上海市浦东新区2013年中考数学二模试卷
2013上海中考数学试题(含答案)

2013年上海初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)一、选择题(本大题共6题,每题4分,满分24分) 1.下列式子中,属于最简二次根式的是( )A . 9B .7C . 20D .132.下列关于x 的一元二次方程有实数根的是( )A .210x += B .210x x ++= C .210x x -+= D .210x x --=. 3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)2y x =++ C .21y x =+ D .23y x =+. 4.数据 0,1,1,3,3,4 的中位线和平均数分别是( )A . 2和2.4B .2和2C .1和2D .3和2. 5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB = 3∶5,那么CF ∶CB 等于( )A . 5∶8B .3∶8C .3∶5D .2∶5.6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( )A .∠BDC =∠BCDB .∠ABC =∠DAB C .∠ADB =∠DACD .∠AOB =∠BOC .二、填空题(本大题共12题,每题4分,满分48分) 7.因式分解:21a - = _____________.8.不等式组1023x x x->⎧⎨+>⎩ 的解集是____________.9.计算:23b aa b⨯= ___________. 10.计算:2 (a ─b ) + 3b = ___________.图111.已知函数 ()231x f x =+,那么f = __________.12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为___________.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________.15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是____________.(只需写一个,不添加辅助线) 16.李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是__________升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.18.如图5,在△ABC 中,AB AC =,8BC =, tan C = 32,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为__________.三、解答题(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) 190111()2π--+ .图2)(升)图4图520.解方程组: 22220x y x xy y -=-⎧⎨--=⎩.21.已知平面直角坐标系xoy (如图6),直线 12y x b =+经过第一、二、三象限,与y 轴交于点B ,点A (2,t )在这条直线上,联结AO ,△AOB 的面积等于1.(1)求b 的值; (2)如果反比例函数ky x=(k 是常量,0k ≠)的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图7-1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图7-2所示,其示意图如图7-3所示,其中AB ⊥BC ,EF∥BC ,0143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)图7-1 图7-2图7-3A E FAEFA E FBC23.如图8,在△ABC 中, 90=∠ACB , B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F .(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=. (1)求这条抛物线的表达式; (2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.图825.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x BQ y ==,. (1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.图10备用图。
2013年上海市中考数学试卷及答案

1 / 122013年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列式子中,属于最简二次根式的是( )AB; C; D2.下列关于x 的一元二次方程有实数根的是( ) A .210x +=; B .210x x ++=; C .210x x -+=; D .210x x --=.3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A .()212y x =-+; B .()212y x =++; C .21y x =+; D .23y x =+.4.数据0,1,1,3,3,4的中位数和平均数分别是( ) A .2和2.4; B .2和2; C .1和2; D .3和2.5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点,DE ∥BC ,EF ∥AB ,且:3:5AD DB =,那么:CF CB 等于( )A .5:8;B .3:8;C .3:5;D .2:5.6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O ,下列条件中,能判断梯形ABCD 是等腰梯形的是( ) A .BDC BCD ∠=∠; B .ABC DAB ∠=∠;C .ADB DAC ∠=∠;D .AOB BOC ∠=∠.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:21a -= .8.不等式组1023x x x->⎧⎨+>⎩的解集是 .9.计算:23b a a b⋅= . 10.计算:()23a b b -+= .11.已知函数()231f x x =+,那么f = .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字面e 的概率是 .13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为 .14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为 .15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,B F =C E ,A C ∥D F ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是 (只需写一个,不添加辅助线).16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y (升)与行驶里程x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是 升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .3 / 1218.如图5,在△ABC 中,AB AC =,8BC =,32tanC =,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D ,那么BD 的长为 .三、解答题:(本大题共7题,19~22题10分,23、24题12分,25题14分,满分满分78分)1910112π-⎛⎫-+ ⎪⎝⎭. 20.解方程组:22220x y x xy y -=-⎧⎨--=⎩. 21.已知平面直角坐标系xOy (如图6),直线12y x b =+经过第一、二、三象限,与y 轴交于点B ,点()2,A t 在这条直线上,联结AO ,△AOB 的面积等于1.(1)求b 的值;(2)如果反比例函数k y x=(k 是常量,0k ≠)的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图(1)所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图(2)所示,其示意图如图(3)所示,其中AB BC ⊥,EF ∥BC ,143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计,参考数据:370.60sin ≈,370.80cos ≈,370.75tan ≈.)23.如图8,在△ABC 中,90ACB ∠=,B A ∠>∠,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xOy 中,顶点为M 的抛物线()20y ax bx a =+>经过点A 和x 轴正半轴上的点B ,2AO BO ==,120AOB ∠=.(1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =.设AP x =,BQ y =.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F .如果4EF EC ==,求x 的值.2013年上海市初中毕业统一学业考试数学试卷参考答案一、 选择题1、B ;2、D ;3、C ;4、B ;5、A ;6、C二、 填空题7、(a+1)(a ﹣1); 8、x >1; 9、3b ; 10、2+ ; 11、1; 12、 ; 13、40%;14、;15、AC=DF;16、2;17、30°;18、.三、解答题19.解:原式=2+﹣1﹣1+2=320.解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,21.解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB =OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,5 / 12则反比例解析式为y=.22.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.23.证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC ﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.7 / 1224.解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,9 / 12∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).25.解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.11 / 12∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.。
浦东新区初三数学中考二模卷及答案

浦东新区2013年中考预测数学试卷 201(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列分数中,能化为有限小数的是 (A )31; (B )51; (C )71; (D )91. 2.如果()12212-=-a a ,那么(A )21<a ;(B )21≤a ; (C )21>a ; (D )21≥a . 3.下列图形中,是旋转对称但不是中心对称图形的是(A )线段;(B )正五边形;(C )正八边形; (D )圆.4.如果等腰三角形的两边长分别是方程021102=+-x x 的两根,那么它的周长为(A )10; (B )13; (C )17; (D )21.5.一组数据共有6个正整数,分别为6、7、8、9、10、n ,如果这组数据的众数和平均数相同,那么n 的值为 (A )6;(B )7; (C )8;(D )9.6.如果两圆有两个交点,且圆心距为13,那么此两圆的半径可能为(A )1、10; (B )5、8;(C )25、40;(D )20、30.二、填空题:(本大题共12题,每题4分,满分48分)7.8的立方根是 .8.太阳的半径为696000千米,其中696000用科学记数法表示为 . 9.计算:()=32x .10.已知反比例函数xky =(0≠k ),点(-2,3)在这个函数的图像上,那么当0>x 时,y 随x 的增大而 .(增大或减小) 11.在1~9这九个数中,任取一个数能被3整除的概率是 . 12.如图,已知C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,那么∠ACB = 度.13.化简:=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛-b a b a ρρρρ313212 .14.在中考体育测试前,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如图所示的统计图.小红计算出90~100和100~110两组的频率和第12题图第14题图是0.12,小明计算出90~100组的频率为0.04,结合统计图中的信息,可知这次共抽取了 名学生的一分钟跳绳测试成绩.15.如图,四边形ABCD 是梯形,AD ∥CB ,AC =BD 且AC ⊥BD ,如果梯形的高DE =3,那么梯形ABCD 的中位线长为 .16.如图,已知四边形ABCD 是边长为2的菱形,点E 、B 、C 、F 都在以D 为圆心的同一圆弧上,且∠ADE =∠CDF ,那么EF 的长度等于 .(结果保留π)17.如图,将面积为12的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为 .18.边长为1的正方形内有一个正三角形,如果这个正三角形的一个顶点与正方形的一个顶点重合,另两个顶点都在这个正方形的边上,那么这个正三角形的边长是 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()2113332318+-+⎪⎭⎫⎝⎛---π.20.(本题满分10分)先化简,再求值:21416222+----+x x x x ,其中23-=x 21.(本题满分10分,每小题各5分)已知:如图,在△ABC 中,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在边AC 上的点D 处,点F 在线段AE 的延长线上,如果ACB B FCA ∠=∠=∠2,5=AB ,9=AC .求:(1)CFBE的值; (2)CE 的值.22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)学校组织“义捐义卖”活动,小明的小组准备自制贺年卡进行义卖.活动当天,为了方便,小组准备了一点零钱备用,按照定价售出一些贺年卡后,又降价出售.小组所拥有的所有钱数y (元)与售出卡片数x (张)的关系如图所示.(1)求降价前y (元)与x (张)之间的函数解析式,并写出定义域;(2)如果按照定价打八折后,将剩余的卡片全部卖出,ABCDEF第17题图第15题图EABCD第16题图 FEDCB AFEDCBA第21题图第22题图这时,小组一共有280元(含备用零钱),求该小组一共准备了多少张卡片. 23.(本题满分12分,每小题各6分)已知:平行四边形 ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN . (1)求证:AM ∥CN .(2)过点B 作BH ⊥AM ,垂足为H ,联结CH .求证:△BCH 是等腰三角形.24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)已知:如图,点A (2,0),点B 在y 轴正半轴上,且OA OB 21=.将点B 绕点A 顺时针方向旋转ο90至点C .旋转前后的点B 和点C 都在抛物线c bx x y ++-=265上. (1) 求点B 、C 的坐标; (2) 求该抛物线的表达式; (3) 联结AC ,该抛物线上是否存在异于点B 的点D ,使点D 与AC 构成以AC 为直角边的等腰直角三角形?如果存在,求出所有符合条件的D 点坐标,如果不存在,请说明理由. 25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)已知:如图,在Rt △ABC 中,ο90=∠C ,4=BC ,21tan =∠CAB ,点O 在边AC 上,以点O 为圆心的圆过A 、B 两点,点P 为AB 上一动点. (1)求⊙O 的半径;(2)联结AP 并延长,交边CB 延长线于点D ,设x P A =,y D B =,求y 关于x 的函数解析式,并写出定义域;(3)联结P B ,当点P 是AB 的中点时,求△ABP 的面积与△ABD 的面积比ABDABPS S ∆∆的值. HNMDCBA第23题图第24题图OPC BA第25题图备用图OCBA浦东新区2013年中考预测 数学试卷参考答案及评分标准一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.D ;3.B ;4.C ;5.C ;6.D .二、填空题:(本大题共12题,每题4分,满分48分) 7.2; 8.51096.6⨯; 9.6x ; 10.增大; 11.31; 12.105; 13.b a 4-; 14.150; 15.3; 16.π34; 17.36; 18.26-. 三、解答题:(本大题共7题,满分78分)19.解:原式=33-23-1++…………………………………………………… (8分) =0.………………………………………………………………………(2分) 20.解:原式()()21221622+-+---+=x x x x x ………………………………………(1分)()()()()2221622+----+=x x x x ………………………………………………(2分)()()22216442+-+--++=x x x x x ……………………………………………(2分)()()221032+--+=x x x x …………………………………………………………(1分)()()()()2225+--+=x x x x …………………………………………………………(1分)25++=x x .………………………………………………………………(1分)当23-=x 时,原式31333+=+=.………………………………(2分)21.解:(1)∵△ABE ≌△ADE ,∴∠BAE =∠CAF .∵∠B =∠FCA ,∴△ABE ∽△ACF .…………………………………(2分)∴ACABCF BE =.…………………………………………………………(1分) ∵AB =5,AC =9,∴95=CF BE .…………………………………………(2分) (2)∵△ABE ∽△ACF ,∴∠AEB =∠F .∵∠AEB =∠CEF ,∴∠CEF =∠F .∴CE =CF .……………………(1分) ∵△ABE ≌△ADE ,∴∠B =∠ADE ,BE =DE .∵∠ADE =∠ACE+∠DEC ,∠B =2∠ACE ,∴∠ACE =∠DEC .∴CD =DE =BE =4.………………………………………………………(2分)∵95=CF BE ,∴95=CE CD . ∴536=CE .……………………………………………………………(2分)22.解:(1)根据题意,可设降价前y 关于x 的函数解析式为b kx y +=(0≠k ).…………………………………………………(1分)将()50,0,()200,30代入得⎩⎨⎧=+=.20030,50b k b …………………………(2分)解得⎩⎨⎧==.50,5b k ……………………………………………………………(1分)∴505+=x y .(300≤≤x )…………………………………(1分,1分)(2)设一共准备了a 张卡片.………………………………………………(1分) 根据题意,可得()28030%80530550=-⨯⨯+⨯+a .………………(2分) 解得50=a .答:一共准备了50张卡片.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB =CD .…………(2分) ∵点M 、N 分别是边CD 、AB 的中点, ∴CD CM 21=,AB AN 21=.………………………………………(1分) ∴AN CM =.…………………………………………………………(1分) 又∵AB ∥CD ,∴四边形ANCM 是平行四边形.……………………(1分) ∴AM ∥CN .……………………………………………………………(1分)(2)将CN 与BH 的交点记为E .∵BH ⊥AM ,∴∠AHB =90 o .∵AM ∥CN ,∴∠NEB =∠AHB =90 o .即CE ⊥HB .………………(2分) ∵AM ∥CN ,∴EHEBAN BN =.………………………………………(2分) ∵点N 是AB 边的中点,∴AN =BN .∴EB =EH .…………………(1分) ∴CE 是BH 的中垂线.∴CH =CB .………………………………(1分)即△BCH 是等腰三角形.24.解:(1)∵A (2,0),∴2=OA .∵OA OB 21=,∴1=OB . ∵点B 在y 轴正半轴上,∴B (0,1).……(1分)根据题意画出图形. 过点C 作CH ⊥x 轴于点H ,可得Rt △BOA ≌Rt △AHC .可得1=AH ,2=CH .∴C (3,2).……………………………………………………………………(2分) (2)∵点B (0,1)和点C (3,2)在抛物线c bx x y ++-=265上. ∴⎪⎩⎪⎨⎧=++⨯-=.23965,1c b c 解得⎪⎩⎪⎨⎧==.1,617c b …………………………………………(3分) ∴该抛物线的表达式为1617652++-=x x y .………………………………(1分) (3)存在.……………………………………………………………………………(1分)设以AC 为直角边的等腰直角三角形的另一个顶点P 的坐标为(x ,y ). (ⅰ)ο90=∠PAC ,AC =AP . 过点P 作PQ ⊥x 轴于点Q ,可得Rt △QPA ≌Rt △HAC .∴1P (4,-1).(另一点与点B (0,1)重合,舍去).……………………(1分) (ⅱ)ο90=∠PCA ,AC =PC .过点P 作PQ 垂直于直线2=y ,垂足为点Q , 可得Rt △QPC ≌Rt △HAC .∴2P (1,3),3P (5,1).……………(1分) ∵1P 、2P 、3P 三点中,可知1P 、2P 在抛物线c bx x y ++-=265上.……………(1分) ∴1P 、2P 即为符合条件的D 点.∴D 点坐标为(4,-1)或(1,3).…………………………………………………(1分)25.解:(1)联结OB .在Rt △ABC 中,ο90=∠C ,4=BC ,21tan =∠CAB , ∴AC =8.………………………………(1分) 设x OB =,则x OC -8=. 在Rt △OBC 中,ο90=∠C ,∴()22248+-=x x .……………………………………………………………(2分) 解得5=x ,即⊙O 的半径为5.………………………………………………(1分) (2)过点O 作OH ⊥AD 于点H .∵OH 过圆心,且OH ⊥AD .∴x AP AH 2121==.………………………(1分) 在Rt △AOH 中,可得22AH AO OH -=即210042522x x OH -=-=.…………(1分) 在△AOH 和△ACD 中,OHA C ∠=∠,CAD HAO ∠=∠,∴△AOH ∽△ADC .……………………(1分) ∴AC AH CD OH =.即8242-1002xy x =+. 得410082--=xx y .………………………………………………………(1分) 定义域为540<<x .…………………………………………………………(1分) (3)∵P 是AB 的中点,∴AP =BP .∵AO =BO ,∴PO 垂直平分AB .∴∠OAP =∠OPA 又∵∠PAB =90°-∠OPA ,∠D =90°-∠OAP ∴∠PAB =∠D 即BA=BD ∴△ABP ∽△ABD .…………………………(1分)∴ABD ABP S S ∆∆2⎪⎭⎫ ⎝⎛=AB AP .………………………(1分) D ABP ∠=∠.由AP =BP 可得PAB ABP ∠=∠. ∴D PAB ∠=∠.∴54==AB BD ,即54=y .…………(1分)由410082--=x x y 可得510502-=x ,即510502-=AP .………(1分) ABD ABP S S ∆∆85580510502-=-=⎪⎭⎫ ⎝⎛=AB AP .……………………………………(1分) OPDC B AHOPD C B A。
2013年上海市中考数学试卷及 答案(Word版)

2013年上海市初中毕业统一学业考试数学试卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列式子中,属于最简二次根式的是().;.;.;..2.下列关于的一元二次方程有实数根的是().;.;.;..3.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是().;.;.;..4.数据0,1,1,3,3,4的中位数和平均数分别是().2和2.4;.2和2;.1和2;.3和2.5.如图1,已知在△中,点、、分别是边、、上的点,∥,∥,且,那么等于().5:8;.3:8;.3:5;.2:5.6.在梯形中,∥,对角线和交于点,下列条件中,能判断梯形是等腰梯形的是().;.;.;..二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.因式分解:.8.不等式组的解集是.9.计算:.10.计算:.11.已知函数,那么.12.将“定理”的英文单词中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字面的概率是.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为.14.在⊙中,已知半径长为3,弦长为4,那么圆心到的距离为.15.如图3,在△和△中,点、、、在同一直线上,=,A∥D,请添加一个条件,使△≌△,这个添加的条件可以是(只需写一个,不添加辅助线).16.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时油箱剩余油量是升.17.当三角形中一个内角是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.18.如图5,在△中,,,,如果将△沿直线翻折后,点落在边的中点处,直线与边交于点,那么的长为.三、解答题:(本大题共7题,19~22题10分,23、24题12分,25题14分,满分满分78分)19.计算:.20.解方程组:.21.已知平面直角坐标系(如图6),直线经过第一、二、三象限,与轴交于点,点在这条直线上,联结,△的面积等于1.(1)求的值;(2)如果反比例函数(是常量,)的图像经过点,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图(1)所示,点是栏杆转动的支点,点是栏杆两段的连接点.当车辆经过时,栏杆升起后的位置如图(2)所示,其示意图如图(3)所示,其中,∥,,米,求当车辆经过时,栏杆段距离地面的高度(即直线上任意一点到直线的距离).(结果精确到0.1米,栏杆宽度忽略不计,参考数据:,,.)23.如图8,在△中,,,点为边的中点,∥交于点,∥交的延长线于点.(1)求证:;(2)联结,过点作的垂线交的延长线于点,求证:.24.如图9,在平面直角坐标系中,顶点为的抛物线经过点A和轴正半轴上的点,,.(1)求这条抛物线的表达式;(2)联结,求的大小;(3)如果点在轴上,且△与△相似,求点的坐标.25.在矩形中,点是边上的动点,联结,线段的垂直平分线交边于点,垂足为点,联结(如图10).已知,.设,.(1)求关于的函数解析式,并写出的取值范围;(2)当以长为半径的⊙和以长为半径的⊙外切时,求的值;(3)点在边上,过点作直线的垂线,垂足为.如果,求的值.2013年上海市初中毕业统一学业考试数学试卷参考答案1、选择题1、B;2、D;3、C;4、B;5、A;6、C2、填空题7、(a+1)(a﹣1); 8、x>1; 9、3b ; 10、2+; 11、1;12、; 13、40%;14、; 15、AC=DF ; 16、2; 17、30°; 18、.3、解答题19.解:原式=2+﹣1﹣1+2=320.解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,21.解:(1)过A作AC⊥y轴,连接OA,∵A(2,t),∴AC=2,对于直线y=x+b,令x=0,得到y=b,即OB=b,∵S△AOB=OB•AC=OB=1,∴b=1;(2)由b=1,得到直线解析式为y=x+1,将A(2,t)代入直线解析式得:t=1+1=2,即A(2,2),把A(2,2)代入反比例解析式得:k=4,则反比例解析式为y=.22.解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.∵∠EAB=143°,∠BAG=90°,∴∠EAH=∠EAB﹣∠BAG=53°.在△EAH中,∠EHA=90°,∠AEH=90°﹣∠EAH=37°,AE=1.2米,∴EH=AE•cos∠AEH≈1.2×0.80=0.96(米),∵AB=1.2米,∴栏杆EF段距离地面的高度为:AB+EH≈1.2+0.96=2.16≈2.2(米).故栏杆EF段距离地面的高度为2.2米.23.证明:(1)∵DE∥BC,CF∥AB,∴四边形DBCF为平行四边形,∴DF=BC,∵D为边AB的中点,DE∥BC,∴DE=BC,∴EF=DF﹣DE=BC﹣CB=CB,∴DE=EF;(2)∵四边形DBCF为平行四边形,∴DB∥CF,∴∠ADG=∠G,∵∠ACB=90°,D为边AB的中点,∴CD=DB=AD,∴∠B=∠DCB,∠A=∠DCA,∵DG⊥DC,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B.24.解:(1)过点A作AE⊥y轴于点E,∵AO=OB=2,∠AOB=120°,∴∠AOE=30°,∴AE=1,EO=,∴A点坐标为:(﹣1,),B点坐标为:(2,0),将两点代入y=ax2+bx得:,解得:,∴抛物线的表达式为:y=x2﹣x;(2)过点M作MF⊥OB于点F,∵y=x2﹣x=(x2﹣2x)=(x2﹣2x+1﹣1)=(x﹣1)2﹣,∴M点坐标为:(1,﹣),∴tan∠FOM==,∴∠FOM=30°,∴∠AOM=30°+120°=150°;(3)∵AO=OB=2,∠AOB=120°,∴∠ABO=∠OAB=30°,∴AB=2EO=2,当△ABC1∽△AOM,∴=,∵MO==,∴=,解得:BC1=2,∴OC1=4,∴C1的坐标为:(4,0);当△C2AB∽△AOM,∴=,∴=,解得:BC2=6,∴OC2=8,∴C2的坐标为:(8,0).综上所述,△ABC与△AOM相似时,点C的坐标为:(4,0)或(8,0).25.解:(1)在Rt△ABP中,由勾股定理得:BP2=AP2+AB2=x2+25.∵MQ是线段BP的垂直平分线,∴BQ=PQ,BM=BP,∠BMQ=90°,∴∠MBQ+∠BQM=90°,∵∠ABP+∠MBQ=90°,∴∠ABP=∠BQM,又∵∠A=∠BMQ=90°,∴△ABP∽△MQB,∴,即,化简得:y=BP2=(x2+25).当点Q与C重合时,BQ=PQ=13,在Rt△PQD中,由勾股定理定理得:PQ2=QD2+PD2,即132=52+(13﹣x)2,解得x=1;又AP≤AD=13,∴x的取值范围为:1≤x≤13.∴y=(x2+25)(1≤x≤13).(2)当⊙P与⊙Q相外切时,如答图1所示:设切点为M,则PQ=PM+QM=AP+QC=AP+(BC﹣BQ)=x+(13﹣y)=13+x ﹣y;∵PQ=BQ,∴13+x﹣y=y,即2y﹣x﹣13=0将y=(x2+25)代入上式得:(x2+25)﹣x﹣13=0,解此分式方程得:x=,经检验,x=是原方程的解且符合题意.∴x=.(3)按照题意画出图形,如答图2所示,连接QE.∵EF=EC,EF⊥PQ,EC⊥QC,∴∠1=∠2(角平分线性质).∵PQ=BQ,∴∠3=∠4,而∠1+∠2=∠3+∠4(三角形外角性质),∴∠1=∠3.又∵矩形ABCD,∴AD∥BC,∴∠3=∠5,∴∠1=∠5,又∵∠C=∠A=90°,∴△CEQ∽△ABP,∴,即,化简得:4x+5y=65,将y=(x2+25)代入上式得:4x+(x2+25)=65,解此分式方程得:x=,经检验,x=是原方程的解且符合题意,∴x=.。
2013年上海市杨浦区初中数学二模卷试题及答案(2013年4月左右的模拟试题)

初三数学基础考试卷—1—杨浦区初三数学基础测试卷 2013.4(完卷时间 100分钟 满分 150分)一、选择题(本大题每小题4分,满分24分)1.下列数中能同时被2、3整除的是 ( ) (A )1.2 ; (B )15 ; (C )16 ; (D )18.2. 下列式子:①a b c +=,②③0a >,④2n a ,其中属于代数式的是 ( )(A )①③; (B )②④; (C )①③④; (D )①②③④. 3.用配方法解一元二次方程245x x -=时,此方程可变形为 ( ) (A )()221x +=; (B )()221x -=; (C )()229x -=; (D )()229x +=. 4.某初级中学要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是 ( )(A )调查全体女生; (B )调查全体男生;(C )调查九年级全体学生; (D )调查六、七、八、九年级各20名学生. 5.⊙O 的半径为R ,直线 与⊙O 有公共点,如果圆心到直线 的距离为d ,那么d 与R 的大小关系是 ( ) (A )d R ≥; (B )d R ≤; (C )d R >; (D )d R <. 6.下列条件,不能判定ABC ∆与DEF ∆相似的是 ( ) (A ) ︒=∠=∠90F C ,︒=∠55A ,︒=∠35D ;(B ) ︒=∠=∠90F C ,10=AB ,6=BC ,15=DE ,9=EF ;(C ) ︒=∠=∠90E B ,DF ACEF BC =; (D ) ︒=∠=∠90E B ,ACDFEF AB =.二、填空题(本大题每小题4分,满分48分)7.当2x <-时,化简:+2=x . 8.因式分解:a 3﹣4a= .9.在平面直角坐标系中,若点()2P x x -,在第二象限,则x 的取值范围为 . 10.函数y =x 的取值范围是 . 11. 有一个质地均匀的正方体,其六个面上分别画着圆、等腰三角形、等腰梯形、平行四边形、菱形、正五边形。
2013年上海市中考数学试卷及答案

2013年上海市中考數學試卷一、選擇題:(本大題共6題,每題4分,滿分24分).B C D5,那麼CF:CB等於()7.分解因式:a2﹣1=_________.8.不等式組の解集是_________.9.計算:=_________.10.計算:2(﹣)+3=_________.11.已知函數,那麼=_________.12.將“定理”の英文單詞theorem中の7個字母分別寫在7張相同の卡片上,字面朝下隨意放在桌子上,任取一張,那麼取到字母eの概率為_________.13.某校報名參加甲、乙、丙、丁四個興趣小組の學生人數如圖所示,那麼報名參加甲組和丙組の人數之和占所有報名人數の百分比為_________.14.在⊙O中,已知半徑長為3,弦AB長為4,那麼圓心O到ABの距離為_________.15.如圖,在△ABC和△DEF中,點B、F、C、E在同一直線上,BF=CE,AC∥DF,請添加一個條件,使△ABC≌△DEF,這個添加の條件可以是_________.(只需寫一個,不添加輔助線)16.李老師開車從甲地到相距240千米の乙地,如果油箱剩餘油量y(升)與行駛里程x(千米)之間是一次函數關係,其圖象如圖所示,那麼到達乙地時油箱剩餘油量是_________升.17.當三角形中一個內角α是另一個內角βの兩倍時,我們稱此三角形為“特徵三角形”,其中α稱為“特徵角”.如果一個“特徵三角形”の“特徵角”為100°,那麼這個“特徵三角形”の最小內角の度數為_________.18.如圖,在△ABC中,AB=AC,BC=8,tanC=,如果將△ABC沿直線l翻折後,點B落在邊ACの中點處,直線l與邊BC交於點D,那麼BDの長為_________.三、解答題:(本大題共7題,滿分78分)19.(10分)計算:.20.(10分)解方程組:.21.(10分)已知平面直角坐標系xOy(如圖),直線經過第一、二、三象限,與y軸交於點B,點A(2,t)在這條直線上,聯結AO,△AOBの面積等於1.(1)求bの值;(2)如果反比例函數(k是常量,k≠0)の圖象經過點A,求這個反比例函數の解析式.22.(10分)某地下車庫出口處“兩段式欄杆”如圖1所示,點A是欄杆轉動の支點,點E是欄杆兩段の連接點.當車輛經過時,欄杆AEF升起後の位置如圖2所示,其示意圖如圖3所示,其中AB⊥BC,EF∥BC,∠EAB=143°,AB=AE=1.2米,求當車輛經過時,欄杆EF段距離地面の高度(即直線EF上任意一點到直線BCの距離).(結果精確到0.1米,欄杆寬度忽略不計參考數據:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.)23.(12分)如圖,在△ABC中,∠ACB=90°,∠B>∠A,點D為邊ABの中點,DE∥BC交AC於點E,CF∥AB交DEの延長線於點F.(1)求證:DE=EF;(2)連結CD,過點D作DCの垂線交CFの延長線於點G,求證:∠B=∠A+∠DGC.24.(12分)如圖,在平面直角坐標系xOy中,頂點為Mの拋物線y=ax2+bx(a>0),經過點A和x軸正半軸上の點B,AO=OB=2,∠AOB=120°.(1)求這條拋物線の運算式;(2)連接OM,求∠AOMの大小;(3)如果點C在x軸上,且△ABC與△AOM相似,求點Cの座標.25.(14分)在矩形ABCD中,點P是邊AD上の動點,連接BP,線段BPの垂直平分線交邊BC於點Q,垂足為點M,聯結QP(如圖).已知AD=13,AB=5,設AP=x,BQ=y.(1)求y關於xの函數解析式,並寫出xの取值範圍;(2)當以AP長為半徑の⊙P和以QC長為半徑の⊙Q外切時,求xの值;(3)點E在邊CD上,過點E作直線QPの垂線,垂足為F,如果EF=EC=4,求xの值.。
2013上海中考各区数学二模应用题集

如图,线段AB ,CD 分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量1y (升)、2y (升)关于行驶时间x (小时)的函数图像。
(1)分别求1y 、2y 关于x 的函数解析式,并写出定义域;(2)如果两车同时从相距300千米的甲、乙两地出发,相向而行,匀速行驶,已知轿车的行驶速度比客车的行驶速度快30千米/小时,且当两车在途中相遇时,它们油箱中所剩余的油量恰好相等,求两车的行驶速度(奉贤区2013二模22题)我区开展了“关爱老人从我做起”的主题活动。
在活动中随机调查了本区部分老人与子女同住情况,根据收集到的数据,绘制成如下统计图表(不完整)老人与子女同住情况百分比统计表:老人与子女同住人数条形图:据统计图表中提供的信息,回答下列问题:(1)本次共抽样调查了▲ 位老人,老人与子女同住情况百分比统计表中的a = ▲ ; (2)将条形统计图补充完整;(画在答题纸相对应的图上)(3)根据本次抽样调查,试估计我区约15万老人 中与子女“不同住”的老人总数是▲ 人;( 第22题图 )x (小时)_ 子女在区外_ 子女在本区 _ 与子女同住情况 _ 其他 _同住_ _ _ _为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价如果单价从最高25元/千克下调到x 元/千克时,销售量为y 千克,已知y 与x 之间的函数关系是一次函数:(1)求y 与x 之间的函数解析式;(不写定义域)(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?(杨浦区2013二模22题)如图,线段AB ,CD 分别是一辆轿车和一辆客车在行驶过程中油箱内的剩余油量1y (升)、 2y (升)关于行驶时间x (小时)的函数图像。
(1)写出图中线段CD 上点M 的坐标及其表示的实际意义; (2)求出客车行驶前油箱内的油量;(3)求客车行驶1小时所消耗的油量相当于轿车行驶几小时所消耗的油量。
2013上海市中考数学试卷及答案

2013年上海市初中毕业生统一学业考试数学试卷(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.下列式子中,属于最简二次根式的是()(A)9;(B)7 ;(C)20 ;(D)13.2.下列关于x的一元二次方程有实数根的是()(A)210x+=;(B)210x x++=;(C)210x x-+=;(D)210x x--=.3.如果将抛物线22y x=+向下平移1个单位,那么所得新抛物线的表达式是()(A)2(1)2y x=-+;(B)2(1)2y x=++;(C)21y x=+;(D)23y x=+.4.数据0,1,1,3,3,4 的中位线和平均数分别是()(A)2和2.4 ;(B)2和2 ;(C)1和2;(D)3和2.5.如图1,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD∶DB = 3∶5,那么CF∶CB等于()(A)5∶8 ;(B)3∶8 ;(C)3∶5 ;(D)2∶5.6.在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是()(A)∠BDC =∠BCD;(B)∠ABC =∠DAB;(C)∠ADB =∠DAC;(D)∠AOB =∠BOC.二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置]7.因式分解:21a-= _____________.8.不等式组1023xx x->⎧⎨+>⎩的解集是____________.9.计算:23b aa b⨯= ___________.10.计算:2 (a─b) + 3b= ___________.11.已知函数()231xfx=+,那么f= __________.12.将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为___________.13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为___________.图1(升)14.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________.15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是____________.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量 y (升)与行驶里程 x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是__________升.17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为__________.18.如图5,在△ABC 中,AB AC =,8BC =, tan C = 32,如果将△ABC 沿直线l 翻折后,点B 落在边AC 的中点处,直线l 与边BC 交于点D , 那么BD 的长为__________.三、解答题:(本大题共7题,满分78分)(本大题共7题,19~22题10分,23、24题12分,25题14分,满分48分) [将下列各题的解答过程,做在答题纸的相应位置上] 190111()2π--+ .20.解方程组: 22220x y x xy y -=-⎧⎨--=⎩.21.已知平面直角坐标系xoy (如图6),直线 12y x b =+经过第一、二、三象限,与y 轴交于点B ,点A (2,1)在这条直线上,联结AO ,△AOB 的面积等于1. (1)求b 的值; (2)如果反比例函数ky x=(k 是常量,0k ≠) 的图像经过点A ,求这个反比例函数的解析式.22.某地下车库出口处“两段式栏杆”如图7-1所示,点A 是栏杆转动的支点,点E 是栏杆两段的连接点.当车辆经过时,栏杆AEF 升起后的位置如图7-2所示,其示意图如图7-3所示,其中AB ⊥BC ,EF ∥BC ,0143EAB ∠=, 1.2AB AE ==米,求当车辆经过时,栏杆EF 段距离地面的高度(即直线EF 上任意一点到直线BC 的距离).(结果精确到0.1米,栏杆宽度忽略不计参考数据:sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75.)图523.如图8,在△ABC 中,0=90ABC ∠, B A ∠>∠,点D 为边AB 的中点,DE BC ∥交AC 于点E ,CF AB ∥交DE 的延长线于点F . (1)求证:DE EF =;(2)联结CD ,过点D 作DC 的垂线交CF 的 延长线于点G ,求证:B A DGC ∠=∠+∠.24.如图9,在平面直角坐标系xoy 中,顶点为M 的抛物线2(0y ax bx a =+>)经过点A 和x 轴正半轴上的点B ,AO OB == 2,0120AOB ∠=.(1)求这条抛物线的表达式;(2)联结OM ,求AOM ∠的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.25.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q , 垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x BQ y ==,. (1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;图8图9图7-1 图7-2图7-3A EFAEFA E FBC(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x 的值.图10备用图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1浦东新区2013年中考预测数学试卷(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列分数中,能化为有限小数的是 (A )31; (B )51; (C )71; (D )91. 2.如果()12212-=-a a ,那么(A )21<a ; (B )21≤a ; (C )21>a ; (D )21≥a . 3.下列图形中,是旋转对称但不是中心对称图形的是(A )线段;(B )正五边形;(C )正八边形; (D )圆.4.如果等腰三角形的两边长分别是方程021102=+-x x 的两根,那么它的周长为(A )10; (B )13;(C )17;(D )21.5.一组数据共有6个正整数,分别为6、7、8、9、10、n ,如果这组数据的众数和平均数相同,那么n 的值为(A )6; (B )7; (C )8;(D )9.6.如果两圆有两个交点,且圆心距为13,那么此两圆的半径可能为(A )1、10; (B )5、8;(C )25、40;(D )20、30.二、填空题:(本大题共12题,每题4分,满分48分) 7.8的立方根是 ▲ .8.太阳的半径为696000千米,其中696000用科学记数法表示为 ▲ . 9.计算:()=32x ▲ .10.已知反比例函数xky =(0≠k ),点(-2,3)在这个函数的图像上,那么当0>x 时,y 随x 的增大而 ▲ .(增大或减小)11.在1~9这九个数中,任取一个数能被3整除的概率是 ▲ .12.如图,已知C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,那么∠ACB = ▲ 度.13.化简:=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛-b a b a 313212 ▲ .14.在中考体育测试前,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如图所示的统计图.小红计算出90~100和100~110两组的频率和是0.12,小明计算出90~100组的频率为0.04,结合统计图中的信息,可知这次共抽取了 ▲ 名学生的一分钟跳绳测试成绩. 15.如图,四边形ABCD 是梯形,AD ∥CB ,AC =BD 且AC ⊥BD ,如果梯形的高DE =3,那么梯形ABCD 的中位线长为 ▲ .16.如图,已知四边形ABCD 是边长为2的菱形,点E 、B、C 、F 都在以D 为第12题图第14题图2圆心的同一圆弧上,且∠ADE =∠CDF ,那么EF 的长度等于 ▲ .(结果保留π)17.如图,将面积为12的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,那么图中的四边形ACED 的面积为 ▲ .18.边长为1的正方形内有一个正三角形,如果这个正三角形的一个顶点与正方形的一个顶点重合,另两个顶点都在这个正方形的边上,那么这个正三角形的边长是 ▲ .三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:()2113332318+-+⎪⎭⎫⎝⎛---π.20.(本题满分10分)先化简,再求值:21416222+----+x x x x ,其中23-=x .21.(本题满分10分,每小题各5分)已知:如图,在△ABC 中,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在边AC 上的点D 处,点F 在线段AE 的延长线上,如果ACB B FCA ∠=∠=∠2,5=AB ,9=AC .求:(1)CFBE的值; (2)CE 的值.22.(本题满分10分,其中第(1)小题6分,第(2)小题4分)学校组织“义捐义卖”活动,小明的小组准备自制贺年卡进行义卖.活FEDCBA第21题图第22题图ABCDEF第17题图第15题图EB3动当天,为了方便,小组准备了一点零钱备用,按照定价售出一些贺年卡后,又降价出售.小组所拥有的所有钱数y (元)与售出卡片数x (张)的关系如图所示.(1)求降价前y (元)与x (张)之间的函数解析式,并写出定义域;(2)如果按照定价打八折后,将剩余的卡片全部卖出,这时,小组一共有280元(含备用零钱),求该小组一共准备了多少张卡片.23.(本题满分12分,每小题各6分)已知:平行四边形 ABCD 中,点M 为边CD 的中点,点N 为边AB的中点,联结AM 、CN . (1)求证:AM ∥CN .(2)过点B 作BH ⊥AM ,垂足为H ,联结CH . 求证:△BCH 是等腰三角形.24.(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)已知:如图,点A (2,0),点B 在y 轴正半轴上,且OA OB 21=.将点B 绕点A 顺时针方向旋转 90至点C .旋转前后的点B 和点C 都在抛物线c bx x y ++-=265上. (1) 求点B 、C 的坐标;(2) 求该抛物线的表达式;(3) 联结AC ,该抛物线上是否存在异于点B 的点D ,使点D 与AC 构成以AC 为直角边的等腰直角三角形?如果存在,求出所有符合条件的D 点坐标,如果不存在,请说明理由.HNMDCBA第23题图第24题图425.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分)已知:如图,在Rt △ABC 中, 90=∠C ,4=BC ,21tan =∠CAB ,点O 在边AC 上,以点O 为圆心的圆过A 、B 两点,点P 为AB 上一动点. (1)求⊙O 的半径;(2)联结AP 并延长,交边CB 延长线于点D ,设x P A =,y D B =,求y 关于x的函数解析式,并写出定义域;(3)联结P B ,当点P 是AB ABP 的面积与△ABD 的面积比ABDABPS S ∆∆的值.浦东新区2013年中考预测 数学试卷参考答案及评分标准20130416一、选择题:(本大题共6题,每题4分,满分24分) 1.B ;2.D ;3.B ;4.C ;5.C ;6.D .二、填空题:(本大题共12题,每题4分,满分48分) 7.2; 8.51096.6⨯; 9.6x ; 10.增大; 11.31; 12.105; 13.b a 4-; 14.150; 15.3; 16.π34; 17.36; 18.26-.三、解答题:(本大题共7题,满分78分)第25题图备用图B519.解:原式=33-23-1++…………………………………………………… (8分)=0.………………………………………………………………………(2分)20.解:原式()()21221622+-+---+=x x x x x ………………………………………(1分) ()()()()2221622+----+=x x x x ………………………………………………(2分)()()22216442+-+--++=x x x x x ……………………………………………(2分)()()221032+--+=x x x x …………………………………………………………(1分)()()()()2225+--+=x x x x …………………………………………………………(1分)25++=x x .………………………………………………………………(1分)当23-=x 时,原式31333+=+=.………………………………(2分)21.解:(1)∵△ABE ≌△ADE ,∴∠BAE =∠CAF .∵∠B =∠FCA ,∴△ABE ∽△ACF .…………………………………(2分) ∴ACAB CF BE =.…………………………………………………………(1分) ∵AB =5,AC =9,∴95=CF BE .…………………………………………(2分)(2)∵△ABE ∽△ACF ,∴∠AEB =∠F .∵∠AEB =∠CEF ,∴∠CEF =∠F .∴CE =CF .……………………(1分) ∵△ABE ≌△ADE ,∴∠B =∠ADE ,BE =DE .∵∠ADE =∠ACE+∠DEC ,∠B =2∠ACE ,∴∠ACE =∠DEC .∴CD =DE =BE =4.………………………………………………………(2分)∵95=CF BE ,∴95=CE CD .∴536=CE .……………………………………………………………(2分)622.解:(1)根据题意,可设降价前y 关于x 的函数解析式为b kx y +=(0≠k ).…………………………………………………(1分)将()50,0,()200,30代入得⎩⎨⎧=+=.20030,50b k b …………………………(2分)解得⎩⎨⎧==.50,5b k ……………………………………………………………(1分)∴505+=x y .(300≤≤x )…………………………………(1分,1分)(2)设一共准备了a 张卡片.………………………………………………(1分) 根据题意,可得()28030%80530550=-⨯⨯+⨯+a .………………(2分) 解得50=a .答:一共准备了50张卡片.……………………………………………(1分)23.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB =CD .…………(2分) ∵点M 、N 分别是边CD 、AB 的中点, ∴CD CM 21=,AB AN 21=.………………………………………(1分) ∴AN CM =.…………………………………………………………(1分) 又∵AB ∥CD ,∴四边形ANCM 是平行四边形.……………………(1分) ∴AM ∥CN .……………………………………………………………(1分)(2)将CN 与BH 的交点记为E .∵BH ⊥AM ,∴∠AHB =90 º.∵AM ∥CN ,∴∠NEB =∠AHB =90 º.即CE ⊥HB .………………(2分) ∵AM ∥CN ,∴EHEBAN BN =.………………………………………(2分) ∵点N 是AB 边的中点,∴AN =BN .∴EB =EH .…………………(1分) ∴CE 是BH 的中垂线.∴CH =CB .………………………………(1分) 即△BCH 是等腰三角形.7(1)∵A (2,0),∴2=OA .∵OA OB 21=,∴1=OB . ∵点B 在y 轴正半轴上,∴B (0,1).……(1分) 根据题意画出图形. 过点C 作CH ⊥x 轴于点H ,可得Rt △BOA ≌Rt △AHC .可得1=AH ,2=CH .∴C (3,2).……………………………………………………………………(2分) (2)∵点B (0,1)和点C (3,2)在抛物线c bx x y ++-=265上. ∴⎪⎩⎪⎨⎧=++⨯-=.23965,1c b c 解得⎪⎩⎪⎨⎧==.1,617c b …………………………………………(3分) ∴该抛物线的表达式为1617652++-=x x y .………………………………(1分) (3)存在.……………………………………………………………………………(1分)设以AC 为直角边的等腰直角三角形的另一个顶点P 的坐标为(x ,y ). (ⅰ) 90=∠PAC ,AC =AP .过点P 作PQ ⊥x 轴于点Q , 可得Rt △QPA ≌Rt △HAC .∴1P (4,-1).(另一点与点B (0,1)重合,舍去).…………………………………………(1分) (ⅱ) 90=∠PCA ,AC =PC .过点P 作PQ 垂直于直线2=y ,垂足为点Q , 可得Rt △QPC ≌Rt △HAC .∴2P (1,3),3P (5,1).……………………………………………………(1分)∵1P 、2P 、3P 三点中,可知1P 、2P 在抛物线c bx x y ++-=265上.……………(1分) ∴1P 、2P 即为符合条件的D 点.∴D 点坐标为(4,-1)或(1,3).…………………………………………………(1分)8(1)联结OB .在Rt △ABC 中,90=∠C , 4=BC ,21tan =∠CAB , ∴AC =8.………………………………(1分) 设x OB =,则x OC -8=. 在Rt △OBC 中, 90=∠C ,∴()22248+-=x x .……………………………………………………………(2分) 解得5=x ,即⊙O 的半径为5.………………………………………………(1分)(2)过点O 作OH ⊥AD 于点H . ∵OH 过圆心,且OH ⊥AD .∴x AP AH 2121==.………………………(1分)在Rt △AOH 中,可得22AH AO OH -=即210042522x x OH -=-=.…………(1分) 在△AOH 和△ACD 中,OHA C ∠=∠,CAD HAO ∠=∠,∴△AOH ∽△ADC .……………………(1分) ∴ACAH CD OH =.即8242-1002xy x =+. 得410082--=xx y .………………………………………………………(1分) 定义域为540<<x .…………………………………………………………(1分)(3)∵P 是AB 的中点,∴AP =BP .∵AO =BO ,∴PO 垂直平分AB .设α=∠CAB ,可求得α=∠ABO ,α2=∠COB ,α290-=∠ OBC ,α-=∠ 90AOP ,α+=∠ 90ABD ,α+=∠=∠ 902APO APB . ∴APB ABD ∠=∠.∴△ABP ∽△ABD .…………………………(1分) ∴ABD ABP S S ∆∆2⎪⎭⎫ ⎝⎛=AB AP .………………………(1分) D ABP ∠=∠.由AP =BP 可得PAB ABP ∠=∠. ∴D PAB ∠=∠.∴54==AB BD ,即54=y .…………(1分)由410082--=x x y 可得510502-=x ,即510502-=AP .………(1分) ABD ABP S S ∆∆85580510502-=-=⎪⎭⎫ ⎝⎛=AB AP .……………………………………(1分)。