2.2--2.4轴相反数绝对值测试题1
七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。
苏科版七年级上册第二章2.4相反数、绝对值专题训练(含解析答案)

相反数、绝对值专题训练注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。
第Ⅱ卷为非选择题,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
第I卷(选择题)一、选择题(本大题共7小题,共21.0分)1.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A. 0B. 1或C. 2或D. 0或4.有理数abc<0,则++的值是()A. 1B. 3C. 0D. 1或5.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.6.在数轴上表示有理数a,b,c的点如图所示,若ac<0,b+a<0,则()A. B. C. D.7.如图,a,b为数轴上的两点表示的有理数,在a+b,b-a,|a-b|,|b|-|a|中,负数的个数有()A. 1B. 2C. 3D. 4第II卷(非选择题)二、填空题(本大题共7小题,共21.0分)8.已知|a|=3,|b|=4,且a<b,则的值为______ .9.如果n<0,那么= ______ .10.若a,b都是不为零的有理数,那么+的值是______.11.有理数a、b、c在数轴上的位置如图所示,化简:-|c-a|+|b|+|a|-|c|=______.12.若a、b、c在数轴上的位置如图,则|a|-|b-c|+|c|= ______ .13.若,则的取值范围是________.14.若有理数在数轴上的位置如图所示,则化简:______.三、计算题(本大题共1小题,共6.0分)15.已知有理数a、b、c在数轴上的对应点如图所示,化简:|a-b|-|a+b|+|a|+|a-c|.四、解答题(本大题共5小题,共40.0分)16.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)用“>”“<”或“=”填空:b______0,a+b______0,a-c______0,b-c______0;(2)化简:|c-a|-|c-b|+|a+b|.17.阅读下列材料并解决有关问题:我们知道,所以当x>0时,==1;当x<0时,==-1.现在我们可以用这个结论来解决下面问题:(1)已知a,b是有理数,当ab≠0时,+= ______ ;(2)已知a,b是有理数,当abc≠0时,++= ______ ;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则++= ______ .18.已知a、b、c均为非零的有理数,且=-1,求++的值.19.实数a,b,c在数轴上的位置如图,化简|b+c|-|b+a|+|a+c|.20.设a为有理数.(1)若b=(a+2)2+3,则b是否有最小值?若有,请求出这个最小值,并求此时a的值;若没有,请说明理由.(2)试比较a2与|a|的大小.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.3.【答案】A【解析】【分析】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:,所以;②当a,b,c为两负一正时:,所以.由①②知所有可能的值为0.应选A.4.【答案】D【解析】解:∵abc<0,∴a,b,c中有一个负数或三个负数,当有一个负数时,原式=-1+1+1=1;当有三个负数时,-1-1-1=-3,故选D.利用有理数的乘法法则判断得到a,b,c中负数的个数,利用绝对值的代数意义化简即可得到结果.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】C【解析】【分析】本题考查数轴,解题的关键是明确数轴的特点,能举出错误选项的反例.根据数轴和ac<0,b+a<0,可以判断选项中的结论是否成立,从而可以解答本题.【解答】解:由数轴可得,a<b<c,∵ac<0,b+a<0,∴如果a=-2,b=0,c=2,则b+c>0,故选项A错误;如果a=-2,b=-1,c=0.9,则|b|>|c|,故选项B错误;如果a=-2,b=0,c=2,则abc=0,故选D错误;∵a<b,ac<0,b+a<0,∴a<0,c>0,|a|>|b|,故选项C正确;故选:C.7.【答案】B【解析】解:有数轴可得:a<0,b>0,且|a|>|b|,∴a+b<0,b-a>0,|a-b|>0,|b|-|a|<0,∴负数的个数有2个.故选:B.由数轴的性质可知a<0,b>0,且|a|>|b|,由此判断每个式子的符号.本题考查了数轴.关键是利用数轴判断a、b的符号,a、b的关系式.8.【答案】-7或-【解析】【分析】本题考查了有理数的除法,绝对值的性质,有理数的加法,熟练掌握运算法则是解题的关键.根据绝对值的性质求出a,b,再根据有理数的加法判断出b的值,有理数的除法进行计算即可得解.【解答】解:∵|a|=3,|b|=4,∴a=±3,b=±4,∵a<b,∴当a=3时,b=4,∴=-,当a=-3时,b=4,∴=-7,故答案为-7或-.9.【答案】-1【解析】解:∵n<0,∴|n|=-n,∴==-1.故答案为:-1.根据负数的绝对值等于它的相反数去掉绝对值号,再根据有理数的除法运算法则进行计算即可得解.本题考查了有理数的除法,绝对值的性质,是基础题,正确去掉绝对值号是解题的关键.10.【答案】2,0或-2【解析】解:①a>0,b>0;则+=1+1=2,②a>0,b<0或a<0,b>0,则+=1-1=0或+=-1+1=0③a<0,b<0,则+=-1-1=-2.所以+的值是2,0或-2.故答案为:2,0或-2.分情况讨论①a>0,b>0;②a>0,b<0或a<0,b>0,③a<0,b<0,然后根据范围去掉绝对值可得出+可能的值.本题考查有理数的除法及绝对值的知识,难度不大,关键是分类讨论a和b的范围.11.【答案】b+2c【解析】解:从数轴可知:c<0<a<b,|c|>|a|,∴c-a<0,∴-|c-a|+|b|+|a|-|c|=c-a+b+a+c=b+2c,故答案为:b+2c.根据数轴得出c<0<a<b,|c|>|a|,求出c-a<0,再去掉绝对值符号合并同类项即可.本题考查了整式的加减,数轴的应用,注意:整式的加法实质就是合并同类项.12.【答案】b-a【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握去括号法则与合并同类项法则是解本题的关键.【解答】解:根据数轴上点的位置得:a<b<0<c,∴b-c<0,则原式=-a+b-c+c=b-a,故答案为:b-a13.【答案】【解析】【分析】本题考查了绝对值的性质,依据绝对值的性质得到,即可求得x的取值范围.【解答】解:∵ ,∴ ,∴ ,故答案为.14.【答案】a【解析】【分析】此题主要考查了实数与数轴之间的对应关系,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.先根据数轴上各点的位置判断出a,b,c的符号及|a|,|b|和|c|的大小,接着判定a+c、2a+b、c-b的符号,再化简绝对值即可求解.【解答】解:由上图可知,c<b<0<a,|b|<|a|<|c|,∴a+c<0、2a+b>0、c-b<0,原式=-(a+c)+2a+b-(b-c)=-a-c+2a+b-b+c=a.故答案为a.15.【答案】解:根据数轴上点的位置得:b<a<0<c,∴a-b>0,a+b<0,a-c<0,则原式=a-b+a+b-a-a+c=c.【解析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.16.【答案】(1)<= ><(2)由数轴可得,b<c<0<a,∵|a|=|b|,∴|c-a|-|c-b|+|a+b|=a-c-(c-b)+0=a-c-c+b=a+b-2c.【解析】解:(1)由数轴可得,b<c<0<a,∵|a|=|b|,∴b<0,a+b=0,a-c>0,b-c<0,故答案为:<,=,>,<;(2)见答案【分析】(1)根据数轴可以解答本题;(2)根据数轴可以将题目中式子的绝对值去掉,然后化简即可解答本题.本题考查整式的加减、数轴、绝对值、有理数大小的比较,解答本题的关键是明确它们各自的计算方法,利用数形结合的思想解答.17.【答案】(1)±2或0;(2)±1或±3;(3)-1.【解析】解:(1)已知a,b是有理数,当ab≠0时,①a<0,b<0,+=-1-1=-2,②a>0,b>0,+=1+1=2,③a、b异号,+=0,故答案为:±2或0;(2)已知a,b是有理数,当abc≠0时,①a<0,b<0,c<0,++=-1-1-1=-3,②a>0,b>0,c>0,++=1+1+1=3,③a、b、c两负一正,++=-1-1+1=-1,④a、b、c两正一负,++=-1+1+1=1,故答案为:±1或±3;(3)已知a,b,c是有理数,a+b+c=0,abc<0,则b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,则++═---=1-1-1=-1,故答案为:-1.【分析】(1)分3种情况讨论即可求解;(2)分4种情况讨论即可求解;(3)根据已知得到b+c=-a,a+c=-b,a+b=-c,a、b、c两正一负,进一步计算即可求解.此题考查了有理数的除法,以及绝对值,熟练掌握运算法则是解本题的关键.18.【答案】解:∵a、b、c是非零实数,且=-1,∴可知a,b,c为两正一负或三负.①当a,b,c为两正一负时:++=1+1-1=1;②当a,b,c为三负时:++=-1-1-1=-3.故++的值可能为1和-3.【解析】本题考查了代数式求值有关知识,根据a、b、c均为非零的有理数,且=-1,可知a,b,c为两正一负或三负,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.19.【答案】解:|b+c|-|b+a|+|a+c|=-(b+c)-(-b-a)+(a+c)=-b-c+b+a+a+c=2a.【解析】先由数轴上点的关系,可得a,、c互为相反数,再根据负数的绝对值是它的相反数,可化简去掉绝对值,再合并同类项,得答案.本题考查了整式的加减,先根据数轴上点的位置关系,化简掉绝对值,再合并同类项.20.【答案】解:(1)∵(a+2)2≥0,∴(a+2)2+3>0,∴b是否有最小值是3,此时a的值为-2;(2)当a<-1时,a2<|a|,当-1<a<0时,a2>|a|,当0≤a<1时,a2<|a|,当a>1时,a2>|a|.【解析】(1)根据非负数的性质解答即可;(2)利用分情况讨论思想解答.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。
数轴、相反数、绝对值及综合练习

数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。
有理数测试题(一) 数轴相反数绝对值

有理数测试题(一)数轴相反数绝对值有理数测试题(一)-数轴相反数绝对值有理数检验(1)姓名:分数:100分分数:一、填空。
(每小题3分,共24分)1.如果-30表示30元,那么+200表示。
2、在数轴上与原点距离2个单位长度的点表示的数有个,为。
3、规定了的直线叫做数轴。
4.在数字轴上代表整数(原点除外)的点中,有一点距离原点最近,数字为。
5.103的相反数是___,1??1?___,(a-2)的相反数是____。
?3?2?的相反数是?6、化简:―[―(―0.3)]=;― [―(+4)]=__________;― [+(―50)]=_________;7、比较大于(填写“>”或“<”号)(1)-2.11(2)-140(3)-12-13(4)-3.1-3.098.在数字轴上,表示-2的点相距8个单位,由点表示的数字为________;。
2、多项选择题。
(每个子问题3分,共24分)9、绝对值相等的两个数在数轴上对应的两点距离为8,则这两个数为()a)+8或-8b)+4或-4c)-4或+8d)-8或+410.给出以下陈述:<1>两个相对的数字的绝对值相等<2>一个数字的绝对值等于它本身,并且这个数字不是负的<3>如果| m |>m,那么m<0<4>如果| a |>B |,那么a>B,正确的是()(a)<1><2><3>(b)<1><2<4>(c)<1><3><4>(d)<2><3><4>11.一个数等于它的对数值的绝对值,那么这个数就是()A.正数和零B.负数或零C.所有正数D.所有负数12。
如果|a |>-a,那么()a)a>0b)a<0c)aa)正数b)负数c)零d)正分数14、不小于-4的非整数有()a、5个b、4个c、3个d、2个15.如图所示,以下判断对于数字轴上的数字a和B的位置是正确的()b-10aa、a<0b、a>1c、b>-1d、b16.在数字轴上,原点和原点右侧的点表示的数字是()A.正数B.负数C.正整数D.非负数3。
数轴相反数绝对值测试题(精心整理)

有理数测试题班级: 姓名: 得分:一、选择题(每小题3分,合计36分)1. 下列说法中错误的有( )个①125-是负有理数;②正有理数和负有理数统称为有理数;③自然数和分数统称为有理数;④正分数和负分数统称为分数;⑤小数可以化成分数。
A .2个 B.3个 C.4个 D.5个2列各数中,互为相反数的是( )A 、│-32│和-32B 、│-23│和-32 C 、│-32│和23 D 、│-32│和32 3. 下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值一定是正数4. │5a │= -5a , 5a 一定是( )A 、正数B 、负数C 、非正数D 、非负数5. 下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
6. -│a │= -3.2,则a 是( )A 、3.2B 、-3.2C 、±3.2D 、以上都不对7. 已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b8. 给出下面说法: <1>互为相反数的两数的绝对值相等; <2>一个数的绝对值等于本身,这个数不是负数; <3>若|m|>m,则m<0; <4>若|a|>|b|,则a>b,其中正确的有( )(A)<1><2><3> (B)<1><2<4>(C)<1><3><4> (D)<2><3><4>9.下列图形中不是数轴的是( )10.下列各式中正确的是( )A.-3.14<-πB.211->-1C.3.5>-3.4D.-21<-211.若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定12.已知a 为有理数,下列式子一定正确的是A .︱a ︱=aB .︱a ︱≥aC .︱a ︱=-aD . 2a >0二、填空题(每空3分,共60分)1.│-2│的相反数是2.如果a 的相反数是-3,那么a =3.如果a 的相反数是最大的负整数,则a =4.一个数的相反数大于它本身,那么,这个数是 .一个数的相反数等于它本身,这个数是 ,一个数的相反数小于它本身,这个数是 .5. 数轴上表示 -3的点离开原点的距离是_______个单位长度;数轴上与原点相距3个单位长度的点有________个,它们表示的数是_________。
分数数轴相反数绝对值练习卷

分数数轴相反数绝对值练习卷一、填空题1. 在数轴上,如果一个数的相反数的绝对值是3/4,那么这个数是____。
2. 在数轴上,如果一个数的绝对值是7/5,那么这个数的相反数是____。
3. 在数轴上,如果一个数的相反数是-1/2,那么这个数是____。
4. 在数轴上,如果一个数的绝对值是6/7,那么这个数的相反数是____。
5. 在数轴上,如果一个数的相反数的绝对值是13/8,那么这个数是____。
二、选择题1. 数轴上的点A和点B的坐标分别是3/4和-3/4,点A和点B的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数2. 数轴上的点C和点D的坐标分别是-5/6和1/6,点C和点D 的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数3. 数轴上的点E和点F的坐标分别是7/8和-7/8,点E和点F 的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数4. 数轴上的点G和点H的坐标分别是-2/3和2/3,点G和点H 的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数5. 数轴上的点I和点J的坐标分别是11/12和-11/12,点I和点J的关系是:a) 相同的数b) 相反的数c) 互为倒数d) 不同的数三、解答题1. 将数轴上的点A和点B的坐标相加,得出结果。
2. 将数轴上的点C和点D的坐标相减,得出结果。
3. 将数轴上的点E和点F的坐标相加,得出结果。
4. 将数轴上的点G和点H的坐标相减,得出结果。
5. 将数轴上的点I和点J的坐标相加,得出结果。
四、评分标准- 每道填空题1分,共计5分。
- 每道选择题2分,共计10分。
- 每道解答题5分,共计25分。
请按规定时间完成练习卷,并将答案提交给授课老师。
2.4 绝对值与相反数(练习)七年级数学上册同步精品课堂(苏教版)(解析版)

第二章有理数2.4绝对值与相反数一、单选题1.(2022广安市模拟)-2022的绝对值是()A.﹣2022B.2022C.−12022D.12022【详解】解:-2022的绝对值是2022,故选:B.2.(2021无锡市一模)|﹣9|的值是()A.9B.﹣9C.19D.±9【详解】∵−9=9,∴−9的值是9,故选:A.3.(2021海安市期中)下列四个实数中,绝对值最小的数是()A.﹣5B.﹣πC.15D.4【详解】解:|−5|=5,|−π|=π,|15|=15,|4|=4,∵5>4>15>π,∴绝对值最小的是−π,故选:B.4.若a≠0,则|U+1的值为()A.2B.0C.±1D.0或2【详解】解:当>0时,|U+1=+1=1+1=2;当<0时,|U+1=+1=−1+1=0;故选:D.5.(2021宜兴市期末)一个数的绝对值是它本身,则这个数是()A.正数B.负数C.正数和0D.0【详解】解:若一个数绝对值是它本身,即=,∵|U≥0,∴a是正数或0.故选:C.6.(2021涟水县期中)如果一个有理数的绝对值是6,那么这个数是()A.6B.6或−6C.−6D.16或−16【详解】解:∵|±6|=6,∴这个数是6或−6.故选:B.7.(2021淮安市洪泽区、金湖县期末)下列说法正确的是()A.任何数的绝对值都是正数B.如果两个数不等,那么这两个数的绝对值也不相等C.任何一个数的绝对值都不是负数D.只有负数的绝对值是它的相反数【详解】解:任何数的绝对值都是非负数,故A不符合题意;如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方4≠−4,但|4|=|−4|,故B不符合题意;任何一个数的绝对值都不是负数,表述正确,故C符合题意;非正数的绝对值是它的相反数,故D不符合题意;故选C8.(2021南通市期中)一实验室检测A,B,C,D四个零件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的零件是()A.B.C.D.【详解】解:∵|+1.3|=1.3,|+0.3|=0.3,|−0.9|=0.9,|−2.9|=2.9,又∵0.3<0.9<1.3<2.9,∴从轻重的角度看,最接近标准的是选项B中的零件.故选:B.9.(2021无锡市月考)绝对值相等的两个数在数轴上对应的两点距离为10,则这两个数为()A.+10或-10B.+5或-5C.-5或+10D.-10或+5【详解】∵绝对值相等的两个数在数轴上对应的两点距离为10,∴这两个数是+5或-5.故选B.10.(2021秦淮区期中)无论x取何值,下列式子的值一定是正数的是()A.|x|B.|x2|C.|x+1|D.x2+1【详解】解:A.|x|≥0,非负数,此选项不符合题意;B.|x2|≥0,非负数,此选项不符合题意;C.|x+1|≥0,非负数,此选项不符合题意;D.x2+1≥1>0,正数,此选项符合题意;故选:D.二、填空题11.(2021无锡市期末)-3.6的绝对值是______.【详解】解:-3.6的绝对值是3.6,故答案为:3.6.12.(2021如皋市月考)若a=3,|b|=6,则a﹣b的值是_____.【详解】解:∵|b|=6,∴b=±6,∴a-b=3-6或3-(-6),即a-b=-3或9,故答案为:-3或9.13.(2021常州市期中)用“>”“<”或“=”填空:(1)﹣|﹣2|___﹣(﹣3);(2)﹣45___﹣34.【详解】解:(1)因为−−2=−2,−−3=3,所以−−2<−−3,故答案为:<;(2)因为45=1620,34=1520,所以45>34,所以−45<−34,故答案为:<.14.(2021盐城市期中)已知=2,则m=_____.【详解】解:∵=2,∴=2或−2.故答案为:2或-2.三、解答题15.若|x+3|与|y+2|互为相反数,求x+y的值.【详解】解:∵|+3|与|+2|互为相反数,∴|+3|+|+2|=0,∴|+3|=0,|+2|=0,即+3=0,+2=0,∴=−3,=−2.∴+=−3+(−2)=−5,即+的值是−5.一、单选题1.(2021扬州邗江区期中)若|a|=2,|b|=5,且a+b>0,那么a﹣b的值是()A.﹣3B.7C.3或7D.﹣3或﹣7【详解】解:∵|a|=2,|b|=5,且a+b>0,∴a=2,b=5或a=﹣2,b=5;∴a﹣b=2﹣5=﹣3或a﹣b=﹣2﹣5=﹣7.故选:D2.(2021南京市期末)有理数在数轴上的位置如图所示,下列各数中,在0到1之间的是()①−−1;②+1;③2−;A.②③④B.①③④C.①②③D.①②③④【详解】根据数轴可知,−2<<−1,∴1<−<2,∴0<−−1<1,故①符合题意;∵−2<<−1,∴−1<+1<0,∴0<+1<1,故②符合题意;∵−2<<−1,∴1<<2,∴−2<−<−1,∴0<2−<1,故③符合题意;∵1<<2,∴12<1,故④符合题意;符合题意的有①②③④;故选D.二、填空题3.(2021常州市月考)若有理数a,b满足ab>0,则|U+|U+|B|B=___.【详解】解:∵ab>0,∴a、b同号,①当a>0,b>0时,则|U+|U+|B|B=1+1+1=3;②当a<0,b<0时,则|U+|U+|B|B=−1+(−1)+1=−1;故答案为:−1或3.三、解答题4.(1)用“>”或“<”或“=”或“≥”或“≤”填空:①|﹣5|+|4|_____|﹣5+4|;②|﹣6|+|3|_____|﹣6+3|;③|﹣3|+|﹣4|_____|﹣3﹣4|;④|0|+|﹣9|_____|0﹣9|;(2)归纳:|a|+|b|_____|a+b|;(3)根据上题(2)得出的结论,若|m|+|n|=7,|m+n|=1,求m的值.【详解】解:(1)①∵|﹣5|+|4|=9,|﹣5+4|=1,∴|﹣5|+|4|>|﹣5+4|;②∵|﹣6|+|3|=9,|﹣6+3|=3,∴|﹣6|+|3|>|﹣6+3|;③∵|﹣3|+|﹣4|=7,|﹣3﹣4|=7,∴|﹣3|+|﹣4|=|﹣3﹣4|;④|0|+|﹣9|=9,|0﹣9|=9,∴|0|+|﹣9|=|0﹣9|,故答案为:>,>,=,=;(2)通过(1)的比较、分析、归纳:|a|+|b|≥|a+b|,故答案为:≥;(3)由(2)中结论可得:∵|m|+|n|=7,|m+n|=1,∴|m|+|n|≠|m+n|,∴m,n异号,当m为正数,n为负数时,m﹣n=7,则n=m﹣7,|m+n|=|m+m﹣7|=1,解得:m=4或3,当n为正数,m为负数时,﹣m+n=7,则n=m+7,|m+n|=|m+m+7|=1,解得:m=﹣3或﹣4,综上所述,m的值为:±3或±4.。
相反数绝对值练习题

相反数与绝对值一、选择题:1.已知a≠b,a=-5,|a|=|b|,则b等于( )(A)+5 (B)-5 (C)0 (D)+5或-52.一个数在数轴上对应的点到原点的距离为m,则这个数的绝对值为( )(A)-m (B)m (C)±m (D)2m3.绝地值相等的两个数在数轴上对应的两点距离为8,则这两个数为( )(A)+8或- 8 (B)+4或-4 (C)-4或+8 (D)-8或+44.给出下面说法:<1>互为相反数的两数的绝对值相等;<2>一个数的绝对值等于本身,这个数不是负数;<3>若|m|>m,则m<0;<4>若|a|>|b|,则a>b,其中正确的有( )(A)<1><2><3>; (B)<1><2<4>; (C)<1><3><4>; (D)<2><3><4>5.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数6.已知|a|>a,|b|>b,且|a|>|b|,则( )(A)a>b (B)a<b (C)不能确定 D.a=b7.-10,3,π,-3.3的绝对值的大小关系是( )(A) 10>3>|π|>|-3.3|; (B)10>3>|-3.3|>|π|;(C) |π|>10>3>|-3.3|; (D)3>|π|>|-3.3|>108.若|a|>-a,则( )(A)a>0 (B)a<0 (C)a<-1 (D)1<a9、a的相反数是( ) (A)-a (B)11 (C)a (D)a-110、一个数的相反数小于原数,这个数是( )(A)正数 (B)负数 (C)零 (D)正分数11、一个数在数轴上所对应的点向右移到5个单位长度后,得到它的相反数的对应点,则这个数是( )(A)-2 (B)2 (C) 55 (D)- 22二、填空题:(1)在数轴上表示一个数的点,它离开原点的距离就是这个数的____________;(2)绝对值为同一个正数的有理数有_______________个;(3)一个数比它的绝对值小10,这个数是________________;(4)一个数的相反数的绝对值与这个数的绝对值的相反数的关系是______________;(5)一个数的绝对值与这个数的倒数互为相反数,则这个数是________________;(6)若a<0,b<0,且|a|>|b|,则a与b的大小关系是______________;(7)绝对值不大一3的整数是______________,其和为_____________;(8)在有理数中,绝对值最小的数是_____;在负整数中,绝对值最小的数是_____;(9)设|x|<3,且x>1,若x为整数,则x=_________________;(10)一个数的倒数是它本身,这个数是________;一个数的相反数是它本身,这个数是__________;(11)-5的相反数是______,-3的倒数的相反数是____________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2—2.4数轴,相反数,绝对值练习题1
一、选择题
1、下列说法不正确的是()
(1)有理数的绝对值一定是正数(2)数轴上的两个有理数,绝对值大的离原点远
(3)一个有理数的绝对值一定不是负数(4)两个互为相反数的绝对值相等
2、已知a为有理数,下列式子一定正确的是()
A.︱a︱=a B.︱a︱≥a C.︱a︱=-a D.2a>0
3、绝对值最小的数是()
A.1B.-1C.0D.没有
4、设a是最小的自然数,b是最大的负整数。
c是绝对值最小的有理数,则a b c
++的值为()。
A -1 B 0 C 1 D 2
5、下列说法正确的是()。
A 自然数就是非负整数
B 一个数不是正数,就是负数
C 整数就是自然数
D 正数和负数统称有理数
6、
357
,,
468
---的大小顺序是()。
A
753
864
-<-<- B
735
846
-<-<-,C
573
684
-<-<- D
357
468
-<-<-
7、M点在数轴上表示4-,N点离M的距离是3,那么N点表示()。
A 1-
B 7-
C 1-或7-
D 1-或1
8、绝对值小于3.99的整数有()个。
A 5
B 6
C 7
D 8
9、在-5,-
10
1,-3.5,-0.01,-2,-212各数中,最大的数是()
A -12
B -
10
1 C -0.01 D -5
10、a,b是有理数,它们在数轴上的对应点的位置如下图所示:
把a,-a,b,-b按照从小到大的顺序排列( )
A -b<-a<a<b
B -a<-b<a<b
C -b<a<-a<b
D -b<b<-a<a
二、填空题
1、1|()|2---= ,[(2)]---= .
2、−3 −3.01 −︱−7︱ −(−7)
3、若 a a =,则a 0, 5−|a −b|的最大值是 .
4、相反数是它本身的数是 ;绝对值是它本身的数是 。
5、绝对值大于1而小于4的整数有 个;
6、若a+b=0,则a,b 的关系是
7、x =y ,那么x 和y 的关系
8、已知有理数a ,b 在数轴上的位置如图所示,那么a ,b ,-a ,-b 的大小关系是 。
(用“>”连结)
9、如果3a >,则3a -=__________,3a -=___________.
10、若1x
x
=,则x 是_______(选填“正”或“负”)数; 若
1x
x
=-,则x 是_______(选填“正”或“负”)数; 三解答题
1、检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:
(1)最接近标准质量的是几号水泥?
(2)质量最多的水泥比质量最少的水泥多多少千克?
O A B B O A B O A B
2、(阅读理解题)阅读下面材料:
点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为︱AB ︱. 当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1 ︱AB ︱=︱OB ︱=︱b ︱=︱a -b ︱;
图1 图2 图3 图4 当AB 两点都不在原点时,
①如图2,点A 、B 都在原点的右边,
︱AB ︱=︱OB ︱-︱OA ︱=︱b ︱-︱a ︱=b -a =︱a -b ︱; ②如图3,点A 、B 都在原点的左边,
︱AB ︱=︱OB ︱-︱OA ︱= ︱b ︱-︱a ︱=-b -(-a )= ︱a -b ︱; ③如图4,点A 、B 在原点的两边,
︱AB ︱=︱OA ︱+︱OB ︱=︱a ︱+︱b ︱=a +(-b )= ︱a -b ︱. 综上,数轴上A 、B 两点之间的距离︱AB ︱= ︱a -b ︱. (2)回答下列问题:
①数轴上表示2和5的两点之间的距离是__________,数轴上表示-2和-5的两点之间的距离是__________,数轴上表示1和-3的两点之间的距离是__________;
②数轴上表示x 和-1的两点A 和B 之间的距离是__________,如︱AB ︱=2,那么x 为__________;
③当代数式︱x +1︱+︱x -2︱取最小值时,相应的x 的取值范围是__________.。