全国2018届高三数学第三次联考试题理2018011001135
2018年5月2018届高三第三次全国大联考(新课标Ⅲ卷)理数卷

理科数学试题 第1页(共6页) 理科数学试题 第2页(共6页)绝密★启用前|2018年第三次全国大联考【新课标Ⅲ卷】理科数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合}043|{2≤--=x x x A ,{|||0}B x x =>,则以下结论成立的是 A .A B =RB .=B A ]4,0(C .()U AB A =ðD .}0{=B A2.已知复数z 满足14i 1z z -=-+,其中i 为虚数单位,则在复平面内,复数z 对应的点在A .第一象限B .第二象限C .第三象限D .第四象限3.已知椭圆C :22221(0)x ya b a b+=>>的左、右焦点分别为1F ,2F ,过点1F 作长轴的垂线与椭圆C 的一个交点为P ,若43tan 12=∠F PF ,则椭圆C 的离心率为 A .21B .31C .41D .514.若执行如图所示的程序框图,则输出的结果为A .122018-B .222018-C .122019-D .222019-5.已知甲、乙、丙、丁四人在某次高考模拟考试后交流各自的数学考试情况,甲说:“我分数肯定最低”;乙说:“我肯定不是最低分的那个人”;丙说:“我不会最低,但也不可能得最高分”;丁说:“那只有我是最高分了”.考试公布结果后,发现四人的分数各不相同,且仅有一人没有说对,则四人中得最高分的是A .甲B .乙C .丙D .丁6.《九章算术》卷五《商功》中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何?问题中“刍甍”指的是底面为矩形的屋脊状的几何体,如图1,该几何体可由图2中的八边形ABCDEFGH 沿BG ,CF 向上折起,使得AH 与DE 重合而成,设网格纸上每个小正方形的边长为1,则此“刍甍”中EF 与平面BCFG 所成角的正弦值为A .515 B .552 C .510D .557.已知曲线e xy =,直线1=x 及)0(1<+=k kx y 围成的封闭图形的面积大于e ,则实数k 的取值范围为理科数学试题 第3页(共6页) 理科数学试题 第4页(共6页)A .)0,4(-B .)0,4[-C .)4,(--∞D .]4,(--∞8.若不等式组⎪⎩⎪⎨⎧≥+≤--≥+-102201y x y x y x 表示的平面区域为Ω,则区域Ω的内切圆半径为A .532-B .352-C .252-D .522-9.已知函数)sin()(ϕω+=x A x f (0,0A ω>>)的部分图象与坐标轴交于点Q P M ,,,如图,其中)0,21(-Q ,32PQ OP =-,且PMQ ∠为钝角,则A 的取值范围为A .)36,0(B .),36(+∞ C .)2,0(D .)2,36( 10.关于函数xx x f ln 21)(2-=有如下说法,其中正确的是A .函数()f x 的定义域为),0(+∞B .1x =是函数()f x 的零点C .函数()f x 在定义域内为减函数D .函数()f x 在定义域内不存在极值点11.某校高三(1)班周二的课表安排如下,其中上午有四节课,下午有三节课,现需要对课表进行重新调整,将其中的历史改成数学,其他科目既不增加也不减少,且调整后两节数学课不连续(如数学安排在第4,第5节也符合要求),语文课不能安排在第1节,则不同的安排方法种数为A .48C .612D .82812.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2,1F ,2F 分别是双曲线的左、右焦点,点)0,(a M -,),0(b N ,点P 为线段MN 上的动点,若12PF PF ⋅取得最小值和最大值时,12PF F △的面积分别为1S ,2S ,则=21S S A .21B .31 C .41 D .51 第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.若向量(1,2)=a ,(1,)λ=-b ,|2|+=a b ,则=λ . 14.如图是一个几何体的三视图,则该几何体的外接球的表面积为 .15.在ABC △中,4A π∠=,P 为BC 边上一点,且2=AP ,若PAB PAC ∠=∠2,则PC PB 11+的最大值为 . 16.若关于x 的不等式12e e 2e 2x x m x +-+>+(其中e 为自然对数的底数,0,x m >∈Z )恒成立,则m 的最大值为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知数列}{n a满足11=a ,131+=+n n n a a a (n *∈N ).(1)求数列}{n a 的通项公式;(2)令nn n a b 2=,n S 为数列}{n b 的前n 项和,若0)23(11≥-⋅-+n n S n λ有解,求实数λ的取值范围.18.(本小题满分12分)如图,几何体PDBAC 中,⊥PA 平面ABC ,ABC △为正三角形,BDC △为等腰直角三角形,理科数学试题 第5页(共6页) 理科数学试题 第6页(共6页)BDC ∠为直角,平面⊥BDC 平面ABC ,2==AC PA ,M 为PB 的中点.(1)求证://DM 平面ABC ; (2)求二面角C DM B --的余弦值.19.(本小题满分12分)如图是某市2017年12个月高层住宅网签情况的统计图:(1)求该市2017年高层住宅月成交均价的平均数;(2)利用(1)中计算的平均数,若当月成交均价高于月成交均价的平均数时,则视为价格上升,反之为下降;若当月成交套数高于月成交套数的平均数时,则视为成交量上升,反之为下降.若从全年中任选两个月,记所选两个月价格上升且成交量下降的个数为ξ,求随机变量ξ的分布列和期望(月成交套数的平均数约为3537套);(3)在(2)的条件下,补充完整下列的22⨯列联表,并分析该市在2017年12个月中高层住宅月成交套数与月成交均价的升降是否有关?附:))()()(()(22d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=.20.(本小题满分12分)在抛物线C :2ax y =(0>a )上取两点),(11n m A ,),(22n m B ,且412=-m m ,过点B A ,分别作抛物线C 的切线,两切线交于点)3,1(-P . (1)求抛物线C 的方程;(2)设直线l 交抛物线C 于N M ,两点,记直线OM ,ON (其中O 为坐标原点)的斜率分别为,OM ON k k ,且2-=⋅ON OM k k ,若OMN △的面积为32,求直线l 的方程.21.(本小题满分12分)已知函数21()(1)e 2x f x ax x =--()a ∈R . (1)讨论函数)(x f 的单调性;(2)若对任意实数]1,0[,,321∈x x x ,都有)()()(321x f x f x f ≥+,求实数a 的取值范围. 请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的参数方程为sin x y ϕϕ⎧=⎪⎨=⎪⎩(ϕ为参数),以直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为32=ρ. (1)将曲线1C 的参数方程化为极坐标方程;(2)射线4θπ=(0≥ρ)与曲线1C ,2C 分别交于P ,Q 两点,曲线1C 与极轴的交点为A ,求PAQ △的面积.23.(本小题满分10分)选修4-5:不等式选讲已知函数x x x f 2|23|)(-+=.(1)若3)(<x f ,求满足条件的实数x 的值所组成的集合A ; (2)若A ∈μλ,,求证:1||||||2-+>μλλμ.。
2018年高考理科数学全国卷3(含答案与解析)

2018年高考理科数学全国卷3(含答案与解析) 数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{10}A x x =-∣≥,{0,1,2}B =,则A B = ( )A .{0}B .{1}C .{1,2}D .{0,1,2} 2.()(1i 2i)+-=( )A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )ABC D 4.若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-5.252()x x+的展开式中4x 的系数为( )A .10B .20C .40D .806.直线2=0x y ++分别与x 轴,y 交于A ,B 两点,点P 在圆22(2)=2x y -+上,则ABP △面积的取值范围是( )A .[2,6 ]B .[4,8]C .[2,3 2 ]D [ 22,32] 7.函数422y x x =-++的图象大致为( )ABCD8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数, 2.4DX =,()6(4)P X P X ==<,则p =( )A .0.7B .0.6C .0.4D .0.39.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .若ABC △的面积为2224,则C = ( )A .π2B .π3C .π4D .π6毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .54311.设1F ,2F 是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1||6||PF OP =,则C 的离心率为 ( )A .5B .2C .3D .2 12.设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .ab a b +<<0C .0a b ab +<<D .0ab a b +<<第Ⅱ卷(非选择题 共90分)二、填空题:本题共4小题,每小题5分,共20分.13.已知向量2)(1,=a ,)2(2,=-b ,),(1λ=c .若2()+∥c a b ,则=λ . 14.曲线)e (1xy ax =+在点(0,1)处的切线的斜率为2-,则a = .15函数π()cos(3)6f x x =+在[0,π]的零点个数为 .16.已知点1()1,M -和抛物线C :²4y x =,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=,则k = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.) (一)必考题:共60分. 17.(12分)等比数列{}n a 中,11a =,534a a =. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高,并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()(a b)(c d)(a c)(b d)n ad bc K -=++++,2()P K k ≥0.050 0.010 0.001k3.841 6.635 10.82819.(12分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------2018年高考理科数学全国卷3(含答案与解析)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.20.(12分)已知斜率为k 的直线l 与椭圆C :22143x y +=交于A ,B 两点,线段AB 的中点为(1,)()M m m >0.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=.证明:FA ,FP ,FB成等差数列,并求该数列的公差. 21.(12分)已知函数22()()ln(1)2f x a x x x x +=-++.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2)若=0x 是()f x 的极大值点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos ,sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,2)且倾斜角为α的直线l 与O 交于A ,B 两点. (1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.23.[选修4—5:不等式选讲](10分) 设函数()211f x x x =++-. (1)画出() y f x =的图象;(2)当[ 0),x ∈+∞,()b x f ax +≤,求a b +的最小值.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共20页) 数学试卷 第8页(共20页)2018年普通高等学校招生全国统一考试(课标全国卷Ⅲ)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】∵={1}A x x |≥,{0,1,2}B =,∴={1,2}A B ,故选C .2.【答案】D【解析】21i 2i)(2i 2i i 3i )(+-=-+-=+,故选D . 3.【答案】A【解析】两个木构件咬合成长方体时,小长方体(榫头)完全嵌入带卯眼的木构件,易知俯视图可以为A .故选A . 4.【答案】B 【解析】由1sin 3α=,得22127cos212sin 12()=1=399αα=-=-⨯-.故选B .5.【答案】C【解析】252()x x+的展开式的通项251103155()(2)2r r r r r r r T C x x C x ---+==,令1034r -=,得2r =,所以4x 的系数为225240C ⨯=.故选C . 6.【答案】A【解析】由圆22(2)=2x y -+可得圆心坐标(2,0),半径r =ABP △的面积记为S ,点P 到直线AB 的距离记为d ,则有12S AB d =.易知AB =maxd ==min d =所以26S ≤≤,故选A .7.【答案】D【解析】∵42()2f x x x =-++,∴3()42f x x x '=-+,令()0f x '>,解得x <或x 0<此时,()f x 递增;令()0f x '<,解得x <0或x ,此时,()f x 递减.由此可得()f x 的大致图象.故选D . 8.【答案】B【解析】由题知~1()0,X B p ,则(101 2.4)DX p p =⨯⨯-=,解得0.4p =或0.6.又∵()6(4)P X P X ==<,即446664221010(1)(1)(1)0.5C P p C P p p p p --⇒-⇒<<>,∴0.6p =,故选B .9.【答案】C【解析】根据余弦定理得2222cos a b c ab C +-=,因为2224ABCa Sbc +-=△,所以c 42os ABC ab C S =△,又1sin 2ABC S ab C =△,所以tan 1C =,因为π()0,C ∈,所以4C π=.故选C .10.【答案】B【解析】设ABC △的边长为a ,则1sin60=932ABC S a a =△,解得6a =(负值舍去).ABC △的外接圆半径r 满足62sin60r=,得r =球心到平面ABC 的距离为2=.所以点D 到平面ABC 的最大距离为246+=,所以三棱锥DABC -体积的最大值为163⨯=故选B .11.【答案】C【解析】点2(,0)F c 到渐近线b y x a =的距离2(0)PF b b ==>,而2OF c =,所以在2Rt OPF △中,由勾股定理可得OP a ,所以1PF ==.在2Rt OPF △中,222cos PF b PF O OF c∠==,在12F F P△中,2222222121221246cos 22PF F F PF b c a PF O PF F F b c+-+-∠==⋅⋅2,所以222222463464b b c a b c a c bc +-=⇒=-,则有22223()46c a c a -=-值舍去),即e =.故选C .2018年高考理科数学全国卷3(含答案与解析)数学试卷 第9页(共20页) 数学试卷 第10页(共20页)12.【答案】B【解析】解法一:∵0.20.2log 0.3log 1=0a =>,22log 0.3log 1=0b =<,∴0ab <,排除C . ∵0.20.20log 0.3log 0.2=1<<,22log 0.3log 0.5=1-<,即01a <<,1b <-,∴0a b +<,排除D .∵220.2log 0.3lg0.2log 0.2log 0.3lg 2b a ===,∴2223log 0.3log 0.2log 12b b a -=-=<,∴1bb ab a b a+⇒+<<,排除A .故选B . 解法二:易知01a <<,1b -<,∴0ab <,0a b +<, ∵0.30.30.311log 0.2log 2log 0.41a b +=+=<, 即1a bab+<,∴a b ab +>, ∴0ab a b +<<.故选B .第Ⅱ卷二、填空题13.【答案】12【解析】由已知得2(4,2)+=a b .又,()1c λ=,2()+∥c a b ,所以42=0λ-,解得12λ=. 14.【答案】3-【解析】设(e ))1(x f x ax =+,则()()1e x f x ax a '=++,所以曲线在点(0,1)处的切线的斜率(0)12k f a '==+=-,解得3a =-. 15.【答案】3【解析】令()0f x =,得πcos(3)6x +,解得ππ+()39k x k =∈Z .当0k =时,π9x =;当1k =时,4π9x =;当2k =时,7π9x =,又[ 0,π]x ∈,所以满足要求的零点有3个.16.【答案】2【解析】解法一:由题意可知C 的焦点坐标为(1,0),所以过焦点(1,0),斜率为k 的直线方程为1y x k =+,设111,y A y k ⎛⎫+ ⎪⎝⎭,221,y B y k ⎛⎫+ ⎪⎝⎭,将直线方程与抛物线方程联立得21,4,y x k y x ⎧=+⎪⎨⎪=⎩整理得2440y y k --=,从而得124y y k +=,124y y =-.∵1()1,M -,90AMB ∠=,∴0MA MB =,即1212(2)(2)(1)(1)0y yy y k k+++--=,即2440k k -+=,解得2k =.解法二:设11A(,)x y ,22(),B x y ,则2112224,4,y x y x ⎧=⎨=⎩①②②-①得2221214()y y x x -=-,从而2121124y y x x k y y --+==.设AB 的中点为M ',连接MM '.∵直线AB 过抛物线24y x =的焦点,∴以线段AB 为直径的M '⊙与准线:1l x =-相切.∵1()1,M -,90AMB ∠=,∴点M 在准线:1l x =-上,同时在M '⊙上,∴准线l 是M '⊙的切线,切点M ,且MM l '⊥,即MM '与x 轴平行,∴点M '的纵坐标为1,即1212221y y y y =⇒++=,故124422y y k =+==. 故答案为:2. 三、解答题17.【答案】(1)解:设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)由63m S =得(2)188m -=-.此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =. 综上,6m =.【解析】(1)解:设{}n a 的公比为q ,由题设得1n n a q-=.由已知得424q q =,解得0q =(舍去)或2q =-或2q =. 故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-。
2018届高三第三次统一考试数学试题(理)及答案

2017-2018学年高中三年级第三次统一考试**数学试卷(理) 第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|||2}A x Z x =∈≤,2{|1}B y y x ==-,则A B 的子集个数为( )A .4B . 8C . 16D .32 2.已知复数534iz i=+(i 是虚数单位),则z 的共轭复数z 对应的点在( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限3.“lg lg m n >”是“11()()22m n<”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件 4.设随机变量(1,1)XN ,其正态分布密度曲线如图所示,那么向正方形ABCD 中随机投掷10000个点,则落入阴影部分的点的个数的估计值是( ) 注:若2(,)XN μσ,则()0.6826P X μσμσ-<<+≈,(22)0.9544P X μσμσ-<<+≈.A .6038B .6587 C.7028 D .75395.《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,现自上而下取第1,3,9节,则这3节的容积之和为( ) A .133升 B .176升 C.199 升 D .2512升 6.将函数()cos(2)4f x x π=-的图像向平移8π个单位,得到函数()g x 的图像,则下列说法不正确...的是( ) A .1()62g π=B .()g x 在区间57(,)88ππ上是增函数 C.2x π=是()g x 图像的一条对称轴 D .(,0)8π-是()g x 图像的一个对称中心7.设双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 作倾斜角为3π的直线与y 轴和双曲线的右支分别交于点A 、B ,若11()2OA OB OF =+,则该双曲线的离心率为( )A .2B 28.在ABC △中,点P 满足2BP PC =,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM mAB =,(0,0)AN nAC m n =>>,则2m n +的最小值为( )A .3B .4 C.83 D .1039.若2017(12018)x -=220170122017a a x a x a x +++()x R ∈,则2017122017201820182018a a a+++的值为( )A .20172018B .1 C. 0 D .1-10.在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,AB =Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57π C. 63π D .84π11.记数列{}n a 的前n 项和为n S .已知11a =,1()2()n n n n S S a n N *+-=∈,则2018S =( ) A .10093(21)- B .10093(21)2- C.20183(21)- D .20183(21)2-12.已知函数2()22ln x f x x e x=-与()2ln g x e x mx =+的图像有4个不同的交点,则实数m 的取值范围是( )A .(4,0)-B .1(,2)2 C. 1(0,)2D .(0,2)第Ⅱ卷(共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.阅读下面程序框图,运行相应程序,则输出i 的值为 .14.设x ,y 满足约束条件1020330x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,则||3y z x =+的最大值为 . 15.已知一几何体的三视图如图所示,则该几何体的体积为 .16.已知椭圆的焦点为1(,0)F c -,2(,0)F c,其中40cos c xdx π=,直线l 与椭圆相切于第一象限的点P ,且与x ,y 轴分别交于点A ,B ,设O 为坐标原点,当AOB △的面积最小时,1260F PF ∠=︒,则此椭圆的方程为 .三、解答题 :本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤. 17. 在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c 且sin ()sin sin b B c b C a A +-=. (1)求角A 的大小; (2)若3sin sin 8B C =,且ABC △的面积为a . 18. 如图,四边形ABCD 是矩形,沿对角线AC 将ACD △折起,使得点D 在平面ABC 内的摄影恰好落在边AB 上.(1)求证:平面ACD ⊥平面BCD ; (2)当2ABAD=时,求二面角D AC B --的余弦值.19. 某次数学知识比赛中共有6个不同的题目,每位同学从中随机抽取3个题目进行作答,已知这6个题目中,甲只能正确作答其中的4个,而乙正确作答每个题目的概率均为23,且甲、乙两位同学对每个题目的作答都是相互独立、互不影响的.(1)求甲、乙两位同学总共正确作答3个题目的概率;(2)若甲、乙两位同学答对题目个数分别是m ,n ,由于甲所在班级少一名学生参赛,故甲答对一题得15分,乙答对一题得10分,求甲乙两人得分之和X 的期望. 20. 已知抛物线2:C y x =-,点A ,B 在抛物线上,且横坐标分别为12-,32,抛物线C 上的点P 在A ,B 之间(不包括点A ,点B ),过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率k 的取值范围; (2)求|||PA PQ ⋅的最大值.21. 已知函数2()(1)2x t f x x e x =--,其中t R ∈. (1)讨论函数()f x 的单调性;(2)当3t =时,证明:不等式1122()()2t f x x f x x x +-->-恒成立(其中1x R ∈,10x >). 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知直线l 的极坐标方程为sin()4πρθ+=O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系,曲线1C 的参数方程为12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩(ϕ为参数).(1)求直线l 的直角坐标方程和曲线1C 的普通方程;(2)若曲线2C 为曲线1C 关于直线l 的对称曲线,点A ,B 分别为曲线1C 、曲线2C 上的动点,点P 坐标为(2,2),求||||AP BP +的最小值. 23.选修4-5:不等式选讲已知函数()3|||31|f x x a x =-++,g()|41||2|x x x =--+. (1)求不等式()6g x <的解集;(2)若存在1x ,2x R ∈,使得1()f x 和2()g x 互为相反数,求a 的取值范围.试卷答案一、选择题1-5:CACBB 6-10: DCADB 11、12:AC二、填空题13. 4 14. 1 15.1123π+ 16.221159x y+=三、解答题17.(1)由sin ()sin sin b B c b C a A +-=,由正弦定理得22()b c b c a +-=,即222b c bc a +-=,所以2221cos 22b c a A bc +-==,∴3A π=. (2)由正弦定理simA sin sin a b c B C ==,可得sin sin a B b A =,sin sin a Cc A=, 所以1sin 2ABCS bc A =△1sin sin sin 2sin sin a B a C A A A =⋅⋅2sin sin 2sin a B C A==又3sin sin 8B C =,sin A =2=4a =. 18.(1)设点D 在平面ABC 上的射影为点E ,连接DE ,则DE ⊥平面ABC ,∴DE BC ⊥.∵四边形ABCD 是矩形,∴A B B C ⊥,∴BC ⊥平面ABD ,∴B C A D ⊥.又AD CD ⊥,所以AD ⊥平面BCD ,而AD ⊂平面ACD ,∴平面ACD ⊥平面BCD .(2)以点B 为原点,线段BC 所在的直线为x 轴,线段AB 所在的直线为y 轴,建立空间直角坐标系,如图所示.设AD a =,则2AB a =,∴(0,2,0)A a ,(,0,0)C a . 由(1)知AD BD ⊥,又2ABAD=,∴30DBA ∠=︒,60DAB ∠=︒, ∴cos AE AD DAB =⋅∠12a =,32BE AB AE a =-=,sin DE AD DAB =⋅∠=,∴3(0,)2D a,∴1(0,)2AD a =-,(,2,0)AC a a =-. 设平面ACD 的一个法向量为(,,)m x y z =,则00m AD m AC ⎧⋅=⎪⎨⋅=⎪⎩,即102220ay az ax ay ⎧-+=⎪⎨⎪-=⎩, 不妨取1z =,则y =x =(23,m =. 而平面ABC 的一个法向量为(0,0,1)n =, ∴cos ,m n ||||m nm n ⋅==14=.故二面角D AC B --的余弦值为14.19.(1)由题意可知共答对3题可以分为3种情况:甲答对1题乙答对2题;甲答对2题乙答对1题;甲答对3题乙答对0题.故所求的概率12224233621()()33C C P C C =⋅2112423361()3C C C C +⋅30343362131()()33135C C C +⋅=. (2)m 的所有取值有1,2,3.1242361(1)5C C P m C ===,2142363(2)5C C P m C ===,34361(3)5C P m C ===,故131()1232555E m =⨯+⨯+⨯=.由题意可知2(3,)3n B ,故2()323E n =⨯=.而1510X m n =+,所以()15()10()50E X E m E n =+=.20.(1)由题可知11(,)24A --,39(,)24B -,设2(,)p p P x x -,1322p x -<<,所以 21412p p x k x -+=+12p x =-+∈(1,1)-,故直线AP 斜率k 的取值范围是(1,1)-. (2)直线11:24AP y kx k =+-,直线93:042BQ x ky k ++-=,联立直线AP ,BQ 方程可知点Q 的横坐标为223422Q k k x k --=+,||PQ =()Q p x x -22341()222k k k k --=+-+2=1||)2p PA x =+)k =-,所以3||||(1)(1)PA PQ k k ⋅=-+,令3()(1)(1)f x x x =-+,11x -<<,则2'()(1)(24)f x x x =---22(1)(21)x x =--+,当112x -<<-时'()0f x >,当112x -<<时'()0f x <,故()f x 在1(1,)2--上单调递增,在1(,1)2-上单调递减. 故max 127()()216f x f =-=,即||||PA PQ ⋅的最大值为2716.21.(1)由于'()()x xf x xe tx x e t =-=-.1)当0t ≤时,0xe t ->,当0x >时,'()0f x >,()f x 递增,当0x <时,'()0f x <,()f x 递减;2)当0t >时,由'()0f x =得0x =或ln x t =.① 当01t <<时,ln 0t <,当0x >时,'()0f x >,()f x 递增,当ln 0t x <<时,'()0f x <,()f x 递减, 当ln x t <时,'()0f x >,()f x 递增; ② 当1t =时,'()0f x >,()f x 递增; ③当1t >时,ln 0t >.当ln x t >时,'()0f x >,()f x 递增, 当0ln x t <<时,'()0f x <,()f x 递减, 当0x <时,'()0f x >,()f x 递增.综上,当0t ≤时,()f x 在(,0)-∞上是减函数,在(0,)+∞上是增函数; 当01t <<时,()f x 在(,ln )t -∞,(0,)+∞上是增函数,在(ln ,0)t 上是减函数; 当1t =时,()f x 在(,)-∞+∞上是增函数;当1t >时,()f x 在(,0)-∞,(ln ,)t +∞上是增函数,在(0,ln )t 上是减函数. (2)依题意1212()()f x x f x x +--1212()()x x x x >--+,1212()()f x x x x ⇔+++1212()()f x x x x >-+-恒成立.设()()g x f x x =+,则上式等价于1212()()g x x g x x +>-, 要证明1212()()g x x g x x +>-对任意1x R ∈,2(0,)x ∈+∞恒成立,即证明23()(1)2xg x x e x x =--+在R 上单调递增,又'()31x g x xe x =-+, 只需证明310x xe x -+≥即可.令()1x h x e x =--,则'()1xh x e =-,当0x <时,'()0h x <,当0x >时,'()0h x >,∴min ()(0)0h x h ==,即x R ∀∈,1x e x ≥+,那么,当0x ≥时,2x xe x x ≥+,所以31x xe x -+≥2221(1)0x x x -+=-≥;当0x <时,1x e <,31x xe x x -+=1(3)0x e x-+>,∴310xxe x -+≥恒成立.从而原不等式成立.22.解:(1)∵sin()4πρθ+=sin cos θρθ= 即cos sin 4ρθρθ+=,∴直线l 的直角坐标方程为40x y +-=;∵12cos 22sin x y ϕϕ=-+⎧⎨=-+⎩,∴曲线1C 的普通方程为22(1)(2)4x y +++=.(2)∵点P 在直线4x y +=上,根据对称性,||AP 的最小值与||BP 的最小值相等. 曲线1C 是以(1,2)--为圆心,半径2r =的圆. ∴min 1||||AP PC r =-23==.所以||||AP BP +的最小值为236⨯=.23.解:(1)∵()g x =33,2151,24133,4x x x x x x ⎧⎪-+≤-⎪⎪---<≤⎨⎪⎪->⎪⎩,当2x ≤-时,336x -+<解得1x >-,此时无解.当124x -<≤时,516x --<,解得75x >-,即7154x -<≤. 当14x <时,336x -<,解得3x <,即134x <<,综上,()6g x <的解集为7{|3}5x x -<<. (2)因为存在1x ,2x R ∈,使得12()()f x g x =-成立.所以{|(),}y y f x x R =∈{|(),}y y g x x R =-∈≠∅.又()3|||31|f x x a x =-++|(33)(31)||31|x a x a ≥--+=+, 由(1)可知9()[,)4g x ∈-+∞,则9()(,]4g x -∈-∞.所以9|31|4a +≤,解得1351212a -≤≤. 故a 的取值范围为135[,]1212-.。
2018年全国卷3理科数学试题和参考答案

20 20 20 20
故有 99% 的把握认为两种生产方式的效率有差异
【考点】茎叶图、均值及其意义、中位数、独立性检验
19. (12 分)
如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧 CD 所在的平面垂直, M 是 CD 上 异于 C, D 的点.
(1) 证明:平面 AMD 平面 BMC ; (2) 当三棱锥 M ABC 体积的最大时,求面 M AB 与面 MCD 所成二面角的正弦值 .
在本试卷上无效 .
3. 考试结束后,将本试卷和答题卡一并交回 .
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的 .
1.已知集合 A x | x 1 0 , B 0, 1, 2 ,则 A B ( )
A. 0
B. 1
C. 1, 2
【答案】 C
【解析】 A : x 1, A B 1, 2
ABC 等边 S ABC 9 3
AB 6 ,
D
O
A
FE
B
C
在等边 ABC 中, BF
2 BE
3 AB
2 3,
3
3
在 Rt OFB 中,易知 OF
2 , DF
6 ,故 VD ABC max
1 9 3 6 18 3
3
【考点】外接球、椎体体积最值
11. 设 F1,
F2 是双曲线
x2 C : a2
的一条渐近线的垂线,垂足为
M
y1 y2 4m
x my 1,联立
可求
,由
y2 4 x
y1 y2 4
MB MA y1 y2
y1 y2 1 x1x2
x1 x2
2018年高考数学全国卷三理科试题(附答案)

2018年高考数学全国卷三理科试题(附答案) 2018年高考数学全国卷三理科考试已经落下帷幕,本试卷为考生带来了挑战,让大家从中更加深入的了解数学知识,本试卷的答案让大家从中收获了成长。
2018年高考数学全国卷三理科试题2018年高考数学全国卷三理科试题出炉,考生们做好了准备,及时解决遇到的问题,取得优异的成绩。
本次全国卷三包括4个部分组成,分别是选择题、填空题、解答题和分析题。
如下:一、选择题1. 若集合A={x|-2≤x≤2},集合B={x|x2<4},则A∩B= (A) {-2,2} (B) {-2,0,2} (C) {-1,1} (D) {0,2}2. 若平面上的两个点的坐标分别A(2,3),B(4,-3),那么它们之间的距离是(A)2(B)5(C)7(D)63. 若复数z1=1-i,z2=1+i,则z1、z2的共轭复数分别为(A)1-i,1+i(B)1+i,1-i(C)-1+i,-1-i(D)-1-i,-1+i4. 若函数y=3x3-6x2+9x+3在x=2处取得极值,则极大值为(A)-12(B)-9(C)15(D)185. 若两个圆O1,O2的半径分别是6,9,则O1, O2相切的条件是(A)r1=r2(B)r1+r2=15(C)r1-r2=3(D)r1+r2=3二、填空题1. 下列各式中,(1+√5)5次方的展开式中,常数项为a_1r_1+a_3r_3+a_5r_5,其中a_1,a_3,a_5分别为______,_______,_______。
答案:a_1=5 ; a_3=-5 ; a_5=12.函数f (x)=2x2+8x+9,x≤1时的最大值为_________。
答案:13三、解答题1.求实数a,b满足等式|a-3|-|b+3|=4的解。
答:解得a=-1、b=-72.曲线y=x3+3x2+3x+c的图象经过点(1,1),求参数c的值。
答:设y=x3+3x2+3x+c设点P(1,1)在曲线上,即1=1+3+3+cc=0四、分析题1.已知实数x,y满足约束条件2x+y≤12,x,y≥0,求此约束条件下的最大值。
(完整版)2018全国Ⅲ卷理科数学高考真题

88 792018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如 需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有 项是符合题目要求的。
1.已知集合A x|x 1 > 0 ,B 0,1,2,则 AI BA •B• 1C .1 , 2D . 0,1,22. 1 i 2 iA•3 iB •3 iC 3 iD . 3 i3•中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图 中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长 方体,则咬合时带卯眼的木构件的俯视图可以是14•若 sin § ,则 cos2C .55. x 2 - 的展开式中x 4的系数为x△ ABP 面积的取值范围是7•函数yx 4 x 2 2的图像大致为A . 0.7B . 0.6C . 0.4D . 0.39. △ ABC 的内角A ,B ,C 的对边分别为 2 2 2a ,b ,c ,若△ ABC 的面积为-一b -,则C4AnA .-2B.-3 C . n D .- 610.设A , B , C , D 是同一个半径为 4的球的球面上四点,△ ABC 为等边三角形且其面积A . 10B . 20C . 40D . 80 6 .直线x y 20分别与x 轴,y 轴交于A , B 两点,点P 在圆xy 2 2上,则A . 2,6B . 4, 8C . 2 ,3.2D . 2 2 , 3. 2为9・・3,则三棱锥D ABC体积的最大值为A. 12 3B. 18 3C. 24. 3D. 54.32 2X y11. 设F i , F2是双曲线C: —j —1 ( a 0 , b 0 )的左,右焦点,O是坐标原点.过F2a b作C的一条渐近线的垂线,垂足为p.若PF J 「-;6 0P,则C的离心率为A. 5B. 2C. .3D. 212. 设a log 0.2 0.3 , b log 2 0.3,则A. a b ab 0B. ab a b 0C . a b 0 abD . ab 0 a b二、填空题:本题共4小题,每小题5分,共20分。
2018年高考第三次全国大联考理科数学试卷

2018年第三次全国大联考理科数学(考试时间:120分钟 试卷满分:150分)注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
第Ⅰ卷一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{2,5,9}A =,{|21,}B x x m m A ==-∈,则A B = A .{2,3,5,9,17}B .{2,3,5,17}C .{9}D .{5}2.若复数1z 对应复平面内的点(2,3)-,且121i z z ⋅=+,则复数2z 的虚部为 A .513-B .513C .113-D .1133.为了检验设备M 与设备N 的生产效率,研究人员作出统计,得到如下表所示的结果,则附:参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.A .有90%的把握认为生产的产品质量与设备的选择具有相关性B .没有90%的把握认为生产的产品质量与设备的选择具有相关性C .可以在犯错误的概率不超过0.01的前提下认为生产的产品质量与设备的选择具有相关性D .不能在犯错误的概率不超过0.1的前提下认为生产的产品质量与设备的选择具有相关性4.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线350x y -=上,则7πtan sin(2)2θθ++= A .1785 B .1785-C .1185D .1185-5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为A.3π9++B.3π6++C 4π6++ D.4π6++6.为了计算满足1110000ni i =<∑的最大正整数n ,设置了如下图所示的程序框图,若判断框中填写的是“10000?S ≥”,则输出框中应填A .输出iB .输出1i +C .输出1i -D .输出2i -7.已知实数,x y 满足约束条件2107x yx x y +≤⎧⎪-≥⎨⎪+≤⎩,则22y z x -=+的取值范围为A .1[,1]3B .14[,]33C .1[,2]3D .4[,2]38.函数223()2xx x f x --=的大致图象为ABCD9.如图,已知直四棱柱1111ABCD A BC D -中,12A A A D BC ==,111111120A B C B CD ∠=∠=︒,且BC AD ∥,则直线1AB 与直线1A D 所成角的余弦值为A B C D 10.已知ABC △中,内角A ,B ,C 所对的边分别是a ,b ,c ,若(c o s c o s )c o s 122a Bb A Ba b+=+,且20ABC S =△,则当ab 取到最小值时,a =A .BC .D 11.定义在(,0)(0,)-∞+∞ 上的偶函数()f x 满足:当0x >时,2()()10xf x x f x '+-=,1(e)e f =.若函数()|()|g x f x m =-有6个零点,则实数m 的取值范围是A .1(0,)eB .(0,1)C .1(,1)eD .(1,)+∞12.已知抛物线2:2(0)C y px p =>的焦点为F ,且F 到准线l 的距离为2,直线1:0l x my -=与抛物线C 交于,P Q 两点(点P 在x 轴上方),与准线l 交于点R ,若||3QF =,则QRF PRFS S =△△A .57 B .37 C .67D .97第Ⅱ卷二、填空题(本题共4小题,每小题5分,共20分)13.已知向量(3,4)=-a ,(,2)m =b ,若向量23-a b 与b 共线,则实数m =_________.14.2731(2)3x x -的展开式中1x的系数为_________. 15.将函数π()3cos(2)5f x x =-的图象向右平移π3个单位长度后,得到函数()g x 的图象,则函数()g x 的图象的对称轴方程为x =_________.16.我国南北朝时期的数学家祖暅提出体积的计算原理(祖暅原理):“幂势既同则积不容异”.“势”即是高,“幂”是面积.意思是:如果两等高的几何体在同高处的截面积相等,那么这两个几何体的体积相等.已知双曲线C 的焦点在x 轴上,离心且过点.若直线0y =与6y =在第一象限内与双曲线及其渐近线围成如图阴影部分所示的图形,则该图形绕y 轴旋转一周所得几何体的体积为_________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知等差数列{}n a 满足9117S =,719a =,数列{}n b 满足112ni i i b n -==∑.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)求数列11{}n n n b a a ++的前n 项和. 18.(本小题满分12分)为了了解某市高三学生的身体情况,某健康研究协会对该市高三学生组织了两次体测,其中第一次体测的成绩(满分:100分)的频率分布直方图如下图所示,第二次体测的成绩2(65,2.5)X N .(Ⅰ)试通过计算比较两次体测成绩平均分的高低;(Ⅱ)若该市有高三学生20000人,记体测成绩在70分以上的同学的身体素质为优秀,假设这20000人都参与了第二次体测,试估计第二次体测中身体素质为优秀的人数;(Ⅲ)以频率估计概率,若在参与第一次体测的学生中随机抽取4人,记这4人成绩在[60,80)的人数为ξ,求ξ的分布列及数学期望.附:()0.6826P X μσμσ-<≤+=,(22)0.9544P X μσμσ-<≤+=,(33)0.9974P X μσμσ-<≤+=.19.(本小题满分12分)如图所示,四棱锥S A B C D -中,1,22SA SD AD BC CD AB ====,CD AB ∥,90ABC ∠=︒,二面角S AD B --的大小为90︒.(Ⅰ)求证:SA BD ⊥;(Ⅱ)在线段SB 上找一点E ,使得二面角E AD S --的大小为45︒. 20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>过点(1,(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线(1)y k x =-与椭圆C 交于,P Q 两点,且(3,2)N ,设,PN QN k k 分别是直线,PN QN 的斜率,试探究PN QN k k +是否为定值,若是,求出该定值;若不是,请说明理由. 21.(本小题满分12分)已知函数1()(1)ln f x ax a x x=--+. (Ⅰ)当0a ≥时,判断函数()f x 的单调性;(Ⅱ)当2a =-时,证明:522e e [()2]xf x x >+.(e 为自然对数的底数) 请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,直线l 的参数方程为41332x t y t =-⎧⎪⎨=-⎪⎩(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,已知圆C的极坐标方程为2πsin()4ρθ=-.(Ⅰ)求直线l 的普通方程以及圆C 的直角坐标方程;(Ⅱ)若点P 在直线l 上,过点P 作圆C 的切线PQ ,求||PQ 的最小值. 23.(本小题满分10分)选修4-5:不等式选讲已知函数()2|||3|f x x x =+-. (Ⅰ)解关于x 的不等式()4f x <;(Ⅱ)若对于任意的x ∈R ,不等式2()2f x t t ≥-恒成立,求实数t 的取值范围.。
2018年普通高等学校招生全国统一考试理科数学高考第三套(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017~2018学年度高三第三次联考
数学(理科)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一项是符合题目要求的.
1.已知集合{}{
}2
02,9,A x x B x x x z =≤≤=<∈,则A
B =.
A. {0,1,2} B .[0,1] C. {0, 2} D. {0,1} 2.数字2.5和6.4的等比中项是
A .16
B .16± C. 4 D. 4±
3.不等式2
(
5)
2
log 0(0)x
x x --≥>的解集为
A .(一2,3]
B .(-∞,一2]
C .[3,+∞)
D .(-∞,一2] [3,+∞)
4.设sin33,cos55,tan35a b c ︒︒︒===,则
A .a >b >c B. c >b >a C .a >c >b D .c >a >b
5.已知数列{}n a ,“{}n a 为等差数列”是“,32n n N a n *∀∈=+”的 A. 充分而不必要条件 B .必要而不充分条件 C. 允要条件 D .既不充分也不必要条件 6.若a <b <0.则下列不等式中一定不成立的是 A .
11a b < B
>a b >- D .11a b b
>- 7.曲线1
x y xe
-=在点(1,1) 处的切线方程为
A .21y x =+
B .21y x =-
C .2y x =+
D .2y x =-
8.若数列{}n a 满足221112,2()n n n n a a a a a n N *
++=+=⋅∈,则数列{}n a 的前32项和为
A .64
B .32
C .16
D .128
9.设x ,y 满足约束条件260
2600x y x y y +-≥⎧⎪
+-≤⎨⎪≥⎩
,则目标函数z x y =+取最小值时的最优解是
A .(6,0)
B .(3,0)
C .(0,6)
D .(2,2)
10.已知{}n a 是等差数列41220,12a a ==-,记数列{}n a 的第n 项到第n +3项的和为n T ,则
n T 取得最小值时的n 的值为
A .6
B . 8
C .6或7
D .7或8
11.定义在R 上的偶函数,()f x 满足()(2)f x f x =+,当[3,5]x ∈时,4
()(4)f x x =-,则
A .1()sin
2
6
f π
= B .1()sin
2
3
f π
= C .1()sin
2
3
f π
< D .1()sin
2
6
f π
>
12.设函数()f x 是定义在(0,)+∞上的单调函数,且对于任意正数x ,y 有
()()()f xy f x f y =+,已知1
()12
f =-,若一个各项均为正数的数列{}n a 满足
()()
(1)1(n n n f S f a f a n N
*=++-∈,其中n S 是数列的前n 项和,则数列{}n a 中第18项18a =
A .
1
36
B .9
C . 18
D .36 二、填空题:本大题共4小题。
每小题5分。
共20分.把答案填在题中的横线上. 13.不等式22230(0)x ax a a --<>的解集为___________。
14.等比数列{}n a 中,572,4b b =-=-,则11b 的值为__________。
15.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内任意一点 OA OB OC OD OM λ+++=,则______λ=. 16.若小等式
22
2
9t t a t t +≤≤+在(0,2]t ∈上恒成立,则a 的取值范围是__________。
三、解答题:本大题共6小题。
共70分.解答应写出必要的文字说明、证明过程及演算步骤
17.(10分) 已知函数53()ln 442
x f x x x =
+--,求函数()f x 的单调区间与极值.
18.(12分)
某市垃圾处理站每月的垃圾处理量最少为400吨,最多为600吨,月处理成本y (元)与月垃圾处理量z (吨)之间的函数关系可近似地表示为2
1200800002
y x x =
-+,且每处理一吨垃圾得到可利用的资源价值为100元.
(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?
(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?
19.(12分)
已知首项为l 的等差数列{}n a 前n 项和为1124,n S a a a =⋅.
(1)若数列{}n b 是以1a 为首项、2a 为公比的等比数列,求数列{}n b 的前n 项和n T ;
(2)若15(2)n n y S a n -=-≥ (n ≥2),求y 的最小值.
20.(12分)
已知()2cos2f x x x =+,在ABC ∆中,a 、b 、c 分别为内角A 、B 、C 所对的边,且对()f x 满足()2f A =. (1)求角A 的值;
(2)若1a =,求△ABC 面积的最大值.
21.(12分)
已知函数()(31)2f x x a x b =--+. (1)若220
()33
f =
,且0,0a b >>求ab 的最大值; (2)当[0,1]x ∈]时,()1f x ≤恒成立,且233a b +≥,求2
1
a b a +++的取值范围
22.(12分)
数列{}n a 是首项与公比均为a 的等比数列(a >0,且a ≠1),数列{}n b 满足lg n a n n b a =⋅。
(1)求数列{}n b 的前n 项和n T ;
(2)若对一切n N *
∈都有1n n b b +<,求a 的取值范围.
13. {
}3x a x a -<< 14. 16- 15. 4 16. 2[
,1]13。