函数()g x 为奇函数,函数()g x 在R 上单调递增,然后不等式()(32)4f x f x -+-<可化为()(32)g x g x -<-+,然后可解出答案. 【详解】设3()()222sin g x f x x x x =-=++,可得函数()g x 为奇函数,2()62cos 0g x x x '=++>,所以函数()g x 在R 上单调递增,()(32)4()2(32)2()f x f x f x f x g x -+-<⇒--<--+⇒-(32)()(32)g x g x g x <--⇒-<-+,所以321x x x -<-+⇒<. 故选:A.22.(2021·河南·高三月考(文))已知函数()()12x x f x e e -=+,记12a fπ⎛⎫⎪ ⎪⎝⎭=,1log 2b f π⎛⎫ ⎪⎝⎭=,()c f π=,则a ,b ,c 的大小关系为()A .a <b <cB .c <b <aC .b <a <cD .b <c <a【答案】C 【分析】先判断函数的奇偶性,然后根据导函数的符号求出函数的单调区间,利用函数的单调性即可得出答案. 【详解】解:因为()()()12x x f x e e f x --=+=,所以函数()f x 为偶函数,()()12x xf x e e -'=-, 当0x >时,()0f x '>,所以函数()f x 在()0,∞+上递增,则()1log log 22b f f ππ⎛⎫== ⎪⎝⎭,所以10log 212πππ<<<<, 所以b a c <<. 故选:C .23.(2021·安徽·高三月考(文))已知定义在R 上的函数()f x 满足:(1)f x -关于(1,0)中心对称,(1)f x +是偶函数,且312f ⎛⎫-= ⎪⎝⎭,则92f ⎛⎫ ⎪⎝⎭的值为() A .0 B .-1 C .1 D .无法确定【答案】B 【分析】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,可得函数()f x 的周期4T =, 由此即可求出结果. 【详解】由于(1)f x -关于(1,0)中心对称,又将函数(1)f x -向左平移1个单位后为()f x ,所以()f x 关于(0,0)中心对称,即()f x 是奇函数;又(1)f x +是偶函数,又将函数(1)f x +向右平移1个单位后为()f x ,所以()f x 关于直线1x =对称,即()(2)f x f x =-; 所以()(2)f x f x =--,所以(+2)()f x f x =-,所以(4)(2)()f x f x f x +=-+=, 所以函数()f x 的周期4T =,911334211222222f f f f f f⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+==-==--=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.故选:B.24.(2021·江西·赣州市赣县第三中学高三期中(理))函数()y f x =对任意x ∈R 都有(2)()f x f x +=-成立,且函数(1)y f x =-的图象关于点()1,0对称,(1)4f =,则(2020)(2021)(2022)f f f ++=()A .1B .2C .3D .4【答案】D 【分析】根据函数(1)y f x =-的图象关于点()1,0对称,得到函数是奇函数,然后结合(2)()f x f x +=-,得到函数的周期为4T =求解. 【详解】因为函数(1)y f x =-的图象关于点()1,0对称, 所以函数()y f x =的图象关于点()0,0对称, 即()()f x f x -=-, 又因为(2)()f x f x +=-,所以(2)()f x f x +=-,即(4)()f x f x +=, 所以函数的周期为4T =, 又(1)4f =,所以(2020)(2021)(2022)(0)(1)(0)4f f f f f f ++=++=. 故选:D.25.(2021·江西·高三月考(文))若定义在R 上的奇函数()f x 在区间(0,)+∞上单调递增,且()30f =,则满足0()2f x x -≤的x 的取值范围为()A .(][),15,-∞-+∞B .[][]3,05,-+∞C .[][]1,02,5-D .(][),10,5-∞-【答案】C 【分析】根据函数的单调性、奇偶性、函数图象变换,结合图象求得正确答案. 【详解】依题意()f x 是R 上的奇函数,且在(0,)+∞递增,且()30f =,所以()f x 在(),0-∞递增,且()30f -=.()2f x -的图象是由()f x 的图象向右平移2个单位得到,画出()2f x -的大致图象如下图所示,由图可知,满足0()2f x x -≤的x 的取值范围为[][]1,02,5-.故选:C.26.(2022·全国·高三专题练习)定义在R 上的奇函数f (x )满足f (x +2)=-f (x ),且在[0,1]上是减函数,则有() A .f 3()2<f 1()4-<f 1()4B .f 1()4<f 1()4-<f 3()2C .f 3()2<f 1()4<f 1()4-D .f 1()4-<f 3()2-<f 1()4【答案】C 【分析】首先判断函数的周期,以及对称性,画出函数的草图,即可判断选项. 【详解】因为f (x +2)=-f (x ),所以f (x +2+2)=-f (x +2)=f (x ),所以函数的周期为4,并且()()()2f x f x f x +=-=-,所以函数()f x 关于1x =对称,作出f (x )的草图(如图),由图可知3()2f <1()4f <1()4f -,故选:C.27.(2022·全国·高三专题练习)函数()342221x x f x x x⎧-≤⎪=⎨->⎪-⎩,,则不等式()1f x ≥的解集是( )A .()513⎡⎫-∞⋃+∞⎪⎢⎣⎭,,B .(]5133⎡⎤-∞⋃⎢⎥⎣⎦,,C .513⎡⎤⎢⎥⎣⎦,D .533⎡⎤⎢⎥⎣⎦,【答案】B【分析】将()f x 表示为分段函数的形式,由此求得不等式()1f x ≥的解集. 【详解】()342221x x f x x x ⎧-≤⎪=⎨->⎪-⎩,,443,3434,232,21x x x x x x ⎧-<⎪⎪⎪=-≤≤⎨⎪⎪>⎪-⎩, 当43x <时,431,11x x x -≥≤⇒≤,当423x ≤≤时,55341,233x x x -≥≥⇒≤≤,当2x >时,10x ->,则21,21,3231x x x x ≥≥-≤⇒<≤-,综上所述,不等式()1f x ≥的解集为(]5,1,33⎡⎤-∞⋃⎢⎥⎣⎦.故选:B.28.(2021·安徽省亳州市第一中学高三月考(文))函数()f x 满足()()4f x f x =-+,若()23f =,则()2022f =()A .3B .-3C .6D .2022【答案】B 【分析】根据函数()f x 满足()()4f x f x =-+,变形得到函数()f x 是周期函数求解. 【详解】因为函数()f x 满足()()4f x f x =-+,即()()4f x f x +=-, 则()()()84f x f x f x +=-+=,所以函数()f x 是周期函数,周期为8,所以()()()()202225286623f f f f =⨯+==-=-.故选:B .29.(2021·贵州·贵阳一中高三月考(理))函数2()ln(231)f x x x =-+的单调递减区间为()A .3,4⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .3,4⎛⎫+∞ ⎪⎝⎭D .(1,)+∞【答案】B【分析】先求出函数()f x 的定义域,再求出函数2231u x x =-+在所求定义域上的单调区间并结合复合函数单调性即可作答.【详解】在函数2()ln(231)f x x x =-+中,由22310x x -+>得12x <或1x >,则()f x 的定义域为1(,)(1,)2-∞+∞, 函数2231u x x =-+在1(,)2-∞上单调递减,在(1,)+∞上单调递增,又ln y u =在(0,)u ∈+∞上单调递增,于是得()f x 在1(,)2-∞上单调递减,在(1,)+∞上单调递增, 所以函数()f x 的单调递减区间为1(,)2-∞. 故选:B.30.(2021·广东·高三月考)已知定义域为R 的函数()y f x =在[0,10]上有1和3两个零点,且(2)y f x =+与(7)y f x =+都是偶函数,则函数()y f x =在[0,2013]上的零点个数为()A .404B .804C .806D .402【答案】A【分析】 根据两个偶函数得()f x 的对称轴,由此得函数的周期,10是其一个周期,由周期性可得零点个数.【详解】因为(2)y f x =+与(7)y f x =+都为偶函数,所以(2)(2)f x f x +=-+,(7)(7)f x f x +=-+,所以()f x 图象关于2x =,7x =轴对称,所以()f x 为周期函数,且2(72)10T =⋅-=,所以将[0,2013]划分为[0,10)[10,20)[2000,2010][2010,2013]⋅⋅⋅.而[0,10)[10,20)[2000,2010]⋅⋅⋅共201组,所以2012402N =⨯=,在[2010,2013]中,含有零点(2011)(1)0f f ==,(2013)(3)0f f ==共2个,所以一共有404个零点.故选:A.31.(2021·安徽·池州市江南中学高三月考(理))已知定义域为R 的函数f (x )满足f (-x )=-f (x +4),且函数f (x )在区间(2,+∞)上单调递增,如果x 1<2<x 2,且x 1+x 2>4,则f (x 1)+f (x 2)的值()A .可正可负B .恒大于0C .可能为0D .恒小于0【答案】B【分析】首先根据条件()(4)f x f x -=-+转化为(4)()f x f x -=-,再根据函数()f x 在区间(2,)+∞上单调递增,将1x 转换为14x -,从而14x -,2x 都在(2,)+∞的单调区间内,由单调性得到它们的函数值的大小,再由条件即可判断12()()f x f x +的值的符号.【详解】解:定义域为R 的函数()f x 满足()(4)f x f x -=-+,将x 换为x -,有(4)()f x f x -=-,122x x <<,且124x x +>,2142x x ∴>->,函数()f x 在区间(2,)+∞上单调递增,21()(4)f x f x ∴>-,(4)()f x f x -=-,11(4)()f x f x ∴-=-,即21()()f x f x >-,12()()0f x f x ∴+>,故选:B .32.(2021·河南·模拟预测(文))已知非常数函数()f x 满足()()1f x f x -=()x R ∈,则下列函数中,不是奇函数的为()A .()()11f x f x -+ B .()()11f x f x +- C .()()1f x f x - D .()()1f x f x + 【答案】D【分析】根据奇函数的定义判断.【详解】因为()()1f x f x -=()x R ∈,所以()1()()1f x g x f x -=+,则11()11()()()()1()11()1()f x f x f xg x g x f x f x f x -----====--+++,()g x 是奇函数, 同理()()1()1f x h x f x +=-也是奇函数,1()()()()()p x f x f x f x f x =-=--,则()()()()p x f x f x p x -=--=-,是奇函数, 1()()()()()q x f x f x f x f x =+=+-,()()()()q x f x f x q x -=-+=为偶函数, 故选:D .33.(2021·四川郫都·高三月考(文))已知奇函数()f x 定义域为R ,()()1f x f x -=,当10,2x ⎛⎤∈ ⎥⎝⎦时,()21log 2f x x ⎛⎫=+ ⎪⎝⎭,则52f ⎛⎫= ⎪⎝⎭() A .2log 3B .1C .1-D .0【答案】D【分析】 根据函数的奇偶性和(1)()f x f x -=可得函数的周期是2,利用周期性进行转化求解即可.【详解】 解:奇函数满足(1)()f x f x -=,()(1)(1)f x f x f x ∴=-=--,即(1)()f x f x +=-,则(2)(1)()f x f x f x +=-+=,所以()f x 是以2为周期的周期函数, 所以225111()()log ()log 102222f f ==+==. 故选:D.34.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且满足()()()()2f x y f x y f x f y ++-=,且12f ⎛⎫= ⎪⎝⎭,()00f ≠,则()2021f =().A .2021B .1C .0D .1-【答案】C【分析】 分别令0x y ==,令12x y ==得到()()110f x f x ++-=,进而推得函数()f x 是周期函数求解. 【详解】令0x y ==,则()()()()00200f f f f +=,故()()()20010f f -=,故()01f =,(()00f =舍) 令12x y ==,则()()1110222f f f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭, 故()10f =.∴()()()()11210f x f x f x f ++-==,即()()()()()()1124f x f x f x f x f x f x +=--⇒+=-⇒+=,故()f x 的周期为4,即()f x 是周期函数.∴()()202110f f ==.故选:C .二、多选题35.(2021·全国·高三月考)()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2f x f x +=-,当[]0,1x ∈时,()()2log 2f x x =-,则下列结论正确的是()A .函数()f x 的一个周期为4B .()20221f =C .当[]2,3x ∈时,()()2log 4f x x =--D .函数()f x 在[]0,2021内有1010个零点【答案】AC【分析】 由()()2 x f f x +=-可判断A ,()()()2022450()5220f f f f =⨯+==-,可判断B ,当[]2,3x ∈时,[]20,1x -∈,结合条件可判断C ,易知()()()()()1 35201920210f f f f f ===⋯===,可判断D.【详解】()f x 是定义在R 上的偶函数,对x R ∀∈,均有()()2 x f f x +=-,()()4 (2,f x f x f x ∴+=-+=)故函数的周期为4,故选项A 正确;()()()2022452(05201)f f f f =⨯+==-=-,故选项B 错误;当[]2,3x ∈时,[]20,1x -∈,则()()()()222log 2 2log 4f x f x x x ⎡=--=---=-⎤⎦-⎣,故选项C 正确;易知()()()()()1 35201920210f f f f f ===⋯===,于是函数()f x 在[]0,2021内有1011个零点,故选项D 错误,故选:AC .36.(2021·重庆市第十一中学校高三月考)关于函数()321x f x x +=-,正确的说法是() A .()f x 有且仅有一个零点B .()f x 在定义域内单调递减C .()f x 的定义域为{}1x x ≠D .()f x 的图象关于点()1,3对称【答案】ACD【分析】将函数()f x 分离系数可得5()31f x x =+-,数形结合,逐一分析即可; 【详解】 解:323(1)55()3111x x f x x x x +-+===+---,作出函数()f x 图象如图:由图象可知,函数只有一个零点,定义域为{}|1x x ≠,在(),1-∞和()1,+∞上单调递减,图象关于()1,3对称,故B 错误,故选:ACD .37.(2021·福建·三明一中高三月考)下列命题中,错误的命题有()A .函数()f x x =与()2g x =是同一个函数B .命题“[]00,1x ∃∈,2001x x +≥”的否定为“[]0,1x ∀∈,21x x +<”C .函数4sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭的最小值为4 D .设函数22,0()2,0x x x f x x +<⎧⎪=⎨≥⎪⎩,则()f x 在R 上单调递增 【答案】ACD【分析】 求出两函数的定义域,即可判断A ;命题的否定形式判断B ;函数的最值判断C ;分段函数的性质以及单调性判断D ;【详解】解:函数()f x x =定义域为R ,函数2()g x =的定义域为[)0,+∞,所以两个函数的定义域不相同,所以两个函数不是相同函数;所以A 不正确;命题“0[0x ∃∈,1],2001x x +”的否定为“[0x ∀=,1],21x x +<”,满足命题的否定形式,所以B 正确; 函数4sin sin y x x =+(0)2x π<<,因为02x π<<,所以0sin 1x <<,可知4sin 4sin y x x =+>,所以函数没有最小值,所以C 不正确; 设函数22,0,()2,0,x x x f x x +<⎧⎪=⎨⎪⎩两段函数都是增函数,并且0x <时,0x →,()2f x →,0x 时,函数的最小值为1,两段函数在R 上不是单调递增,所以D 不正确;故选:ACD .38.(2021·福建·高三月考)已知()f x 是定义域为R 的函数,满足()()13f x f x +=-,()()13f x f x +=-,当02x ≤≤时,()2f x x x =-,则下列说法正确的是()A .()f x 的最小正周期为4B .()f x 的图象关于直线2x =对称C .当04x ≤≤时,函数()f x 的最大值为2D .当68x ≤≤时,函数()f x 的最小值为12- 【答案】ABC【分析】根据抽象函数关系式,可推导得到周期性和对称性,知AB 正确;根据()f x 在[]0,2上的最大值和最小值,结合对称性和周期性可知C 正确,D 错误.【详解】对于A ,()()13f x f x +=-,()()4f x f x ∴+=,()f x ∴的最小正周期为4,A 正确; 对于B ,()()13f x f x +=-,()()22f x f x ∴+=-,()f x ∴的图象关于直线2x =对称,B 正确;对于C ,当02x ≤≤时,()()max 22f x f ==,()f x 图象关于2x =对称,∴当24x ≤≤时,()()max 22f x f ==; 综上所述:当04x ≤≤时,()()max 22f x f ==,C 正确;对于D ,()f x 的最小正周期为4,()f x ∴在[]6,8上的最小值,即为()f x 在[]2,4上的最小值,当02x ≤≤时,()min 1124f x f ⎛⎫==- ⎪⎝⎭,又()f x 图象关于2x =对称, ∴当24x ≤≤时,()min 711224f x f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,()f x ∴在[]6,8上的最小值为14-,D 错误. 故选:ABC.39.(2022·全国·高三专题练习)设f (x )的定义域为R ,给出下列四个命题其中正确的是()A .若y =f (x )为偶函数,则y =f (x +2)的图象关于y 轴对称;B .若y =f (x +2)为偶函数,则y =f (x )的图象关于直线x =2对称;C .若f (2+x )=f (2-x ),则y =f (x )的图象关于直线x =2对称;D .若f (2-x )=f (x ),则y =f (x )的图象关于直线x =2对称.【答案】BC【分析】根据偶函数的对称性,结合函数图象变换性质、函数图象关于直线对称的性质进行逐一判断即可.【详解】A :中由y =f (x )关于y 轴对称,得y =f (x +2)的图象关于直线x =-2对称,所以结论错误;B :因为y =f (x +2)为偶函数,所以函数y =f (x +2)的图象关于y 轴对称,因此y =f (x )的图象关于直线x =2对称,所以结论正确;C :因为f (2+x )=f (2-x ),所以y =f (x )的图象关于直线x =2对称,因此结论正确;D :由f (2-x )=f (x ),得f (1+x )=f (1-x ),所以y =f (x )关于直线x =1对称,因此结论错误,故选:BC.40.(2021·广东·湛江二十一中高三月考)已知函数sin ()()x f x e x R =∈,则下列论述正确的是()A .()f x 的最大值为e ,最小值为0B .()f x 是偶函数C .()f x 是周期函数,且最小正周期为2πD .不等式()f x ≥5,66xk x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【答案】BD【分析】由|sin |[0,1]x ∈,得到函数的值域,可判定A 错误;由函数奇偶性的定义,可判定B 正确; 由函数周期的定义,可得判定C 错误;由()f x ≥,得到1|sin |2x ≥,结合三角函数的性质,可判定D 正确.【详解】由|sin |[0,1]x ∈,可得的sin [1,]x e e ∈,故A 错误; 由sin()|sin |()()x x f x e e f x --===,所以()f x 是偶函数,故B 正确;由|sin()||sin ||sin |(=e )()x x x f x e e f x ππ+-+===,所以π是()f x 的周期,故C 错误; 由()f x ≥,即1sin 2x e e ≥,可得1|sin |2x ≥, 解得x 的取值范围是5,66xk x k k ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭Z ,故D 正确. 故选:BD. 41.(2021·全国·模拟预测)已知函数()21x f x x =-,则下列结论正确的是() A .函数()f x 在(),1-∞上是增函数B .函数()f x 的图象关于点()1,2中心对称C .函数()f x 的图象上存在两点A ,B ,使得直线//AB x 轴D .函数()f x 的图象关于直线1x =对称【答案】AC【分析】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,然后画出其图象可得答案. 【详解】()2,112,11x x x f x x x x ⎧-<⎪⎪-=⎨⎪>⎪-⎩,其大致图象如下,结合函数图象可得AC 正确,BD 错误.故选:AC.42.(2022·全国·高三专题练习)对于定义在R 上的函数()f x ,下列说法正确的是()A .若()f x 是奇函数,则()1f x -的图像关于点()1,0对称B .若对x ∈R ,有()()11f x f x =+-,则()f x 的图像关于直线1x =对称C .若函数()1f x +的图像关于直线1x =-对称,则()f x 为偶函数D .若()()112f x f x ++-=,则()f x 的图像关于点()1,1对称【答案】ACD【分析】四个选项都是对函数性质的应用,在给出的四个选项中灵活的把变量x 加以代换,再结合函数的对称性、周期性和奇偶性就可以得到正确答案.【详解】对A ,()f x 是奇函数,故图象关于原点对称,将()f x 的图象向右平移1个单位得()1f x -的图象,故()1f x -的图象关于点(1,0)对称,正确;对B ,若对x ∈R ,有()()11f x f x =+-,得()()2f x f x +=,所以()f x 是一个周期为2的周期函数,不能说明其图象关于直线1x =对称,错误.;对C ,若函数()1f x +的图象关于直线1x =-对称,则()f x 的图象关于y 轴对称,故为偶函数,正确;对D ,由()()112f x f x ++-=得()()()()112,202f f f f +=+=,()()()()312,422,f f f f +-=+-=,()f x 的图象关于(1,1)对称,正确.故选:ACD.第II 卷(非选择题)三、填空题43.(2021·广东·高三月考)请写出一个函数()f x =__________,使之同时具有如下性质:①图象关于直线2x =对称;②x R ∀∈,(4)()f x f x +=. 【答案】()cos 2f x x π=(答案不唯一). 【分析】根据性质①②可知()f x 是以4为周期且图象关于2x =对称点的函数,即可求解.【详解】解:由题可知,由性质①可知函数()f x 图象关于直线2x =对称;由性质②x R ∀∈,(4)()f x f x +=,可知函数()f x 以4为周期, 写出一个即可,例如:()cos 2f x x π=, 故答案为:()cos 2f x x π=(答案不唯一). 44.(2021·湖南·高三月考)已知偶函数()f x 满足()()416f x f x +-=,且当(]0,1x ∈时,()[]222()f x f x =,则()3f -=___________.【答案】12【分析】利用函数的奇偶性及赋值法,可以解决问题.【详解】由()()416f x f x +-=,令2x =,可得()28f =.因为[]22(2)(1)16f f ==,212(1)02f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦≥,所以()10f ≥,所以()14f =,由()()416f x f x +-=,令1x =,可得()312f =.因为()f x 是偶函数,所以()()3312f f -==.故答案为:12.45.(2021·北京·中国人民大学附属中学丰台学校高三月考)定义在R 上的函数f (x )满足()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+,则23(log 8)2f +=___. 【答案】74【分析】 由条件可得2233(log 8)(log )22f f +=,然后可算出答案. 【详解】因为()()22f x f x -=+,且x ∈(0,1)时,1()24x f x =+, 所以23log 222331317(log 8)(log )2224244f f +==+=+= 故答案为:74. 46.(2021·上海奉贤区致远高级中学高三月考)定义在R 上的函数()f x 满足(6)()f x f x +=,2(2),[3,1)(),[1,3)x x f x x x ⎧-+∈--⎪=⎨∈-⎪⎩,数列{}n a 满足(),n a f n n N =∈*,{}n a 的前n 项和为n S ,则2021S =_________.【答案】337【分析】先判断出周期为6,再求出126a a a ++⋅⋅⋅+的值,最后求出2021S 的值【详解】因为函数()f x 满足(6)()f x f x +=,所以函数()f x 是周期为6的周期函数,()()()()12311,22,331a f a f a f f ======-=-,()()()()()456420,511,00a f f a f f a f ==-===-=-==,()()7711a f f ===,1261210101a a a ++⋅⋅⋅+=+-+-+=,因为202163365=⨯+,所以()2021126125336336112101337S a a a a a a =+⋅⋅⋅+++⋅⋅⋅+=⨯++-+-=故答案为:337.47.(2021·辽宁沈阳·高三月考)若函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数,则m 的值为________. 【答案】12- 【分析】先根据()()11f f =-求出m 的值,再根据奇偶性的定义证明即可.【详解】解:由已知210x -≠,即0x ≠,故函数定义域为()(),00,-∞⋃+∞,因为函数()3121x f x m x ⎛⎫=-⋅⎪-⎝⎭为偶函数, 则()()11f f =- 即1112121m m -⎛⎫-=-- ⎪--⎝⎭, 解得12m =-, 当12m =-时, ()()()()333331111212221211221x x x x x f x f x x x x x x -⎛⎫⎛⎫--=+⋅--+⋅=⋅--- ⎪ ⎪----⎝⎭⎝⎭3332102121x x x x x x =⋅--=--. 故12m =-时,函数()3121x f x m x ⎛⎫=-⋅ ⎪-⎝⎭为偶函数 故答案为:12-. 48.(2021·全国·高三月考(理))已知函数2()sin f x x x x =-,则不等式(21)(1)f x f x -<+的解集为______.【答案】(0,2)【分析】利用导数可判断函数在(0,)+∞为增函数,再利用函数奇偶性的定义可判断函数为偶函数,从而将(21)(1)f x f x -<+转化为|21||1|x x -<+,进而可求出不等式的解集【详解】定义域为R ,由题意,()2sin cos (2cos )sin f x x x x x x x x '=--=--,当0x >时,()1sin 0f x x x '≥⋅->,故()f x 在(0,)+∞为增函数.因为22()()()sin()sin ()f x x x x x x x f x -=----=-=,所以()f x 为偶函数,故(21)(1)f x f x -<+即(|21|)(|1|)f x f x -<+,则|21||1|x x -<+,故22(21)(1)x x -<+,解得02x <<,故原不等式的解集为(0,2).故答案为:(0,2).49.(2022·全国·高三专题练习)函数2π()2sin sin()2f x x x x =+-的零点个数为________. 【答案】2【分析】先利用诱导公式、二倍角公式化简,再将函数零点个数问题转化为两个函数图象的交点个数问题,进而画出图象进行判定.【详解】2π()2sin sin()2f x x x x =+- 222sin cos sin 2x x x x x =-=-,函数f (x )的零点个数可转化为函数1sin 2y x =与22y x =图象的交点个数,在同一坐标系中画出函数1sin 2y x =与22y x =图象的(如图所示):由图可知两函数图象有2个交点,即f (x )的零点个数为2.故答案为:2.50.(2021·河南·高三月考(文))已知偶函数()f x 和奇函数()g x 均定义在R 上,且满足()()224359x f x g x x x +=-++,则()()13f g -+=______.【答案】223【分析】先用列方程组法求出()f x 和()g x 的解析式,代入即可求解.【详解】因为()()224359x f x g x x x +=-++……① 所以()()224359x f x g x x x -+-=+++ 因为()f x 为偶函数,()g x 为奇函数,所以()()224359x f x g x x x -=+++……② ①②联立解得:()235f x x =+,()249x g x x =-+, 所以()()()22431331532392f g ⨯-+=-+-=+. 故答案为:223.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数码影像技术(中级)复习题一、单选题:1、计算机软件是指(B)。

A.操作系统软件和应用软件B.系统软件和应用软件C.文字处理软件和高级语言D.使用程序和图形软件系统软件:如WINDOWS XP,WINDOWS98 应用软件:PHOTOSHOP,WORD,PREMIERE等程序2、计算机的存储器的作用是(C)A.读取和记录数据B. 读取和记录图形C.读取和记录信息D. 读取和记录文字C选项包括ABC的概念3、计算机系统是由硬件系统与(B)两部分组成的。

A.主机系统B. 软件系统C.外部系统D.应用系统软件系统安装在电脑里的各种程序与游戏4、计算机系统是由(C)两大部分组成。

A.键盘和鼠标B.机箱和显示器C.软件系统和硬件系统D.内存和硬盘同题35、计算机CPU主要功能是(B)。

A.进行运算B.处理数据和执行程序指令C.输入数据D.输出数据B选项包括ACD6、计算机常用3.5寸软盘的容量是(B)。

A.1MB.1.44MC.14.2MD.2M144的容量实在太小,已完全淘汰7、计算机的(A )键是粘贴的快捷键。

A.Ctrl+VB.Ctrl+AC.Ctrl+CD.Ctrl+TCTRL+C是复制CTRL+A是全选CTRL+T是自由变换8、开启计算机的程序是(B)。

A.先开主机电源再开显示器电源B.先开显示器电源再开主机电源C.先开打印机电源再开显示器电源D.先开输出设备电源再电源开主机电源网吧和机房内的显示器从不关闭,就是为了先开显示器再开主机电源。

这样不会导致电压过大造成硬件损伤。

9、计算机中,关机的程序是(B)。

A. 先关显示器电源,再关主机电源B. 先关主机电源,再关显示器电源C. 先关外部设备电源,再关显示器电源D. 先关外部设备电源,再关主机电源关机程序与题8相反。

10、电子照相机一般由(B)、快门、取景器、卷片机构、机身部件和控制电路等部件所组成。

A.卷片器B.照相物镜C.遥控器D.测光表照相物镜就是传说中的镜头11、底片上的曝光时间是由照相机的(C)部件工作获得的。

A:镜头B:卷片C:快门D:自拍快门是控制曝光的控件。

12、传统单反相机使用的钢片快门是属于(C)快门。

A.镜间B.程序C.焦平面D.镜后焦平面快门分为钢片快门和幕帘快门,前者在照相机内部,后者在外部。

13、焦距小于画幅对角线长度的照相镜头称为(C)镜头。

A.标准B.长焦C.广角D.超广角广角镜头,比方说要外摊全镜,就要用到广角镜头。

14、照相镜头的鉴别率的测定有投影法和(B)两种。

A.对比法B.摄影法C.目测法D.读数法投影,摄像,记住两个“影”15、135相机卷片一次,底片移动(B)个齿孔,即38mm。

A.6B.8C.7D.1038MM,前面一个是是8个齿孔16、传统照相机的卷片机构一般保证二张画幅之间的间隔为(C)mm,任二张画幅不得重叠。

A.1B.1.5C.2D.0.5二张画幅,前面相隔当然是2MM17、当使用ASA100胶卷拍摄时,EV=12时,若快门速度定1/60秒,光圈值该取(B)。

A.F11B.F8C.F16D.F5.6参考书本第17页EV=A V+TV 查表后得到答案。

18、当使用ASA100胶卷拍摄时,EV=11时,若光圈值取F5.6, 快门速度该定(C)秒。

A.1/30B.1/125C.1/60D.1/15书本第17页19、当使用ASA100胶卷拍摄时,EV=11时,若光圈值取F11, 快门速度该定(B)秒。

A.1/30B.1/15C.1/60D.1/125书本第17页注:背不出表格背答案,考试总归这三道题20、ASA100 它的SV是(C) 。

A.4B.6C.5D.7SV指胶片感光度21、光线由真空进入某种透明介质时入射光线发生(B)。

A.反射B.折射C.原路返回D.直线前进小学物理都应该学过吧--!22、凸透镜对光线有(B)作用。

A.发散B.会聚C.反射D.无作用放大镜烧树叶都玩过么- -!利用凸透镜聚光的作用补充凹透镜和它相反,对光起发散作用23、摄影能把景物之间的(B)、左右、高低、上下等相互关系显示出来。

A.材质B.前后C.重量D.体积摄影只能表达出方位如前后左右,物体的本质如材质,重量,体积等看不出的24、由于地球自转等原因, 太阳光的照度、照射角度、(B)和色温等都是在变化的。

A.发光强度B.光质C.光谱D.光度春夏秋冬,气温差异,光质肯定不同25、拍摄时, 照相机所在的位置为(A)。

A.机位B.光位C.物位D.像位照相机当然是“机位”26、拍摄时,单以季节因素考虑,如夏天曝光选取F16、1/125s,则春、秋应采用(C)曝光组合。

A.F16、1/125sB.F11、1/60SsC.F11、1/125sD.F8、1/125s的记忆方法:这题先看两个参数的后面一个,是和题目中夏天曝光一样的1/125S,再看前面一个参数,选择唯一不是1/125S的B选项中的F11,选C27、拍摄时, 单以季节因素考虑,如夏天曝光选取F16、1/125s,则冬天应采用(D)曝光组合。

A.F16、1/125sB.F8、1/60sC.F11.1/125sD.F8、1/125s记忆方法和题26一样28、天暗拍摄时,将ISO200改为ISO1600测得曝光组合为F2、1/8s,则实际曝光应是(D)。

A.F2、1/4sB.F2、1/16sC.F2、2sD.F2、1s硬记29、一张照片主要包括了白、浅灰和中灰的影调,而且照片比较明朗、轻松、宁静,这被称为(A)照片。

A.高调B.中间调C.低调D.冷调这几个形容词都属于褒义词,称作高调30、人像拍摄时一般不采用(C)。

A.顺光B.侧光C.脚光D.侧上光拍人像没人对着脚拍吧31、照相机内测光显示的读数相当于测得反光率为(B)中灰色物体的亮度。

A.20%B.18%C.15%D.19%考题里答案“8”的很多,这题也是,18%。

32、拍摄雪景时,应在测光读数上(A)曝光量。

A.+1.5B.0C.-1D.+3拍雪景时,雪的冰晶吸收光线导致光线拍摄时曝光不足,人为加1.5曝光。

33、色彩中红、(A)、蓝为色彩的三原色。

A.绿B.青C.黄D.紫色彩三原色为红、绿、蓝。

34、色彩中蓝色光加绿色光组成(B)色光。

A.品红B.青C.黄D.紫三原色中红+绿=黄红+蓝=品红绿+蓝=青35、红色的对应补色是(B)色。

A.品红B.青C.黄D.紫三原色中两种原色组成的色光即另外一种原色的补光。

红色的补光是青光。

36、当三原色光全被反射出来后,我们观察到是(C)光。

A.灰B.黑C.白D.红太阳的色谱中主要是红绿蓝,当它们全部反射出来后,我们看上去就是白色的。

37、当照到物体的三原色光全被物体吸收,我们观察到的物体是(B)色。

A.灰B.黑C.白D.红和题36相反,红绿蓝都被吸收我们看到的是黑色。

38、UV镜能吸收(C)。

A.青光B.红外线C.紫外线D.蓝光化妆品广告中经常听到,UV吸收紫外线。

39、要将较小的被摄物放大拍摄,可使用(D)照相附件。

A.遮光罩B.滤色镜C.广角镜D.近摄接圈近摄接圈起到放大拍摄物体的作用。

40、闪光灯的指数为32,照相镜头F数是8,则摄影距离为(D)。

A.3mB.5mC.2mD.4m32除以841、使用增距镜拍摄时,会引起曝光量和(D)变化。

A.视度B.对焦C.视差D.景深这题要熟记,多选题也有。

增距镜会影起两个参数的变化,曝光量和景深42、在用长焦距镜头拍摄时,最好是使用(D)照相器材。

A.UV镜B.转角目镜C.遮光罩D.三角架在马路上我们经常看到有工作人员使用三角架。

43、照相机中,能达到画面框全开时的最高快门速度称为该相机的(C)。

A.手振速度B.连动速度C.闪光同步速度D.中档速度快门就是控制曝光量即闪光速度。

44、柯达4800数码相机应用(D)作存储器,它有16、64、128M不同规格。

A.光盘B.SM卡C.记忆棒D.CF 卡SM卡,三星记忆棒,SONY CF卡,柯达45、数码相机的图像是(B)图像。

A.模拟B.数字C.电子D.三维数码相机中照片可导入到计算机中,属于数字图像46、数码相机不单能用于记录静止图像,而且也能记录活动图像和(A)。

A.声音B.色彩C.动画D.文字如果将拍摄模式摆在摄影模式就可拍摄声音或动态图像。

47、在数码相机的存储介质中图像以(A)方式存储的。

A.数字信号B.模拟信号C.电子信号D.脉冲信号数码相机中照片可导入到计算机中,属于数字图像,,数字信号。

48、数码相机一般由镜头、CCD模块、DSP模块、(B)、ASIC模块、电源模块和LCD模块等部件组成。

A.显示卡B.存储器C.卷片器D.马达CCD起到模拟信号与数字信号转换作用,DSP起到压缩和解压缩,格式转换,白平衡调整作用,存储器存放照片。

49、数码相机拍摄的图像可以直接输入(B)中。

A.传真机B.计算机C.扫描仪D.光刻机海鸥小王子大家都练习过50、一般真彩色的数码相机是(C)位色彩。

A.18B.36C.24D.12熟记,真彩色24位。

51、数码相机的CCD是依靠加在它上面的(C)获得彩色图像的。

A.彩色滤镜B.透镜C.彩色滤镜阵列D.镀膜CCD由红、绿、蓝三原色的彩色滤镜阵列组成。

52、数码相机的CCD在感受(B)色的像素数比其他二原色的像素数多。

A.红B.绿C.蓝D.黄CCD中红、绿、蓝的比例是1:2:153、数码相机DSP模块可以把经压缩的图像信号送入到D/A转换器中,转换成RGB信号并进行(C)后送到LCD上显示。

A.增益B.放大C.减压缩D.减噪声DSP起到压缩和解压缩,格式转换,白平衡调整作用54、光线经数码相机镜头成像在CCD上时,每个光电二极管会因感受到(C)的不同而耦合出不同数量的电荷。

A.光质B.光色C.光强D.光频率CCD只能感受光的强弱55、数码相机CCD的电荷转移方式可分为(C)方式和行间转移方式二大类。

A.行传送B.帧间转移C.帧传送D. 隔行传送帧比秒还精确,帧传送方式56、一般数码相机CCD原色的亮度是用(D)位数据来记录的。

A.5B.7C.15D.8考题里,8的确很多吧57、为了获得彩色图像,光线必须在到达数码相机CCD前经过一组(D)。

A.棱镜B.透镜C.反射镜D.彩色滤镜阵列同题51,CCD由红、绿、蓝三原色的彩色滤镜阵列组成。

58、DSP模块需要完成的图像数据的处理有(D)、格式转换以及数据传输等:。

A.光电转换B.信号控制C.数据存储D.压缩和解压缩DSP起到压缩和解压缩,格式转换,白平衡调整作用59、数码相机的存储器有(D)、硬盘卡、软盘卡、光盘、微驱动器和记忆棒等。

DB.LCDC.图像处理器D.内存卡CCD---模数转换LCD---液晶显示器数码相机里XX卡肯定是存储器。

60、数码相机的外存贮器中,(B)可以与索尼数码摄像机通用。

相关文档
最新文档