专题07 统计与概率-2017版[中考15年]南京市2002-2016年中考数学试题分项(原卷版)
专题07 概率统计(名师点睛+能力提升)(学生版)

2020年中考考点总动员之三轮冲刺聚焦考点+名师点睛+能力提升专题07 概率统计讲练测模块一:概率初步【例1】某地气象局预报称:明天A地区降水概率为80%,这句话指的是()A.明天A地区80%的时间都下雨B.明天A地区的降雨量是同期的80%C.明天A地区80%的地方都下雨D.明天A地区下雨的可能性是80%【例2】下列事件中,是确定事件的是()A.上海明天会下雨B.将要过马路时恰好遇到红灯C.有人把石头孵成了小鸭D.冬天,盆里的水结成了冰【例3】一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( )A.16B.13C.12D.23【例4】从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是______.【例5】某班进行一次班级活动,要在2名男同学和3名女同学中,随机选出2名学生担任主持人,那么选出的2名学生恰好是1男1女的概率是______.【例6】将一枚质地均匀的硬币抛掷2次,硬币正面均朝上的概率是___________.【例7】从小敏、小杰等3名同学中任选2名同学担任校运动会的志愿者,那么恰好选中小敏和小杰的概率为______.【例8】如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于()A.12B.13C.14D.16【例9】有五张分别印有等边三角形、直角三角形(非等腰)、直角梯形、正方形、圆图形的卡片(卡片中除图案不同外,其余均相同)现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有轴对称图案的卡片的概率是______.【例10】 如图,在22⨯的正方形网格中四个小正方形的顶点叫格点,已经取定格点A 和B ,在余下的格点中任取一点C ,使ABC ∆为直角三角形的概率是______.【例11】 从1、2、3、4四个整数中任取两个数作为一个点的坐标,那么这个点恰好在抛物线2y x =上的概率是( )A .124B .112C .16D .14【例12】 在分别写有数字1-、0、2、3的四张卡片中随机抽取一张,放回后再抽取一张,如果以第一次抽取的数字作为横坐标,第二次抽取的数字作为纵坐标,那么所得点落在第一象限的概率为______.【例13】 袋子里有4个黑球,m 个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m 的值是______.【巩固1】(2019•上海)一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是 . 【巩固2】(2018•上海)从27,π,3这三个数中选一个数,选出的这个数是无理数的概率为 . 【巩固3】(2019•虹口区二模)下列事件中,必然事件是( ) A .在体育中考中,小明考了满分B .经过有交通信号灯的路口,遇到红灯C .抛掷两枚正方体骰子,点数和大于1D .四边形的外角和为180度.【巩固4】(2019•青浦区二模)将分别写有“创建”、“智慧”、“校园”的三张大小、质地相同的卡片随机排列,那么恰好排列成“创建智慧校园”的概率是 .【巩固5】(2019•浦东新区二模)从1、2、3这三个数中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好是偶数的概率是 .【巩固6】(2019•静安区二模)从0,1,2,3这四个数字中任取3个数,取得的3个数中不含2的概率是 . 【巩固7】(2019•虹口区二模)一个不透明的袋中装有4个白球和若干个红球,这些球除颜色外其他都相同,摇匀后随机摸出一个球,如果摸到白球的概率为0.4,那么红球有 个.AB【巩固8】(2019•嘉定区二模)不透明的袋中装有8个小球,这些小球除了有红白两种颜色外其它都一样,其中2个小球为红色,6个小球为白色,随机地从袋中摸取一个小球是红球的概率为.【巩固9】(2019•松江区二模)在不透明的盒子中装有4个黑色棋子和若干个白色棋子,每个棋子除颜色外其它完全相同,从中随机摸出一个棋子,摸到黑色棋子的概率是13,那么白色棋子的个数是.【巩固10】(2019•徐汇区二模)在不透明的盒子中装有5个黑色棋子和15个白色棋子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是.【巩固11】(2019•金山区二模)从方程20x=1-,2240x x-+=中,任选一个方程,选出的这个方程无实数解的概率为.【巩固12】(2019•普陀区二模)如图,一个大正方形被平均分成9个小正方形,其中有2个小正方形已经被涂上阴影,在剩余的7个白色小正方形中任选一个涂上阴影,使图中涂上阴影的三个小正方形组成轴对称图形,这个事件的概率是.【巩固13】(2019•闵行区二模)从一副52张没有大小王的扑克牌中任意抽取一张牌,那么抽到A的概率是.【巩固14】(2019•黄浦区二模)掷一枚质地均匀的正方体骰子,骰子的六个面分别标有1到6的点数,向上的一面出现的点数是2的倍数的概率是.【巩固15】(2019•长宁区二模)掷一枚材质均匀的骰子,掷得的点数为素数的概率是.【巩固16】(2019•杨浦区三模)在“石头、剪刀、布”的游戏中,两人打出相同标识手势的概率是.【巩固17】(2019•崇明区二模)从1、2、3、4、5、6、7、8这八个数中,任意抽取一个数,那么抽得的数是素数的概率是.模块二:统计初步【例14】下列统计图中,可以直观地反映出数据变化的趋势的统计图是( )A.折线图B.扇形图C.条形图D.频数分布直方图【例15】一鞋店销售一种新鞋,试销期间卖出情况如下表,对于鞋店经理来说最关心哪种尺码的鞋畅销,那么下列统计量对该经理来说最有意义的是( )尺码2222.52323.52424.525数量(双)351015832A.平均数B.中位数C.众数D.方差【例16】下列说法中,正确的个数有( )①一组数据的平均数一定是该组数据中的某个数据;②一组数据的中位数一定是该组数据中的某个数据;③一组数据的众数一定是该组数据中的某个数据.A.0个B.1个C.2个D.3个【例17】某老师在试卷分析中说:参加这次考试的82位同学中,考91分的人数最多,有11人之众,但是十分遗憾最低的同学仍然只得了56分.这说明本次考试分数的众数是( )A.82 B.91 C.11 D.56【例18】一组数据3,3,2,5,8,8的中位数是( )A.3 B.4 C.5 D.8【例19】一组数据1、2、3、4、5、15的平均数和中位数分别是( )A.5、5 B.5、4 C.5、3.5 D.5、3【例20】甲、乙、丙、丁四位同学五次数学测验成绩统计如下表.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加上海市初中数学竞赛,那么应选______同学.甲乙丙丁平均数70 85 85 70标准差 6 .5 6.5 7.6 7.6【例21】下图是上海今年春节七天最高气温(℃)的统计结果:这七天最高气温的众数和中位数是:( )A.15,17B.14,17C.17,14D.17,15【例22】 如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是( )A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82ºD .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【例23】 2019年1月份,某区体委组织“迎新春长跑活动”,现将报名的男选手分成:青年组、中年组、老年组.各组人数所占比例如图所示,已知青年组120人,则中年组的人数是______.【例24】 崇明县校园足球运动正在蓬勃发展,已知某校学生“足球社团”成员的年龄与人数情况如下表所示:那么“足球社团”成员年龄的中位数是______岁.【例25】 某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭与上月比较的一个月的节水情况统计:那么这10个家庭的节水量(m 3)的平均数和中位数分别是( ) A .0.42和0.4B .0.4和0.4C .0.42和0.45D .0.4和0.45【例26】 饭店为某公司提供“白领午餐”,有12元、15元、18元三种价格的套餐可供选择,每人限购一份.本中年 ?老年20%青年60%年龄(岁)11 12 13 14 15 人数3371214节水量(m 3) 0.2 0.3 0.4 0.5 0.6 家庭数(个)12241乘车步行 骑车乘步骑20 12频数(人) 出行方式周销售套餐共计500份,其中12元的占总份数的20%,15元的卖出180份,其余均为18元的,那么所购买的盒饭费用的中位数和众数分别是( )A .15元和18元B .15元和15元C .18元和15元D .18元和18元【例27】 甲乙两位运动员在一次射击训练中各打五发,成绩的平均环数相同,甲的方差为1.6;乙的成绩(环)为:7,8,10,6,9,那么这两位运动员中______的成绩较稳定.【例28】 已知两组数据:2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等【例29】 某班40名全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中40个捐款额的中位数是______元.【例30】 为了了解某区5500名初三学生的的体重情况,随机抽测了400名学生的体重,统计结果列表如下: 那么样本中体重在50 - 55范围内的频率是______.【例31】 一组数据:1 ,1,3,4,a ,若它们的平均数为2,则这组数据的众数为( ) A .1B .2C .3D .4【例32】 某工厂对一个小组生产的零件进行调查.在10天中,这个小组出次品的情况如下表所示: 体重(千克) 频数 频率 40—45 44 45—50 66 50—55 84 55—60 86 60—65 72 65—70 48每天出次品的个数234元5 人数10 15 20 2546 8 10 12那么在这10天中这个小组每天所出次品数的标准差是______.【例33】 为了了解某中学学生的上学方式,从该校全体学生900名中,随机抽查了60名学生,结果显示有15名学生“步行上学”.由此,估计该校全体学生中约有______名学生“步行上学”.【例34】 某服装厂从20万件同类产品中随机抽取了100件进行质检,发现其中有2件不合格,那么你估计该厂这20万件产品中合格品约为______万件.【例35】 某区有6000名学生参加了“创建国家卫生城市”知识竞赛.为了了解本次竞赛成绩分布情况,竞赛组委会从中随机抽取部分学生的成绩(得分都是整数)作为样本,绘制成频率分布直方图.请根据提供的信息估计该区本次竞赛成绩在89.5分~99.5分的学生大约有______名.【例36】 为了解本区初中学生的视力情况,教育局有关部门采用抽样调查的方法,从全区2万名中学生中注:(4.3~4.5之间表示包括4.3及4.5))根据图表完成下列问题:(1) 填完整表格及补充完整图一;(2) “类型D ”在扇形图(图二)中所占的圆心角是度; (3) 本次调查数据的中位数落在类型内;(4) 视力在5.0以下(不含5.0)均为不良,那么全区视力不良的初中学生估计人.【巩固1】(2019•上海)甲、乙两名同学本学期五次引体向上的测试成绩(个数)成绩如图所示,下列判断正确的是( )A .甲的成绩比乙稳定B .甲的最好成绩比乙高C .甲的成绩的平均数比乙大D .甲的成绩的中位数比乙大【巩固2】(2018•上海)据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是( ) A .25和30 B .25和29C .28和30D .28和2910 80100 80 60 40 20 0ABCD视力 类型人数图一图二AB 10%C 40%D【巩固3】(2019•浦东新区二模)某运动队在一次队内选拔比赛中,甲、乙、丙、丁四位运动员的平均成绩相等,方差分别为0.85、1.23、5.01、3.46,那么这四位运动员中,发挥较稳定的是( ) A .甲B .乙C .丙D .丁【巩固4】(2019•静安区二模)小明和小丽暑期参加工厂社会实践活动,师傅将他们工作第一周每天生产的合格产品的个数整理成如表1两组数据.那么关于他们工作第一周每天生产的合格产品个数,下列说法中正确的是( )A .小明的平均数小于小丽的平均数B .两人的中位数相同C .两人的众数相同D .小明的方差小于小丽的方差【巩固5】(2019•闵行区二模)下列各统计量中,表示一组数据离散程度的量是( ) A .平均数B .众数C .方差D .频数【巩固6】(2019•金山区二模)数据2、1、0、2-、0、1-的中位数与众数分别是( ) A .0和0B .1-和0C .0和1D .0和2【巩固7】(2019•嘉定区二模)现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22S S >乙甲,那么两个队中队员的身高较整齐的是( )A .甲队B .乙队C .两队一样整齐D .不能确定【巩固8】(2019•徐汇区二模)今年3月12日,学校开展植树活动,植树小组16名同学的树苗种植情况如下表:那么这16名同学植树棵树的众数和中位数分别是( ) A .5和6B .5和6.5C .7和6D .7和6.5【巩固9】(2019•杨浦区三模)某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为 cm .【巩固10】(2019•嘉定区二模)在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是分.【巩固11】(2019•松江区二模)某校初三(1)班40名同学的体育成绩如表所示,则这40名同学成绩的中位数是.【巩固12】(2019•长宁区二模)为了解某校九年级学生每天的睡眠时间,随机调查了其中20名学生,将所得数据整理并制成如表,那么这些测试数据的中位数是小时.【巩固13】(2019•奉贤区二模)下表是某班所有学生体育中考模拟测试成绩的统计表,表格中的每个分数段含最小值,不含最大值,根据表中数据可以知道,该班这次体育中考模拟测试成绩的中位数落在的分数段是.【巩固14】(2019•闵行区二模)一射击运动员在一次射击练习中打出的成绩如表所示,那么这个射击运动员这次成绩的中位数是.【巩固15】(2019•上海)小明为了解所在小区居民各类生活垃圾的投放情况,他随机调查了该小区50户家庭某一天各类生活垃圾的投放量,统计得出这50户家庭各类生活垃圾的投放总量是100千克,并画出各类生活垃圾投放量分布情况的扇形图(如图所示),根据以上信息,估计该小区300户居民这一天投放的可回收垃圾共约千克.【巩固16】(2018•上海)某校学生自主建立了一个学习用品义卖平台,已知九年级200名学生义卖所得金额的频数分布直方图如图所示,那么2030元这个小组的组频率是.【巩固17】为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析.在此问题中,样本是指()A.80B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重【巩固18】(2019•杨浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:那么第⑤组的频率是()A.14B.15C.0.14D.0.15【巩固19】(2019•长宁区二模)某校随机抽查若干名学生,测试了1分钟仰卧起坐的次数,把所得数据绘制成频数分布直方图(如图),则仰卧起坐次数不小于15次且小于20次的频率是()A.0.1B.0.2C.0.3D.0.4【巩固20】(2019•奉贤区二模)学校环保小组的同学随机调查了某小区10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,7,10,6,9.利用学过的统计知识,根据上述数据估计该小区200户家庭一周内共需要环保方便袋约()A.200只B.1400只C.9800只D.14000只【巩固21】(2019•青浦区二模)A班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A班参赛人数的百分率为.【巩固22】(2019•浦东新区二模)某校有560名学生,为了解这些学生每天做作业所用的时间,调查人员在这所学校的全体学生中随机抽取了部分学生进行问卷调查,并把结果制成如图的统计图,根据这个统计图可以估计这个学校全体学生每天做作业时间不少于2小时的人数约为名.【巩固23】(2019•静安区二模)为了解某校九年级男生1000米跑步的水平情况,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,那么扇形统计图中表示C等次的扇形所对的圆心角的度数为度.【巩固24】(2019•虹口区二模)为了了解初三毕业班学生一分钟跳绳次数的情况,某校抽取了一部分初三毕业生进行一分钟跳绳次数的测试,将所得数据进行处理,共分成4组,频率分布表(不完整)如下表所示.如果次数在110次(含110次)以上为达标,那么估计该校初三毕业生一分钟跳绳次数的达标率约为.【巩固25】(2019•徐汇区二模)某校九年级学生共300人,为了解这个年级学生的体能,从中随机抽取50名学生进行1分钟的跳绳测试,结果统计的频率分布如图所示,其中从左至右前四个小长方形的高依次为0.004、0.008、0.034、0.03,如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为.【巩固26】(2019•普陀区二模)张老师对本校参加体育兴趣小组的情况进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,已知参加体育兴趣小组的学生共有80名,其中每名学生只参加一个兴趣小组,根据图中提供的信息,可知参加排球兴趣小组的人数占体育兴趣小组总人数的百分数是.【巩固27】(2019•崇明区二模)为了了解全区近3600名初三学生数学学习状况,随机抽取600名学生的测试成绩作为样本,将他们的成绩整理后分组情况如下:(每组数据含最低值,不含最高值)根据上表信息,由此样本请你估计全区此次成绩在70~80分的人数大约是.【巩固28】(2019•金山区二模)100克鱼肉中蛋白质的含量如图表,每100克草鱼、鲤鱼、花鲢鱼鱼肉的平均蛋白质含量为16.8克,那么100克鲤鱼肉的蛋白质含量是克.【巩固29】(2019•黄浦区二模)秋季新学期开学时,某中学对六年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了不完整的图表(如表所示),图表中c=.x<6070x<7080x<8090x90100【巩固30】某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动.以下是根据调查结果绘制的统计图表的一部分.类别A类型足球那么,其中最喜欢足球的学生数占被调查总人数的百分比为%.【巩固31】(2019•宝山区二模)为了解全区5000名初中毕业生的体重情况,随机抽测了400名学生的体重,频率分布如图所示(每小组数据可含最小值,不含最大值),其中从左至右前四个小长方形的高依次为0.02、0.03、0.04、0.05,由此可估计全区初中毕业生的体重不小于60千克的学生人数约为人.【巩固32】(2018•浦东新区二模)近年来,出境旅游成为越来越多中国公民的假期选择,将2017年某小区居民出境游的不同方式的人次情况画成扇形图和条形图,如图所示,那么2017年该小区居民出境游中跟团游的人数为.【巩固33】(2018•普陀区二模)2018年春节期间,反季游成为出境游的热门,中国游客青睐的目的地仍主要集中在温暖的东南亚地区.据调查发现2018年春节期间出境游约有700万人,游客目的地分布情况的扇形图如图所示,从中可知出境游东南亚地区的游客约有万人.【习题1】布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为______.【习题2】某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是______.【习题3】该投篮进球数据的中位数是( )A .2B .3C .4D .5【习题4】某校为了发展校园足球运动, 组建了校足球队,队员年龄分布如图所示,则这些队员年龄的众数是______.【习题5】 已知某班学生理化实验操作测试成绩的统计结果如下表:则这些学生成绩的众数是______分.【习题6】 某校八年级共四个班,各班寒假外出旅游的学生人数如图所示,那么三班外出旅游学生人数占全年级外出旅游学生人数的百分比为______.【习题7】 一个不透明纸箱中装有形状、大小、质地等完全相同的7个小球,分别标有数字1、2、3、4、5、6、7,从中任意摸出一个小球,这个小球上的数字是奇数的概率是______.【习题8】 一个口袋中装有3个完全相同的小球,它们分别标有数字0,1,3,从口袋中随机摸出一个小球记下数字后不放回,摇匀后再随机摸出一个小球,那么两次摸出小球的数字的和为素数的概率是______.成绩(分) 4 5 6 7 8 9 10 人数12269119人数年龄2684212 13 14 15 16一班二班三班四班 人数(人)1282010【习题9】 一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球,如果其中有2个白球,n 个黄球,从中随机摸出白球的概率是23,那么n =______.【习题10】 某公园正在举行郁金香花展,现从红、黄两种郁金香中,各抽出6株,测得它们离地面的高度分别如下(单位cm ):红:54、44、37、36、35、34;黄:48、35、38、36、43、40;已知它们的平均高度均是40cm ,请判断哪种颜色的郁金香样本长得整齐?______.(填“红”或“黄”)【习题11】 一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是______.【习题12】 为了解某山区金丝猴的数量,科研人员在该山区不同的地方捕获了15只金丝猴,并在它们的身上做上标记后放回该山区.过段时间后,在该山区不同的地方又捕获了32只金丝猴,其中4只身上有上次做的标记,由此可以估计该山区金丝猴的数量约有______只.【习题13】 9月22日世界无车日,某校开展了“倡导绿色出行”为主题的调查,随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.已知随机抽查的教师人数为学生人数的一半,根据图中信息,乘私家车出行的教师人数是______.【习题14】 某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m 的值是______.乘公车 y % 步行 x %骑车 25%私家车 15% 乘公车 步行 骑车 20 5人数 出行方式15 私家车 2510 学生 教师24912 1533学生出行方式扇形统计图师生出行方式条形统计图 m0.075 0.125 0246810小时数0.2 0.3 0.25。
2017年中考数学试题分项版解析汇编(第05期)专题07 统计与概率(含解析)

专题07 统计与概率一、选择题1.(2017年贵州省毕节地区第5题)对一组数据:﹣2,1,2,1,下列说法不正确的是()A.平均数是1 B.众数是1 C.中位数是1 D.极差是4【答案】A.考点:极差,算术平均数,中位数,众数.2.(2017年贵州省毕节地区第8题)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.1250条B.1750条C.2500条D.5000条【答案】A.【解析】试题分析:首先求出有记号的2条鱼在50条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.由题意可得:50÷250=1250(条).故选A.考点:用样本估计总体3.(2017年贵州省毕节地区第10题)甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:则这10次跳绳中,这四个人发挥最稳定的是()A.甲B.乙C.丙D.丁【答案】B.2考点:方差,算术平均数.4.(2017年湖北省十堰市第5题)某交警在一个路口统计的某时段来往车辆的车速情况如表:则上述车速的中位数和众数分别是( ) A .50,8 B .50,50 C .49,50 D .49,8【答案】B. 【解析】试题分析:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50, 所以中位数是50,在这组数据中出现次数最多的是50,即众数是50. 故选:B .考点:中位数和众数5.(2017年湖北省荆州市第4题)为了解某班学生双休户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是( )A.3、3、3B.6、2、3C.3、3、2D.3、2、3 【答案】A考点:1、众数;2、加权平均数;3、中位数6. (2017年湖北省宜昌市第6题)九一(1)班在参加学校4100m 接力赛时,安排了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率为( ) A . 1 B .12 C. 13D .14 【答案】D 【解析】试题分析:根据概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数,可得甲跑第一棒的概率为14. 故选:D . 考点:概率公式7. (2017年内蒙古通辽市第3题)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是( )A .折线图B .条形图C .直观图D .扇形图 【答案】D 【解析】试题分析:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.由分析可知,要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图. 故选:D .考点:统计图的选择8. (2017年内蒙古通辽市第5题)若数据10,9,a ,12,9的平均数是10,则这组数据的方差是( ) A .1 B .2.1 C .9.0 D .4.1 【答案】B 【解析】试题分析:先由平均数的公式,由数据10,9,a ,12,9的平均数是10,可得(10+9+a+12+9)÷5=10,解得:a=10,然后可求得这组数据的方差是51[(10﹣10)2+(9﹣10)2+(10﹣10)2+(12﹣10)2+(9﹣10)2]=1.2.4故选:B .考点:1、方差;2、算术平均数9.(2017年山东省东营市第6题)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A .47 B .37 C .27 D .17【答案】A考点:概率10. (2017年山东省泰安市第8题)袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14 B .516 C. 716 D .12【答案】B考点:列表法与树状图法11.(2017年山东省泰安市第11题)为了解中考体育科目训练情况,某校从九年级学生中随机抽取部分学生进行了一次中考体育科目测试(把测试结果分为A、B、C、D四个等级),并将测试结果绘制成了如图所示的两幅不完整统计图.根据统计图中提供的信息,结论错误....的是()A.本次抽样测试的学生人数是40B.在图1中,α∠的度数是126C.该校九年级有学生500名,估计D级的人数为80D.从被测学生中随机抽取一位,则这位学生的成绩是A级的概率为0.2【答案】C【解析】试题分析: A、本次抽样测试的学生人数是:12÷30%=40(人),正确,不合题意;B、∵40812640---×360°=126°,∠α的度数是126°,故此选项正确,不合题意;6C 、该校九年级有学生500名,估计D 级的人数为:500×840=100(人),故此选项错误,符合题意; D 、从被测学生中随机抽取一位,则这位学生的成绩是A 级的概率为:840=0.2,正确,不合题意;故选:C .考点:1、概率公式;2、用样本估计总体;3、扇形统计图;4、条形统计图12. (2017年山东省泰安市第16题)某班学生积极参加爱心活动,该班50名学生的捐款统计情况如下表:则他们捐款金额的中位数和平均数分别是( )A .10,20.6B .20,20.6 C.10,30.6 D .20,30.6 【答案】D考点:1、中位数;2、统计表;3、加权平均数13. (2017年山东省威海市第2题)某校排球队10名队员的身高(厘米)如下: 195,186,182,188,182,186,188,186,188. 这组数据的众数和中位数分别是( )A .186,188B .188,187C .187,188D .188,186 【答案】B 【解析】试题分析:根据众数和中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是数据中出现最多的一个数.将数据重新排列为:182、182、186、186、186、188、188、188、188、195, ∴众数为188,中位数为186+1882=187, 故选:B .考点:1、众数,2、中位数14. (2017年山东省威海市第9题)甲、乙两人用如图所示的两个转盘(每个转盘被分成面积相等的3个扇形)做游戏.游戏规则:转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.甲获胜的概率是( )A .31 B .94 C.95 D .32【答案】C考点:树状图和概率15. (2017年山东省潍坊市第7题)甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ).A.甲B. 乙C. 丙D. 丁【答案】C考点:1、方差;2、折线统计图;3、加权平均数16.(2017年湖南省郴州市第5题)在创建“全国园林城市”期间,郴州市某中学组织共青团员取植树,其中七位同学植树的棵数分别为:3,1,1,3,2,3,2,则这组数据的中位数和众数分别是()A.3,2 B.2,3 C.2,2 D.3,3【答案】B.【解析】试题分析:在这一组数据中3是出现次数最多的,故众数是3;处于这组数据中间位置的那个数是2,那么由中位数的定义可知,这组数据的中位数是2.故选B.考点:中位数、众数.17.(2017年四川省内江市第3题)为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是()A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人【答案】D.【解析】试题分析:为了解某市老人的身体健康状况,需要抽取部分老人进行调查,在城市和乡镇各选10个点,每个点任选5位老人,这种抽取老人的方法最合适.故选D.考点:抽样调查的可靠性.18.(2017年四川省内江市第7题)某中学对该校九年级45名女学生进行了一次立定跳远测试,成绩如表:8这些立定跳远成绩的中位数和众数分别是()A.9,9 B.15,9 C.190,200 D.185,200【答案】C.【解析】试题分析:45名女学生的立定跳远测试成绩的中位数是最中间第23个数据190,众数是出现次数最多的数据200;故选C.考点:众数;中位数.19.(2017年辽宁省沈阳市第8题)下利事件中,是必然事件的是()A.将油滴在水中,油会浮在水面上B.车辆随机到达一个路口,遇到红灯C.如果22=,那么a ba b=D.掷一枚质地均匀的硬币,一定正面向上【答案】A.考点:必然事件;随机事件.20.(2017年四川省成都市第7题)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:则得分的众数和中位数分别为()A.70 分,70 分 B.80 分,80 分 C. 70 分,80 分 D.80 分,70 分【答案】C1考点:数据分析21. (2017年贵州省六盘水市第5题)已知A 组四人的成绩分别为90、60、90、60,B 组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( ) A.平均数B.中位数C.众数D.方差【答案】D .试题分析:A 组:平均数=75,中位数=75,众数=60或90,方差=225;B 组:平均数=75,中位数=75,众数=70或80,方差=25,故选D .考点:方差;平均数;中位数;众数.22. (2017年贵州省六盘水市第7题)国产大飞机919C 用数学建模的方法预测的价格是(单位:美元):5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,这组数据的平均数是( ) A.5000.3B.4999.7C.4997D.5003【答案】A. 【解析】试题分析:数据5098,5099,5001,5002,4990,4920,5080,5010,4901,4902,同时减去5000,得到新数据:98,99,1,2,-10,-80,80,10,-99,-98,新数据平均数:0.3,所以原数据平均数:5000.3,故选A . 考点:平均数23. (2017年湖南省岳阳市第5题),0, ,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是 A .15 B .25 C.35 D .45【答案】C .考点:概率公式;有理数.24.(2017年湖北省黄冈市第5题)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A. 12 B.13 C. 13.5 D.14【答案】B【解析】试题分析:从小到大排列此数据为:12,12,13,13,13,13,14,14,14,15位置处于最中间的两个数是:13,:13,所以组数据的中位数是13.故选:B.考点:中位数;统计表25.(2017年湖南省长沙市第6题)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.可能性是1%的事件在一次试验中一定不会发生的中位数是4C.数据3,5,4,1,2D.“367人中有2人同月同日生”为必然事件【答案】D【解析】试题分析:检测某批次灯泡的使命,适用抽样调查,故A不正确;可能性是1%的事件在一次性事件中有可能发生,故B不正确;把这组数据从小到大排列为:-2,1,3,4,5,中间一个数是3,所以中位数是4,故不正确;“367人中有两人同月同日生”是必然事件,故正确.故选:D考点:事件发生的可能性26.(2017年浙江省杭州市第11题)数据2,2,3,4,5的中位数是.【答案】3【解析】试题分析:根据中位数的定义即中位数要把数据按从小到大排列为:2,2,3,4,5,位于最中间的一个数(或两个数的平均数)是3,则这组数的中位数是3.故答案为:3.考点:中位数二、填空题1.(2017年贵州省毕节地区第19题)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:根据图中信息,该足球队全年比赛胜了场.【答案】30.考点:条形统计图;扇形统计图.2.(2017年贵州省黔东南州第14题)黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是kg.【答案】560【解析】12试题分析:由题意可得,该果农今年的“优质蓝莓”产量约是:800×0.7=560kg,故答案为:560.考点:利用频率估计概率3.(2017年江西省第11题)已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是.【答案】5考点:1、众数;2、算术平均数;3、中位数4. (2017年内蒙古通辽市第13题)毛泽东在《沁园春·雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是.【答案】2 5【解析】试题分析:在秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗5五人中,唐朝以后出生的有2人.因此在上述5人中随机抽取一张,所有抽到的人物为唐朝以后出生的概率=25.故答案为:25.考点:概率公式5.(2017年山东省东营市第13题)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.【答案】乙14考点:1、平均数,2、方差6. (2017年湖南省郴州市第12题)为从甲乙两名射击运动员中选出一人参加竞标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩为8.9环,方差分别是220.8, 1.3S S ==甲乙,从稳定性的角度看, 的成绩更稳定(天“甲”或“乙”) 【答案】甲. 【解析】试题分析:方差越小,数据的密集度越高,波动幅度越小, 已知S 甲2=0.8,S乙2=1.3,可得S甲2<S乙2,所以成绩最稳定的运动员是甲. 考点:方差.7. (2017年湖南省郴州市第15题)从1,1,0- 三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是 . 【答案】23. 【解析】试题分析:列表得:所有等可能的情况有6种,其中该点刚好在坐标轴上的情况有4种, 所以该点在坐标轴上的概率=4263=. 考点:用列表法求概率.8. (2017年辽宁省沈阳市第12题)一组数2,3,5,5,6,7的中位数是 . 【答案】5.试题分析:这组数据的中位数为5552+=. 考点:中位数.9. (2017年辽宁省沈阳市第14题)甲、乙、丙三人进行射击测试,每人10次射击成绩的平均值都是8.9环,方差分别是2220.53,0.51,0.43S S S ===甲乙丙,则三人中成绩最稳定的是 .(填“甲”或“乙”或“丙”) 【答案】丙. 【解析】试题分析:平均数相同,方差越小,这组数据越稳定,根据题意可得三人中成绩最稳定的是丙. 考点:方差.10.(2017年山东省日照市第14题)为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下: 183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是 . 【答案】182.考点:算术平均数.11. (2017年湖南省岳阳市第11题)在环保整治行动中,某市环保局对辖区内的单位进行了抽样调查,他们的综合得分如下:95,85,83,95,92,90,96,则这组数据的中位数是 ,众数是 .【答案】92,95. 【解析】试题解析:这组数据从小到大排列为:83,85,90,92,95,95,96.则中位数是:92; 众数是95.考点:众数;中位数.12.(2017年湖南省长沙市第17题)甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是5.0,2.122==乙甲S S ,则在本次测试中, 同学的成绩更稳定(填“甲”或“乙”)【解析】试题分析:根据方差的意义,方差越小,数据越稳定,可知乙同学的成绩更稳定.故答案为:乙.考点:方差13.(2017年浙江省杭州市第13题)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球,从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是.【答案】4 9考点:列表法与树状图求概率三、解答题1.(2017年贵州省毕节地区第23题)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.16【答案】∴小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率=21 42 =;(2)列表如下:3所有等可能的情况有16种,其中两指针所指数字数字都是偶数或都是奇数的都是4种,∴P(向往胜)=41164=,P(小张胜)=41164=,∴游戏公平.考点:游戏公平性;概率公式;列表法与树状图法.2.(2017年湖北省十堰市第20题)某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.18请根据以上信息,回答下列问题:(1)杨老师采用的调查方式是 (填“普查”或“抽样调查”); (2)请你将条形统计图补充完整,并估计全校共征集多少件作品?(3)如果全校征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.【答案】(1)抽样调查;(2)全校共征集作品180件; (3)恰好抽中一男一女的概率为25. (2)所调查的4个班征集到的作品数为:6÷90360=24件,平均每个班244=6件,C 班有10件, ∴估计全校共征集作品6×30=180件. 条形图如图所示,(3)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好抽中一男一女的概率为:82 205.考点:条形统计图, 扇形统计图,概率公式.3.(2017年贵州省黔东南州第20题)某体育老师测量了自己任教的甲、乙两班男生的身高,并制作了如下不完整的统计图表.根据以上统计图表完成下列问题:(1)统计表中m= ,n= ,并将频数分布直方图补充完整;(2)在这次测量中两班男生身高的中位数在:范围内;(3)在身高≥167cm的4人中,甲、乙两班各有2人,现从4人中随机推选2人补充到学校国旗护卫队中,请用列表或画树状图的方法求出这两人都来自相同班级的概率.【答案】(1)14,0.26(2)161≤x<164(3)1 32(2)观察表格可知中位数在 161≤x <164内, 故答案为 161≤x <164.(3)将甲、乙两班的学生分别记为甲1、甲2、乙1、乙2树状图如图所示:所以P(两学生来自同一所班级)=412=13.考点:1、列表法与树状图法;2、频数(率)分布表;3、频数(率)分布直方图;4、中位数4.(2017年湖北省荆州市第21题)(本题满分8分)某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题(1)补全条形统计图(2)该年级共有700人,估计该年级足球测试成绩为D等的人数为__________人;(3)在此次测试中,有甲、乙、丙、丁四个班的学生表现突出,现决定从这四个班中随机选取两个班在全校举行一场足球友谊赛.请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.【答案】(1)图形见解析(2)56(3)1 6【解析】试题分析:(1)根据A等学生人数除以它所占的百分比求得总人数,然后乘以B等所占的百分比求得B等人数,从而补全条形图;(2)用该年级学生总数乘以足球测试成绩为D等的人数所占百分比即可求解;(3)利用树状图法,将所有等可能的结果列举出来,利用概率公式求解即可.(3)画树状图:共有12种等可能的结果数,其中选取的两个班恰好是甲、乙两个班的情况占2种,所以恰好选到甲、乙两个班的概率是212=16.考点:1、列表法与树状图法;2、用样本估计总体;3、扇形统计图;4、条形统计图5.(2017年湖北省宜昌市第18题)YC市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据汇成如下表格. 请回答下列问题:(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00-8:00 :需要租用公共自行车的人数是多少?22【答案】(1)1300(2)2000考点:1、中位数;2、用样本估计总体6.(2017年江西省第15题)端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.【答案】(1)14(2)16【解析】试题分析:(1)直接利用概率公式求出取出的是肉粽的概率;(2)直接列举出所有的可能,进而利用概率公式求出答案.试题解析:(1)∵有豆沙粽、肉粽各1个,蜜枣粽2个,∴随机地从盘中取出一个粽子,取出的是肉粽的概率是:14;(2)如图所示:,一共有12种可能,取出的两个都是蜜枣粽的有2种,故取出的两个都是蜜枣粽的概率为:212=16.24考点:1、列表法与树状图法;2、概率公式7.(2017年江西省第18题)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B 类的人数有人; (2)在扇形统计图中,求A 类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A ,B ,C 这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.【答案】(1)800人,240人(2)200人(3)9.6万人 【解析】(2)∵A 类人数所占百分比为1﹣(30%+25%+14%+6%)=25%,∴A 类对应扇形圆心角α的度数为360°×25%=90°,A 类的人数为800×25%=200(人), 补全条形图如下:(3)12×(25%+30%+25%)=9.6(万人),答:估计该市“绿色出行”方式的人数约为9.6万人.考点:1、条形统计图;2、用样本估计总体;3、统计表;4、扇形统计图8. (2017年内蒙古通辽市第21题)小兰和小颖用下面两个可以转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次指针所指数字之和为4,则小兰胜,否则小颖胜(指针指在分界线时重转).这个游戏对双方公平吗?请用树状图或列表法说明理由.【答案】这个游戏对双方是公平的【解析】考点:1、游戏公平性;2、列表法与树状图法9. (2017年内蒙古通辽市第23题)某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.这次竞赛中甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.a,的值;(1)求出下列成绩统计分析表中b(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意甲组同学的说法,认为他们的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【答案】(1)a=6,b=7.2(2)小英属于甲组学生(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.【解析】10.(2017年山东省东营市第20题)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环26保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【答案】(1)48(2)图形见解析(3)45°(4)1 4【解析】(3)648×360°=45°.。
专题07 统计与概率-2017版上海市2002-2016年中考数学试题分项解析(原卷版)

8.(2012 上海市 4 分)某校 500 名学生参加生命安全知识测试,测试分数均大于或等于 60 且小于 100,分 数段的频率分布情况如表所示(其中每个分数段可包括最小值,不包括最大值) ,结合表的信息,可测得测 试分数在 80 ~90 分数段的学生有 ▲ 名.
9.(2013 年上海市 4 分)将“定理”的英文单词 theorem 中的 7 个字母分别写在 7 张相同的卡片上,字面朝下 随意放在桌子上,任取一张,那么取到字母 e 的概率为 ▲ .
关注微信公众号“上海初升高”,获取更多中考分析、试题资料
1.(上海市 2002 年 7 分)某校在六年级和九年级男生中分别随机抽取 20 名男生测量他们的身高,绘制的频 数分布直方图如图所示,其中两条点划线上端的数值分别是每个年级被抽 20 名男生身高的平均数,该根据 该图提供的信息填空:
(1)六年级被抽取的 20 名男生身高的中位数所在组的范围是__________厘米;九年级被抽取的 20 名男 生 身高的中位数所在组的范围是__________厘米. (2)估计这所学校九年级男生的平均身高比六年级男生的平均身高高__________厘米. (3)估计这所学校六、九两个年级全体男生中,身高不低于 153 厘米且低于 163 厘米的男生所占的百分比 是__________. 2.(上海市 2003 年 7 分)某校初二年级全体 320 名学生在电脑培训前后各参加了一次水平相同的考试,考 分都以同一标准 划分成“不合格”、“合格”、“优秀 ”三个等级。为了了解电脑培训的效果,用抽签 方式得到其中 32 名学生的两次考试考分等级,所绘制的统计图如图所示。试结合图示信息回答下列问题:
2.(上海市 2004 年 2 分)一个射箭运动员连续射靶 5 次,所得环数分别是 8,6,7,10,9,则这个运动员 所得环数的标准差为 ▲ 。
(中考物理专训)专题07 力(解析版)

专题07 力【2022年】一、单选题1.(2022·江苏南通)如图所示,弹簧的一端固定在墙上,在弹性限度内,另一端用手向右拉长弹簧,且保持不动,下面有关说法不正确的是( )A.弹簧产生的弹力的施力物体是“弹簧”B.弹簧产生的弹力的受力物体是“手和墙”C.手受到弹力是因为弹簧发生了弹性形变D.手受到弹力是因为手发生了弹性形变【答案】D【解析】AB.物体因为弹性形变而产生的力叫做弹力,发生弹性形变的物体弹簧即为施力物体,弹簧发生弹性形变产生对手和墙的拉力,则墙和手为受力物体,故AB正确,AB不符合题意;CD.手受到弹力的原因是弹簧发生弹性形变,弹簧要恢复到原状,故C正确,C不符合题意,D错误,D符合题意。
故选D。
2.(2022·四川成都)甜水面是成都的传统美食,制作的关键是做出有筋道的面条:用上等面粉加盐和水,揉匀后静置半小时,用面杖擀成面皮,再切成适当宽度的面条,然后两手抓住面条用力拉长。
关于上述过程的说法不正确的是( )A.揉捏面团时,面团既是受力物体也是施力物体B.面团被擀制成面皮,力改变了面团的运动状态C.手推面杖来回运动,力改变了面杖的运动状态D.用手拉长面条,面条受力的同时,手也受到力【答案】B【解析】A.物体间力的作用是相互的,揉捏面团时,面团既是受力物体也是施力物体,故A正确,不符合题意;B.面团被擀制成面皮,面团的形状发生改变,说明力可以改变物体的形状,故B错误,符合题意;C.手推面杖来回运动,面杖受到力的作用,运动状态发生改变,说明力可以改变物体的运动状态,故C正确,不符合题意;D.用手拉长面条,物体间力的作用是相互的,面条受力的同时,手也受到力,故D正确,不符合题意。
故选B。
3.(2022·四川凉山)如图所示的科学家中,其名字被命名为“力”的单位的是( )A.牛顿B.法拉第C.伽利略D.欧姆【答案】A【解析】力的单位是牛顿,是以英国科学家牛顿的名字命名的。
2017年南京市中考数学试卷及解析

南京市2017年初中毕业生学业考试数学注意事项:1.本试卷共6页,全卷满分120分,考试时间为120分钟,考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所有粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需要改动,请用橡皮擦干净后,再选涂其他答案,答非选择题必须0。
5毫米黑色墨水签字笔写在答题卡上指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置.......上)1.计算12+(-18)÷(-6)-(-3)×2的结果是( )A.7 B.8 C.21 D.36【答案】C.【考点】有理数的计算.【分析】利用有理数的运算法则直接计算,注意运算顺序和符号变化.【解答】解.原式=12+3-(-6).=15+6.=21.故:选C.2.计算106×(102)3÷104的结果是()A.103B.107C.108D.109【答案】C.【考点】幂的运算.【分析】利用幂的运算法则直接计算,注意运算顺序.【解答】解.原式=106×106÷104.=106+6-4.=108.故:选C.3.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥【答案】D.【考点】几何体的一般特征.【分析】分析4个选项中的各几何体的侧面、底面、棱的特征,即可得出正确选项.【解答】故:选D.4.若错误!<a<错误!,则下列结论中正确的是()A.1<a<3 B.1<a<4 C.2<a<3 D.2<a<4【答案】B.【考点】估算.【分析】用平方法分别估算出 3 、错误!的取值范围,借助数轴进而估算出a的取值范围.【解答】估算错误!:∵12=1,22=4.∴1<错误!<2.估算错误!:∵32=9,42=16.∴3<错误!<4.画数轴:故:1<a<4,选B.5.若方程(x-5)2=19的两根为a和b,且a>b,则下列结论中正确的是( )A.a是19的算术平方根B.b是19的平方根C.a-5是19的算术平方根D.b+5是19的平方根【答案】C.【考点】直接开平方法解一元二次方程、平方根、算术平方根的定义.【分析】分析4个选项中的各几何体的侧面、底面、棱的特征,即可得出正确选项.【解答】解方程(x-5)2=19得:x-5=±错误!.∴x1=5+错误!,x2=5-错误!.∵方程(x-5)2=19的两根为a和b,且a>b.∴a=5+19 ,b=5-错误!.∴a-5=错误!,b-5=-错误!,b+5=10-错误!.【选法一】针对解方程的结果,判断各选项的准确性a=5+错误!,a不是19的算术平方根,故:选项A错;b=5-,19 ,b不是19的平方根,故:选项B错;a-5=错误!,a-5是19的算术平方根,故:选项C正确;b+5=10-19 ,b+5不是19的平方根,故:选项D错.【选法二】针对各选项对应的a、b、a-5、b+5的结果,进行判断:对于选项:A.a是19的算术平方根,则a=错误!,故:错;对于选项:B.b是19的平方根,则b=±错误!,故:错;对于选项:C .a -5是19的算术平方根,则a -5=错误!,故:正确; 对于选项:D .b +5是19的平方根,则b +5=±错误!,故:错.综上,故选:C .6.过三点A (2,2),B (6,2),C (4,5)的圆的圆心坐标为( ) A .(4,176 ) B .(4,3) C .(5,176 ) D .(5,3) 【答案】A .【考点】三角形外接圆圆心的确定、相似三角形的应用、平面直角坐标系中线段长的计算、数形结合. 【分析】在平面直角坐标系中绘制符合条件的图形(如图),并判断图形的特征,不难发现: (1)AB ∥x 轴,点C 在AB 的垂直平分线上,△ABC 是等腰三角形,且CA =CB ;(2)过A 、B 、C 三点的圆为△ABC 的外接圆,圆心M 为AB 、AC (或BC )两边垂直平分线EM 、CD 的交点;(3)欲计算M 的坐标,只要计算出线段DM(或CM)、AD 的长; (4)△CEM ∽△CDA ,可得相似比:错误!=错误!=错误!;(5)△CDA 的边长:AB =|6-2|=4,AD =错误!AB =2,CD =|5-2|=3,AC =错误!=错误!,△CEM 中的边长:CE =错误!AC =错误!;把求得的线段长代入(4)中的比例式中即可求得CM 长,问题得解。
专题08 平面几何基础-2017版[中考15年]南京市2002-2016年中考数学试题分项(原卷版)
![专题08 平面几何基础-2017版[中考15年]南京市2002-2016年中考数学试题分项(原卷版)](https://img.taocdn.com/s3/m/3e4ce9b90029bd64783e2cbc.png)
2017版[中考15年]南京市2002-2016年中考数学试题分项解析专题*平面几何基础**1.(江苏省南京市2002年2分)下列图形中对称轴最多的是【】A、圆B、正方形C、等腰三角形D、线段2. (江苏省南京市2002年2分)两个相似菱形边长的比是1∶4,那么它们的面积比是【】A、1∶2B、1∶4C、1∶8D、1∶163. (江苏省南京市2003年2分)观察下列“风车”的平面图案:其中是中心对称图形的有【】(A)1个(B)2个(C)3个(D)4个4.(江苏省南京市2003年2分)在比例尺是1∶38 000的南京交通游览图上,玄武湖隧道长约7cm,它的实际长度约为【】.(A)0.266 km (B)2.66 km (C)26.6 km (D)266 km5. (江苏省南京市2004年2分)若∠α=20°,则∠α的补角等于【】A、20°B、70°C、110°D、160°6.(江苏省南京市2004年2分)在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为【】A、320cmB、320mC、2000cmD、2000m7. (江苏省南京市2005年2分)在比例尺为1:40000的工程示意图上,将于2005年9月1日正式通车的南京地铁一号线(奥体中心至迈皋桥段)的长度约为54.3cm,它的实际长度约为【】A、0.2172kmB、2.172kmC、21.72kmD、217.2km8.(江苏省南京市2006年2分)下列图形中,是中心对称图形的是【】A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形9. (江苏省南京市2007年2分)下列轴对称图形中,对称轴条数最少的是【】A.等边三角形 B.正方形 C.正六边形 D.圆10. (江苏省南京市2008年2分)小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶【 】A .0.5mB .0.55mC .0.6mD .2.2m1. (江苏省南京市2002年2分)已知∠AOB =400,OC 是∠AOB 的平分线,则∠AOC 的余角等于 ▲ 度。
专题07 统计与概率-2017版[中考15年]徐州市2002-2016年中考数学试题分项解析(解析版)
![专题07 统计与概率-2017版[中考15年]徐州市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/92291b9d8762caaedd33d4b8.png)
2017版[中考15年]徐州市2002-2016年中考数学试题分项解析专题07统计与概率1. (2007年江苏徐州2分)如图,水平放置的甲、乙两区域分别由若干大小完全相同的黑色、白色正三角形组成,小明随意向甲、乙两个区域各抛一个小球,P(甲)表示小球停在甲中黑色三角形上的概率,P(乙)表示小球停在乙中黑色三角形上的概率,下列说法中正确的是【】A.P(甲)>P(乙)B.P(甲)=P(乙)C.P(甲)<P(乙)D.P(甲)与P(乙)的大小关系无法确定2. (2007年江苏徐州2分)九年级某班在一次考试中对某道单选题的答题情况如图所示:根据以上统计图,下列判断中错误的是【】A.选A的人有8人B.选B的人有4人C.选C的人有26人D.该班共有50人参加考试【答案】C。
3. (2008年江苏徐州2分)下列事件中,必然事件是【】A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是负数4. (2008年江苏徐州2分)如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为【】A. 34B.13C.12D.14根据勾股定理,得。
∴小球停在小正方形内部(阴影)区域的概率为21=42小正方形的面大正方形的面积积。
故选C 。
5. (2009年江苏省3分)某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是【】 A .平均数B .众数C .中位数D .方差6. (2010年江苏徐州2分)为了解我市市区及周边近170万人的出行情况,科学规划轨道交通,2010年5月,400名调查者走入1万户家庭,发放3万份问卷,进行调查登记.该调查中的样本容量是【 】 A .170万 B .400C .1万D .3万7. (2011年江苏徐州2分)下列事件中,属于随机事件的是【 】A ..抛出的篮球会下落B .从装有黑球、白球的袋里摸出红球C .367人中有2人是同月同日出生D .买1张彩票,中500万大奖B 、从装有黑球,白球的袋里摸出红球,是不可能事件,选项错误;C 、367人中有2人是同月同日出生,是必然事件,选项错误;D 、买一张彩票,中500万大奖是随机事件,选项正确。
专题12 压轴题-2017版[中考15年]南京市2002-2016年中考数学试题分项(原卷版)
![专题12 压轴题-2017版[中考15年]南京市2002-2016年中考数学试题分项(原卷版)](https://img.taocdn.com/s3/m/81bbc7e0770bf78a652954bf.png)
2017版[中考15年]南京市2002-2016年中考数学试题分项解析专题*压轴题**1.(江苏省南京市2002年2分)某种出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收1.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地支付车费17.2元,设此人从甲地到乙地经过的路程为x千米,则x的最大值是【】A、13B、11C、9D、72. (江苏省南京市2003年2分)如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于【】.(A)2∶l (B)1∶2(C)3∶l (D)1∶33. (江苏省南京市2004年2分)如图所示,边长为12m的正方形池塘的周围是草地,池塘边A,B,C,D处各有一棵树,且AB=BC=CD=3m,现用长4m的绳子将羊拴在一棵树上,为了使在草地上活动区域的面积最大,应将绳子拴在其中的一棵树上,为了使羊在草地上活动区域的面积最大,应将绳子拴在【】A、A处B、B处C、C处D、D处4. (江苏省南京市2005年2分)下图是甲、乙两户居民家庭全年支出费用的扇形统计图.根据统计图,下面对全年食品支出费用判断正确的是【】A、甲户比乙户多B、乙户比甲户多C、甲、乙两户一样多D、无法确定哪一户多5. (江苏省南京市2006年2分)下面是两户居民家庭全年各项支出的统计图.6. (江苏省南京市2007年2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y轴交于M(0,2),N(0,8)两点,则点P的坐标是【】7. (江苏省南京市2008年2分)如图,已知⊙O的半径为1,AB与⊙O相切于点A,OB与⊙O交于点C,的值等于【】OD⊥OA,垂足为D,则cos AOB8. (江苏省2009年3分)下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+⎪⎝⎭;第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;第3个数:234511(1)(1)(1)(1) 11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭;……第n个数:232111(1)(1)(1)111112342nn n-⎛⎫⎛⎫⎛⎫----⎛⎫-++++⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是【】A.第10个数B.第11个数C.第12个数D.第13个数9. (江苏省南京市2010年2分)如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为【】10. (江苏省南京市2011年2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y x=的图象被⊙P的弦AB的长为,则a的值是【】A .B .2+C .D .211.(2012江苏南京2分)如图,菱形纸片ABCD 中,∠A=600,将纸片折叠,点A 、D 分别落在A’、D’处,且A’D’经过B ,EF 为折痕,当D’F ⊥CD 时,CF FD的值为【 】A. B. C. D.13.(江苏省南京市2015年2分)如图,在矩形ABCD 中,AB =4,AD =5,AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点,过点D 作⊙O 的切线BC 于点M ,切点为N ,则DM 的长为( )A .133B .92CD .1. (江苏省南京市2002年2分)下列命题:(1)所有的等腰三角形都相似;(2)所有的等边三角形都相似;(3)所有的等腰直角三角形都相似;(4)所有的直角三角形都相似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017版[中考15年]南京市2002-2016年中考数学试题分项解析专题*统计与概率**1.(江苏省南京市2005年2分)随机掷一枚均匀的硬币两次,两次正面都朝上的概率是【 】 A 、41 B 、21 C 、43 D 、12. (江苏省南京市2005年2分)下图是甲、乙两户居民家庭全年支出费用的扇形统计图.3. (江苏省南京市2006年2分)某地今年1月1日至4日每天的最高气温与最低气温如下表:其中温差最大的是【 】A. 1月1日B. 1月2日C. 1月3日D. 1月4日4. (江苏省南京市2006年2分)其市气象局预报称:明天本市的降水概率为70%,这句话指的是【 】A. 明天本市70%的时间下雨,30%的时间不下雨B. 明天本市70%的地区下雨,30%的地区不下雨C. 明天本市一定下雨D. 明天本市下雨的可能性是70%5. (江苏省南京市2006年2分)下面是两户居民家庭全年各项支出的统计图.6. (江苏省南京市2007年2分)如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是【 】A.16B.13C.12D.237. (江苏省南京市2008年2分)超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为【】9. (江苏省南京市2011年2分)为了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是【】A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各班随机抽取10%的学生10.(江苏省南京市2016年2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为A. B. C. 或6 D. 或1. (江苏省南京市2007年3分)已知5筐苹果的质量分别为(单位:kg);52,49,50,53,51,则这5筐苹果的平均质量为▲kg.2. (江苏省南京市2008年3分)口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是▲ .3. (江苏省2009年3分)如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1、2、3、4、5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P(偶数),指针指向标有奇数所在区域的概率为P(奇数),则P(偶数)▲ P(奇数)(填“>”“<”或“=”).4. (江苏省南京市2010年2分)甲、乙两人5次射击命中的环数如下:甲7 9 8 6 10 乙7 8 9 8 8则这两人5次射击命中的环数的平均数x=x乙=8,方差2s甲▲ 2s乙.(填“>”、“<”或“=”)甲5.(2012江苏南京2分)某公司全体员工年薪的具体情况如下表:则所有员工的年薪的平均数比中位数多▲ 万元。
6. (江苏省南京市2014年2分)2014年南京青奥会某项目6名礼仪小姐身高如下(单位:cm):168,166,168,167,169,168,则他们身高的众数是▲ cm,极差是▲ cm.7.(江苏省南京市2015年2分)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差(填“变小”、“不变”或“变大”).1. (江苏省南京市2002年5分)某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个,在西瓜上市前该瓜农随机摘下了10个成熟的西瓜,称重如下:计算这10个西瓜的平均质量,并根据计算结果估计这亩地的西瓜产量约是多少千克。
2. (江苏省南京市2003年5分)公交508路总站设在一居民小区附近.为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20 23 26 25 29 28 30 25 21 23⑴计算这10个班次乘车人数的平均数;⑵如果在高峰时段从总站共发车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?3. (江苏省南京市2004年5分)江北水厂为了了解某小区居民的用水情况,随机抽查了该小区10户家庭的月用水量,结果如下:4. (江苏省南京市2005年6分)一张圆桌旁有四个座位,A先坐在如图所示的座位上,B、C、D三人随机坐到其它三个座位上,求A与B不相邻而坐的概率.5. (江苏省南京市2005年8分)某水果店有200个菠萝,原计划以2.6元/千克的价格出售,现在为了满足市场的需要,水果店决定将所有的菠萝去皮后出售.以下是随机抽取的5个菠萝去皮前后相应的质量统计表(单位:千克)(1)计算所抽取的5个菠萝去皮前的平均质量和去皮后的平均质量,并估计这200个菠萝去皮前的总 质量和去皮后的总质量.(2)根据(1)的结果,要使去皮后这200个菠萝的销售总额与原计划的销售总额相同,那么去皮后 的菠萝的售价应是每千克多少元?6. (江苏省南京市2006年6分)饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮 料的日销售量,结果如下(单位:听):33 ,32 ,28 ,32 ,25 ,24 ,31 ,35. (1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?7. (江苏省南京市2006年6分)某校有A 、B 两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率; (2)求甲、乙、丙三名学生中至少有一人在B 餐厅用餐的概率.8. (江苏省南京市2007年6分)某养鸡场分3次用鸡蛋孵化出小鸡,每次孵化所用的鸡蛋数、每次的孵化率(孵化率=100%⨯孵化出的小鸡数孵化所用的鸡蛋数)分别如图1,图2所示:9. (江苏省南京市2007年6分)将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1)A 在甲组的概率是多少? (2)A B ,都在甲组的概率是多少?10. (江苏省南京市2008年6分)我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭月使用塑料袋的数量,结果如下(单位:只)65,70,85,75,85,79,74,91,81,95.(1)计算这10名学生所在家庭平均月使用塑料袋多少只?(2)“限塑令”执行后,家庭月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1 000名学生所在家庭月使用塑料袋可减少多少只?11. (江苏省南京市2008年7分)小明和小颖做掷骰子的游戏,规则如下:①游戏前,每人选一个数字;②每次同时掷两枚均匀骰子;③如果同时掷得的两枚骰子点数之和,与谁所选数字相同,那么谁就获胜.(1)在下表中列出同时掷两枚均匀骰子所有可能出现的结果:(2)小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.12. (江苏省2009年8分)某市对九年级学生进行了一次学业水平测试,成绩评定分A、B、C、D四个等第.为了解这次数学测试成绩情况,相关部门从该市的农村、县镇、城市三类群体的学生中共抽取2 000名学生的数学成绩进行统计分析,相应数据的统计图表如下:13.(江苏省2009年8分)一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现1个男婴、2个女婴的概率是多少?14. (江苏省南京市2010年6分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对这三种水果7天的销售量进行了统计,统计结果如图所示.(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额...最大的水果品种是();A.西瓜B.苹果C.香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?15. (江苏省南京市2010年9分)某厂为新型号电视机上市举办促销活动,顾客每购买一台该型号电视机,可获得一次抽奖机会,该项厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你交转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:1.在用文字说明和扇形的圆心角的度数.2.结合转盘简述获奖方式,不需说明理由.)16. (江苏省南京市2011年7分)某校部分男生分3组进行引体向上训练,对训练前后的成绩进行统计分析,相应数据的统计图如下.⑴求训练后第一组平均成绩比训练前增长的百分数;⑵小明在分析了图表后,声称他发现了一个错误:“训练后第二组男生引体向上个没有变化的人数占该组人数的50%,所以第二组的平均数不可能提高3个这么多.”你同意小明的观点吗?请说明理由;⑶你认为哪一组的训练效果最好?请提出一个解释来支持你的观点.17. (江苏省南京市2011年7分)从3名男生和2名女生中随机抽取2014年南京青奥会志愿者.求下列事件的概率:(1)抽取1名,恰好是女生;(2)抽取2名,恰好是1名男生和1名女生.18. (2012江苏南京8分)某中学七年级学生共450人,其中男生250人,女生200人。
该校对七年级所有学生进行了一次体育测试,并随即抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)请解释“随即抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)估计该校七年级学生体育测试成绩不合格的人数。
19.(2012江苏南京7分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率。
(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.20.(2013年江苏南京8分)(1)一只不透明的袋子中装有颜色分别为红、黄、蓝、白的球各一个,这些球除颜色外都相同。