高一数学必修1试题附答案详解
人教版本高中数学必修课后习题包括答案详解.doc

SS 习< JR 5 M)1. iftffι⅛⅛V-⅛IWfh.第象隈如牢亠定建俛Λh直角不属F任何一个映JHfcIM •个象Itt的角不-淀忌怕X Hιff∣l∆^--Stffiffi.第二線限角不一定足钝Hl・说吗认俱-%ft∣,∖-I B Lfll,∖-Hlh- Λi -⅛IW⅛M的IOR联系.2- Ξ∙三■ &本題的Ii的込将塢边枷n的购的应川列Ji他刪删:何Jm:・MlIlX疥取叭把救科苗中的除数≡换底邸伞禺》|的天栽7. m(“同Jrf这甲余数丛和来确足7 A ⅛jβfc7k M 也IlSMMM→<这样的球习不«.RrIaII^・3. Cn弟一跟限仰:(2)t∏W^PHIħ: (3) ^ZWl(II⑷斜三钦限和・说IW礎作出辭宣枷∙n*ι⅛IifeflWi・国略.4. ⑴ M r iβl2∖⅛Wfth <2> 35¾*.鄭一魏IIIflh ⑶ 24δβ30r,第兰象Ruft・说明f½Λfft定范阳内h:l! ∙jfiτ⅛的角终ifiHl同的角・幷判应Ii弟儿规Rwl・5. (!)程IAl 如犷I 密+*•翱b∙上E 幼■ 一496*42'・—13⅛U2,. 223βlβ*s(2> {β∖β22fΓ"∙36n∙∖ ^feZh — 585o∙ -225°. 135二说閔川Ifcfr屋示法和符υfh边郴同的角的集合•并任納定范IH内找出X jflT⅛的仰终边柳同的用・嫁习£第♦页)1. (I) P (Z> ^t l ⑶攀≡的l⅛算.2. (I) I5*∣(2> 2IOβ* (3∙> 54B.说硼能Ia行锻HrqI磴的换口・:L(I) Ia I o二片托■ ⅛∈Z>; ⑵ W ∣α≡∣+*π. ⅛6Z∣.说明HIMttM边分别轴和N M上的励的第合.4. (1) Co⅛ O. 75* ∙<XJΛ V. 75: (Z) Ian L2*<mn∣ 1. 2.说明体会I吋数備仁河小位的角讨应的弓角播数値町能不同■并遷一步认讥购种TM业摘・注慰血:用卄傅器求加两敦{∣⅛之谕・嬰锐对汁©辟Ml的模式劇血他如求gw盯之派變将WIKu设ft‰≡}(MM>∣求Mw乔之ιi⅛・葵加fifi?式Ift氏为RAlXJl加和.XK n∖.说明適过分圳延川倫戍制和弧度剖F的狐氏公虫,冷合引人蠢廈制的必賞性•6. «1Efi 为1.2,说明进•步认肌弧度歡的您对他公朮I l (第爭页》AfaL (I) !K∖第二象Bi; (2) MΓ.第-ftm∣(3) 236∙SO∖第三桑Rh ⑷:««)'.第PM象IK・说明隐4:给定曲H内找出埒指定的#1终边栢同(flffh Jf判定链第儿象限你2. .(J I β A ∙ IKo∖*€ZL说明梅终站相同的Wl川IfcAA杀・:k ( I) {fl ∖ Ii tkΓ f i∙ ∙ 360∖ Fe■迅}・一30OiS 60β∣⑵lβlβ -75β+At 3βO∖⅛∈Zh -75*. 285*?仁和lfl∖ (i- -H2i e3(y+* * ⅛60β. Λ6Zh —IQ∙i'3θ∖ 255WI⑷ A∣" 475* M ∙3W∖ A∈2}i —215% IlS e I(5)少l ∕h !Xf+Ig6叭⅛∈Zh - 270\ 90'<β> l∕∣∣∕J -27tf÷* *3«0\ AeZh — 90*, 2704:⑺IWf H • 360% ⅛6Z}∙ - W. 180%⑻∖fi I β^ l♦W∙ ⅛∈Z∏ — 360\ 0\说明川集含&用医湘苻号i⅛srwtk与新定角坯边Hl的的角的処令.E⅛IHHffi∕ħ l≡⅛的角舞边的角・说朗川ITl度制郝SflCSn岀备歓限角的集S乩<l> CIft明IM 为(r< α<90*.所以Oφ< X l⅛0∖⑵J).说期冈为L 36O v<α<9(Γ4 ⅛ ∙ 364)∖>€去所以i ∙ l^<∣<W∙ M •卅汽底去和为侖暫时・专址?β XftKfft5∙v为偶数时.牙是第Tk醍角.G∙ MI"滕⅛MW⅛⅜于半枪辰的弧所对的側心轴为!孤度•而等『半栓枪的弦所坤的阪比爭#K.说朗 r解囊度的權念.C3> ?殊 (4) 8».说明值逬仃便勺弧股的抉算・& (1) - 2HΓχ <2> -GoO e l (3) 8O i 21*ι(4) 38. 2*.说朗⅛i8irΛltt 4i ∣∣r 的换讯9* 61:说删 4W5L⅛≡川如度制卜的如K 公式求出圈心角的弧度敷•禅将贏度换算为(ħ∏ΓWΛl⅛⅛≡∣llJfllftMF 的 *启%、比 10. 11 oil.说明HIU ⅛tt ∣ttWtn ⅛*∣t.再运用《1度SM 下的46氏公式•也mtι搖远川介度划卜的假氏公丸BfiLL <1) (M)<2)⅛⅛if 的懈心"I 为伉山可i⅛MOao ・“8(2 黄一&)•Wα=0. 764« ^Mo*.说明 本18楚一个故学实我活动.BSIW -««的⅛l 子”井Bt 有締出标假Il 的Jii 匕学生先生体軼.然斤何运川所学知U!5⅛现.大翁数囁子之所以見與为"本都構足J ∏.<i ∣H(⅛金分割 比)h⅛ιrr 理. Λ.<1>射针转Γ-t20∖等于一号瓠度I 分针转了一 I 440\筹于一知瓠此 <2> Kftitr rain i>H 就峙旳针疵合,"为常针肅合的Stflt. 闵为分 f FMi 转的如建度为6O =⅛ft Z∕min),Wl ⅛转的帥速度为⅛>=≡<rMIzminb所M I(⅛-3⅛)^2ΛN即■ 720 f = -W-*- >1 e HAmWndCilM≡作也歯Ifcfg 器®的图勲卿下買图)或表权 从∙ι<≡≡rwi⅛⅛Λrtmt 耳分件 毎次St 合所Ui 的IlJ泗.5«TCI)百:*0∙ 6)8.⅛ —・一⅛IW为1唯1敞转一人两;U的时IH为24X60 1 44O<min).所以豁r≤l 110.J JΔJi^22.故IMflAj分fl 一天内只会肛介眈次.说明通过时FIr分计的症转间題进一步胞认识弧度的槪念.并将问題引向深人.IHFIqttm想进行分折.化研丸时针勺分针一犬的顷合次数时•町利川讣靜器或i∣tT机・从楼股的闍形.我格中的数粧,躺IR的Wf折成城阳彖等角度.4<<n∣JlJEWWMife・3∙ ae>Γ< ^jγ. I5l.2π<m说啊通过胃轮的我动何IB进"步地认机银度的1«念W<K^Λ. '1KW轮转动-MlRr.小坷轮转动的务昱舄× 36O e≡ 864 "* =r a<l.III F大W½ft9转建为3 r«・所以小t⅛轮周忙一点毎I滾转过的捉艮是gx3×2<XIO.5=15l.≡lEUmL姊习(Ml5 35>说明匚知卅。
高中数学必修1同步优化训练第三章 数列1 B卷(附答案)

第三章 数列(一)●知识网络●范题精讲一、等差数列的概念、通项公式【例1】 等差数列{a n }的前n 项和记为S n ..已知a 10=30,a 20=50. (1)求通项a n ;(2)若S n =242,求n .分析:在等差数列中,有a 1、a n 、n 、d 、S n 五个基本量,若已知其中的任何三个,总可以求出另外两个的值.解:(1)由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎨⎧=+=+.5019,30911d a d a解得a 1=12,d =2.所以a n =2n +10. (2)由S n =na 1+2)1(-n n d ,S n =242,得方程12n +2)1(-n n ×2=242. 解得n =11或n =-22(舍去).评注:本题是一个最基础的数列题,内容上只涉及等差数列的通项和前n 项和.它主要考查等差数列的通项公式、求和公式以及构造方程的数学方法,考查运算能力.知识点较为单一,但高考中仍不乏这类考查目的明确、适应所有考生的中低档题.二、等差数列性质的应用【例2】 已知等差数列{a n }为等差数列,p ≠q ,a p =q ,a q =p ,求a p+q .分析:可先转化为a 1和d 去探索,也可利用等差数列性质求解,还可利用一次函数图象来解.解法一:⎪⎩⎪⎨⎧=-+==-+=.)1(,)1(11p d q a a q d p a a q p相减得(p -q )d =q -p ,∵p ≠q ,∴d =-1.代入①,得a 1=p +q -1.故a p +q =a 1+(p +q -1)d =0.解法二:a p =a q +(p -q )d ,∴q =p +(p -q )d ,以下同解法一. 解法三:不妨设p <q ,由于a n 为关于n 的一次函数图象上均匀排列的一群孤立点.故(p ,a p )、(q ,a q )、(p +q ,a p +q )三点在同一直线上,如图.①②)由△ABE ∽△BCF 得(设a p +q =m ).)(qq p mp p q p q -+-=-- ∴1=pmp -.设m =0,得a p +q =0. 三、等差数列前n 项和公式的应用【例3】 设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围; (2)指出S 1,S 2,…,S 12.中哪一个值最大,并说明理由. (1)解:依题意有⎪⎪⎩⎪⎪⎨⎧<⨯+=>⨯+=021*******111212113112d a S d a S⎩⎨⎧<+>+.06,011211d a d a 由a 3=12,得a 1=12-2d .又⎩⎨⎧<+>+030724d d -724<d <-3. (2)解法一:由d <0,可知a 1>a 2>a 3>…>a 12>a 13.因此,若在1≤n ≤12中,存在自然数n ,使得a n >0,a n +1<0,则S n 就是S 1,S 2,…,S 12中的最大值.由于S 12.=6(a 6+a 7)>0,S 13=13a 7<0,即a 6+a 7>0,a 7<0,由此得a 6>-a 7>0. 故在S 1,S 2,…,S 12中S 6的值最大.解法二:S n =na 1+2)1(-n n d =n (12-2d )+21n (n -1)d =2d n 2-(25d-12)n=2d [n -21(5-d 24)]2-2d [21(5-d 24)]2.∵d <0,∴[n -21(5-d24)]2最小时,S n 最大.当-724<d <-3时,6<21(5-d24)<6.5. ∴n =6时,[n -21(5-d24)]2最小.∴S 6最大.解法三:由d <0,可知a 1>a 2>a 3>…>a 12>a 13.因此,若在1≤n ≤12中,存在自然数n ,使得a n >0,a n +1<0,则S n 就是S 1,S 2,…,S 12中的最大值.由已知⎩⎨⎧<>001312S S ⎪⎪⎩⎪⎪⎨⎧<⨯+>⨯+021*******11121211d a d a ⎪⎩⎪⎨⎧<+>->+0602511d a d d a ⎩⎨⎧<>.0,076a a 故在S 1,S 2,…,S 12中S 6的值最大.评注:第(2)题用了三种方法来解,解法一与解法三类似,只是确定a 6>0,a 7<0的方法不同,解法一技巧性强,解法二是把问题转化成了有限制条件的一元二次函数最值问题.四、数列的应用【例4】 某鱼塘养鱼,由于改进了饲养技术,预计第一年产量的增长率为200%,以后每年的增长率是前一年增长率的一半,设此鱼塘里原来的鱼储存量为a .(1)写出改进饲养技术后的第一年、第二年、第三年、第四年的产量,并写出第n 年与第(n -1)年(n ∈N 且n ≥2)的产量之间的关系式(不要求证明).(2)由于环境污染及池塘老化等因素,致使每年将损失年产量的10%,这样以后每年的产量是否始终逐年提高?若是,请予以证明;若不是,请说明从第几年起产量将不如上一年.(lg2=0.3010,lg3=0.4771)解:(1)不妨设改进技术后第n 年的产量为a n ,则a 1=a (1+200%)=3a ,a 2=a 1(1+21×200%)=6a , a 3=a 2(1+221×200%)=9a ,a 4=a 3(1+321×200%)=445a .依此,得a n =a n -1(1+121-n ×200%)=a n -1[1+(21)n -2](n ∈N *,n ≥2).(2)设遭损失后第n 年的产量为b n ,则 b 1=a 1(1-10%),b 2=b 1(1+21×200%)(1-10%),…, b n =b n -1[1+(21)n -2](1-10%). 令b n <b n -1,则0.9[1+(21)n -2]<12n -2>9,∴n -2>2lg 9lg ,即n >5.17.由n ∈N *知n ≥6.故从第6年起,产量将不如上一年.评注:这是一道数列型应用题,审题时应抓住从第二年开始,"以后每年的增长率是前一年增长率的一半"这个关键,把它抽象为数列的通项,容易求出递推关系式a n =a n -1[1+ (21)n -2](n ∈N *且n ≥2),即建成了递推模型.第(2)问归结为一个指数不等式问题,利用取对数法很容易求得这个数学问题的解.●试题详解高中同步测控优化训练(十一) 第三章 数列(一)(A 卷)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分) 1.在100至500之间的正整数能被11整除的个数为 A.34 B.35 C.36 D.37解析:观察出100至500之间能被11整除的数为110,121,132,…,它们构成一个等差数列,公差为11,a n =110+(n -1)·11=11n +99,由a n ≤500,解得n ≤36.4,n ∈N *,∴n ≤36.答案:C2.在数列{a n }中,a 1=1,a n +1=a n 2-1(n ≥1),则a 1+a 2+a 3+a 4+a 5等于 A.-1 B.1 C.0 D.2 解析:由已知:a n+1=a n 2-1=(a n +1)(a n -1), ∴a 2=0,a 3=-1,a 4=0,a 5=-1. 答案:A3.若数列{a n }的前n 项和S n =n 2-2n +3,则此数列的前3项依次为 A.-1,1,3 B.2,1,3 C.6,1,3 D.2,3,6 解析:当n =1时,a 1=S 1=12-2×1+3=2; 当n =2时,由S 2=a 1+a 2=22-2×2+3,得a 2=1; 当n =3时,由S 3=a 1+a 2+a 3=32-2×3+3,得a 3=3. 答案:B4.设函数f (x )满足f (n +1)=2)(2nn f +(n ∈N *)且f (1)=2,则f (20)为 A.95B.97C.105D.192解析:f (n +1)-f (n )=2n⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⨯=-⨯=-⨯=-.1921)19()20(,221)2()3(,121)1()2(f f f f f f 各式相加得f (20)-f (1)=21(1+2+…+19) f (20)=95+f (1)=97.5.已知等差数列{a n }中公差d ≠0.若n ≥2,n ∈N *,则 A.a 1a n +1<a 2a n B.a 1+a n +1>a 2+a n C.a 1+a n +1<a 2+a nD.a 1a n +1>a 2a n 解析:a 1a n +1-a 2a n =a 1(a 1+nd )-(a 1+d )[a 1+(n -1)d ]=-(n -1)d 2<0,∴a 1a n +1<a 2a n . 答案:A6.等差数列{a n }中,a 4+a 7+a 10=57,a 4+a 5+…+a 14=275,a k =61,则k 等于 A.18 B.19 C.20 D.21解析:∵3a 7=a 4+a 7+a 10=57,∴a 7=19.由a 4+a 5+…+a 14=275,可得a 9=25.∴公差d =3. ∵a k =a 9+(k -9)·d ,∴61=25+(k -9)×3,解得k=21.答案:D7.已知等差数列{a n }的公差为正数,且a 3·a 7=-12,a 4+a 6=-4,则S 20为 A.180 B.-180 C.90 D.-90解析:由等差数列性质,a 4+a 6=a 3+a 7=-4与a 3·a 7=-12联立,即a 3、a 7是方程x 2+4x -12=0的两根.又公差d >0,∴a 7>a 3a 7=2,a 3=-6,从而得a 1=-10,d =2,S 20=180.答案:A8.设S n 是等差数列前n 项的和,若9535=a a ,则59S S等于 A.1 B.-1 C.2D.21解法一:∵,9535=a a ,∴d a d a 2411++=95. ∴195592459105369111159=⨯=++⨯=++=d a d a d a d a S S . 解法二:∵9535=a a , ∴.1955922595922)(9355191519159=⨯=⨯=++⨯=+=a a a a a a a a S S 答案:A9.已知{a n }是递增数列,且对任意n ∈N *都有a n =n 2+λn 恒成立,则实数λ的取值范围是A.(-27,+∞) B.(0,+∞)C.(-2,+∞)D.(-3,+∞)解析:由{a n }为递增数列得a n +1-a n =2n +1+λ>0恒成立,即λ>-2n -1在n ≥1时恒成立,只需λ>(-2n -1)max =-3,故选D.10.在等差数列{a n }中,若S 9=18,S n =240,a n -4=30,则n 的值为 A.14 B.15 C.16 D.17 解析:S 9=2)(991a a +=18a 1+a 9=42(a 1+4d )=4.∴a 1+4d =2.又a n =a n -4+4d ,∴S n =2)(1n a a n +=16n =240. ∴n =15. 答案:B第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分)11.设数列{a n }的前n 项和为S n ,S n =2)13(1-n a (n ∈N *),且a 4=54,则a 1的值是________.解析:∵a 4=S 4-S 3,∴2)13(2)13(3141---a a =54.∴a 1=2. 答案:212.若数列{a n }的前n 项和S n =lg [101(1+n )],则a 10+a 11+a 12+…+a 99=_________. 解析:a 10+a 11+…+a 99=S 99-S 9=lg(101·100)-lg(101·10)=1-0=1.答案:113.在-9和3之间插入n 个数,使这n +2个数组成和为-21的等差数列,则n =_______. 解析:-21=2)39)(2(+-+n ,∴n =5.答案:514.等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项的和等于________. 解析:由a 1+a 2+a 3=-24,可得3a 2=-24;由a 18+a 19+a 20=78,可得3a 19=78,即a 2=-8,a 19=26. ∴S 20=2)(20201a a +=10(a 2+a 19)=10(-8+26)=180.答案:180三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分8分)已知数列{a n }满足下列条件,写出它的前5项,并归纳出数列的一个通项公式.(1)a 1=0,a n +1=a n +(2n -1);(2)a 1=1,a n +1=22+n na a .解:(1)∵a 1=0,a n +1=a n +(2n -1),∴a 2=a 1+(2×1-1)=0+1=1,a 3=a 2+(2×2-1)=4,a 4=a 3+(2×3-1)=9,a 5=a 4+(2×4-1)=16. ∴它的前5项依次是0,1,4,9,16.又可写成(1-1)2,(2-1)2,(3-1)2,(4-1)2,(5-1)2. 故该数列的一个通项公式是a n =(n -1)2. (2)∵a 1=1,a n +1=nna a +22,∴a 2=2122,322222311=+==+a a a a a ,a 4=.3122,522244533=+==+a a a a a∴它的前5项依次是1,31,52,21,32. 又可写成.152,142,132,122,112+++++ 故它的一个通项公式为a n =12+n .16.(本小题满分10分)已知等差数列{a n }中,a 1+a 4+a 7=15,a 2a 4a 6=45,求其通项a n . 解:∵a 1+a 7=2a 4,且a 1+a 4+a 7=15,∴a 4=5. 又∵a 2a 4a 6=45,∴a 2a 6=9.设其公差为d ,又a 4=5,∴a 2=a 4-2d ,a 6=a 4+2d .代入a 2a 6=9可得 (5-2d )(5+2d )=925-4d 2=9d =±2.当d =2时,a n =a 4+(n -4)d =5+(n -4)×2=2n -3(n ∈N *);当d =-2时,a n =a 4+(n -4)d =5+(n -4)×(-2)=13-2n (n ∈N *). 17.(本小题满分12分)数列的通项公式为a n =n 2-5n +4,问: (1)数列中有多少项是负数?(2)n 为何值时,a n 有最小值?并求出最小值. 解:(1)由a n 为负数,得n 2-5n +4<0,解得1<n <4.∵n ∈N *,故n =2或3,即数列有2项为负数,分别是第2项和第3项. (2)∵a n =n 2-5n +4=(n -25)2-49, ∴对称轴为n =25=2.5. 又∵n ∈N *,故当n =2或n =3时,a n 有最小值,最小值为22-5×2+4=-2.18.(本小题满分12分)有30根水泥电线杆,要运往1000米远的地方开始安装,在1000米处放一根,以后每隔50米放一根,一直向前放.一辆汽车一次最多运三根,如果用一辆车完成这项任务,从开始运第一车算起,运完货后回到起点,这辆汽车的行程是多少千米?解:设在运完第3(n -1)至3n (其中1≤n ≤10且n ∈N *)根且返回起点时,这辆汽车的行程为a n 米,则根据题意得a 1=(1000+50+50)×2=2×1100,a 2=(1100+50+50+50)×2=2(1100+150),a 3=(1100+150+50+50+50)×2=2(1100+300),….∴{a n }是以2×1100为首项,150为公差的等差数列.从而行程为s 10=(1100×10+21×10×9×150)×2=35500.答:这辆汽车的行程是35500千米.19.(本小题满分12分)设无穷等差数列{a n }的前n 项和为S n .(1)若首项a 1=23,公差d =1,求满足S k 2=(S k )2的正整数k ; (2)求所有的无穷等差数列{a n },使得对一切正整数k 都有S k 2=(S k )2成立.解:(1)当a 1=23,d =1时, S n =na 1+.212)1(232)1(2n n n n n d n n +=-+=- 由S k 2=(S k )2,得21k 4+k 2=(21k 2+k )2,即k 3(41k -1)=0.又∵k ≠0,∴k =4.(2)设等差数列{a n }的公差为d ,则在S k 2=(S k )2中,分别取k =1,2,得⎪⎩⎪⎨⎧==,)(,)(224211S S S S 即⎪⎩⎪⎨⎧⨯+=⨯+=.)2122(2344,211211d a d a a a由①得a 1=0或a 1=1.当a 1=0时,代入②得d =0或d =6.若a 1=0,d =0,则a n =0,S n =0,从而S k 2=(S k )2成立;若a 1=0,d =6,则a n =6(n -1),S n =3n 2-3n .此时S k 2=3k 4-3k 2,(Sk )2=(3k 2-3k )2,显然S k 2≠(S k )2. 当a 1=1时,代入②式得d =0或d =2.若a 1=1,d =0时,a n =1,S n =n ,从而S k 2=(S k )2成立;若a 1=1,d =2时,a n =2n -1,S n =1+3+…+(2n -1)=n 2,从而S k 2=(S k )2成立. 综上,共有3个满足条件的无穷等差数列,它们是a n =0,a n =1,a n =2n -1.①②。
【湘教版】高中数学必修一期末试题附答案(2)

一、选择题1.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞B .(],2-∞-C .(),2-∞-D .()2,+∞2.函数1,(0)()0,(0)x x f x x x ⎧+≠⎪=⎨⎪=⎩,关于x 的方程2()()0f x bf x c ++=有5个不等的实数根的充分必要条件是( ) A .2b <-且0c >B .2b >-且0c <C .2b <-且0cD .2b ≥-且0c3.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图象上;②P 、Q 关于原点对称,则称点对[]P Q 、是函数()y f x =的一对“友好点对”(点对[]P Q 、与[]Q P 、看作同一对“友好点对”).已知函数22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,则此函数的“友好点对”有( ) A .4对 B .3对 C .2对 D .1对4.若关于x 的不等式34log 2xa x -≤在10,2x ⎛⎤∈ ⎥⎝⎦恒成立,则实数a 的取值范围是( ) A .1,14⎡⎫⎪⎢⎣⎭B .10,4⎛⎤ ⎥⎝⎦C .3,14⎡⎫⎪⎢⎣⎭D .30,4⎛⎤ ⎥⎝⎦5.已知函数()()3,<1log ,1aa x a x f x x x ⎧--=⎨≥⎩的值域..是R ,那么实数a 的取值范围是( ) A .31,2⎛⎤ ⎥⎝⎦B .()1,+∞C .()()0,11,3D .3,32⎡⎫⎪⎢⎣⎭6.已知函数()sin 2f x x x =-,且()0.3231ln ,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是 A .c a b >>B .a c b >>C .a b c >>D .b a c >>7.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞.⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞. A .4B .3C .2D .18.已知函数()f x 的定义域为R ,对任意的 12,x x <都有1212()(),f x f x x x -<-且(3)4,f =则(21)2f x x ->的解集为( )A .(2,)+∞B .(1,)+∞C .(0,)+∞D .(1,)-+∞9.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .403810.下图中的阴影部分,可用集合符号表示为( )A .()()U U A B ⋂ B .()()U UA BC .()UA BD .()UA B ⋂11.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<12.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则A B 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.若函数244y ax a x =+-存在零点,则实数a 的取值范围是______. 14.2019年1月1日起新的个人所得税法开始实施,依据《中华人民共和国个人所得税法》可知纳税人实际取得工资、薪金(扣除专项、专项附加及依法确定的其他)所得不超过5000元(俗称“起征点”)的部分不征税,超出5000元部分为全月纳税所得额.新的税率表如表:2019年1月1日后个人所得税税率表 全月应纳税所得额 税率(%) 不超过3000元的部分 3 超过3000元至12000元的部分10个人所得税专项附加扣除是指个人所得税法规定的子女教育、继续教育、大病医疗、住房贷款利息、住房租金和赡养老人等六项专项附加扣除.其中赡养老人一项指纳税人赡养60岁(含)以上父母及其他法定赡养人的赡养支出,可按照以下标准扣除:纳税人为独生子女的,按照每月2000元的标准定额扣除;纳税人为非独生子女的,由其与兄弟姐妹分摊每月2000元的扣除额度,每人分摊的额度不能超过每月1000元.某纳税人只有一个姐姐,且两人仅符合规定中的赡养老人的条件,如果他在2020年5月份应缴纳个人所得税款为180元,那么他当月的工资、薪金税后所得是_____元. 15.已知函数()f x 的定义域是[1,1]-,则函数(21)()ln(1)f xg x x -=-的定义域是________.16.已知12512.51000x y ==,则11x y=_____.17.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________.18.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.19.若集合2{|(2)20,A x x a x a =-++-<x ∈Z }中有且只有一个元素,则正实数a 的取值范围是________20.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.三、解答题21.某化工厂一种溶液的成品,生产过程的最后工序是过滤溶液中的杂质,过滤初期溶液含杂质为2%,每经过一次过滤均可使溶液杂质含量减少一半,记过滤次数为*()x x N ∈时溶液杂质含量为y(1)分别求出1次过滤、2次过滤以后的溶液杂质含量1y ,2y 的值. (2)写出y 与x 的函数关系式(要求写出定义域)(3)按市场要求,出厂成品杂质含量不能超过0.02%,问至少经过几次过滤才能使产品达到市场要求?(参考数据:lg2=0.301)22.某市出租汽车的收费标准如下:在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费.而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用,约为2.3元;二是燃油费,约为1.6元/km ;三是折旧费,它与路程的平方近似成正比,且当路程为20km 时,折旧费为0.1元.现设一次载客的路程为x km. (1)试将出租汽车一次载客的收费F 与成本C 分别表示为x 的函数;(2)若一次载客的路程不少于2km ,则当x 取何值时,该市出租汽车一次载客每千米的收益y 取得最大值?(每千米收益计算公式为)F Cy x-=23.已知函数()2()log log 2(0,1)a a f x x x a a =-->≠. (1)当2a =时,求(2)f ; (2)求解关于x 的不等式()0f x >;(3)若[2,4],()4x f x ∀∈≥恒成立,求实数a 的取值范围. 24.函数()2lg 34y x x=-+的定义域为M ,x M ∈,求()2234x x f x +=-⨯的最值.25.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.26.已知全集U =R ,集合{}2450A x x x =--≤,{}2124x B x -=≤≤.(1)求()UAB ;(2)若集合{}4,0C x a x a a =≤≤>,且满足C A A =,C B B =,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】由2||10x a x ++=可得22111||||x x a x x x x----===--, 令()1g x x x=--,若关于x 的方程2||10x a x ++=有4个不同的解, 则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=, ()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减, 所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-, 故选:C 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.2.C解析:C 【分析】首先根据题中所给的方程的根进行分析,得到五个根的情况,从而判断出0c ,之后利用()f x b =-有四个根,结合函数图象求得结果. 【详解】当0x =时()0f x =,当0x =为()()20f x bf x c ++=的一个根时可得0c.所以()()20fx bf x c ++=即()()20f x bf x +=有4个不同的根, ()0f x ≠,()f x b ∴=-有4个根.0x ≠时()11122f x x x x x x x=+=+≥=,图象如图所示:由图可知22b b ->⇒<-. 综上可得2,0b c <-=. 故选:C. 【点睛】该题考查的是有关根据函数零点的个数判断参数的取值范围的问题,充要条件的判断,在解题的过程中,注意数形结合思想的应用,属于中档题目.3.C解析:C 【分析】由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,结合22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,转化为此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数,从而作图解答 【详解】解:由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,因为22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,所以此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数, 作2x y -=-与22y x x =-的图像如图所示,两函数图像有两个交点,所以此函数的“友好点对”有2对故选:C【点睛】此题考查学生对新定义的理解能力及作图能力,属于中档题4.A解析:A【分析】转化为当10,2 x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log22aa<<⎧⎪⎨≥⎪⎩,解得114a≤<.故选:A【点睛】关键点点睛:利用函数342xy =-的图象与函数log a y x =的图象求解是解题关键. 5.A解析:A 【分析】当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,从而可得答案. 【详解】由题意,()f x 的值域为R ,当0<a <1时,当1≥x 时,log 0a y x =≤,所以当1x <时,()3y a x a =--的值域必须要包含()0,+∞,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 所以不满足()f x 的值域为R .当1a >时,当1≥x 时,[)log 0a y x =∈+∞,, 所以当1x <时,()3y a x a =--的值域必须要包含()0-∞,, 若3a =时,当1x <时,3y a =-=-,不满足()f x 的值域为R .若3a >时,当1x <时,()3y a x a =--单调递减,()332y a x a a =-->- 所以不满足()f x 的值域为R .若13a <<时,当1x <时,()3y a x a =--单调递增,()332y a x a a =--<- 要使得()f x 的值域为R ,则320a -≥,即32a ≤ 所以满足条件的a 的取值范围是:312a <≤, 故选:A . 【点睛】关键点睛:本题考查根据函数的值域求参数的范围,解答本题的关键是当0<a <1时,当1≥x 时,log 0a y x =≤,则当1x <时,()3y a x a =--的值域必须要包含()0,+∞,,当1a >时,当1≥x 时,[)log 0a y x =∈+∞,,则当1x <时,()3y a x a =--的值域必须要包含()0-∞,,属于中档题. 6.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .7.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B. 【点睛】关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.8.A解析:A 【分析】由题可得[][]1122()()0f x x f x x ---<,可构造函数()()F x f x x =-是R 上的增函数,原不等式可转化为()()213F x F ->,再结合增函数的性质可求出答案. 【详解】 由题意,[][]121211221122()()()()()()0f x f x x x f x x f x x f x x f x x -<-⇔-<-⇔---<, 因为12,R x x ∈且12,x x <所以函数()()F x f x x =-是R 上的增函数.()3(3)31F f =-=,因为(21)2(21)(21)1f x x f x x ->⇔--->,所以()()213F x F ->, 则213x ->,解得2x >. 故选:A.【点睛】本题考查了函数的单调性的应用,构造函数()()F x f x x =-是解决本题的关键,属于中档题.9.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.10.C解析:C 【分析】图中阴影部分是集合A 与集合B 的补集的交集. 【详解】图中阴影部分是集合A 与集合B 的补集的交集,所以图中阴影部分,可以用()UA B 表示. 【点睛】本题考查了用韦恩图表示集合间的关系,考查了学生概念理解,数形结合的能力,属于基础题.11.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】将函数存在零点转化为与图像有交点作出图像观察图像得出实数的取值范围【详解】解:设则函数存在零点等价于与图像有交点如图:函数的图像恒过点当其和函数的图像相切时有解得由图像可知所以所以与的图像有解析:30,⎡⎤⎢⎥⎣⎦【分析】将函数244y ax a x =+--存在零点转化为()()4f x a x =+与2()4g x x =-图像有交点,作出图像,观察图像得出实数a 的取值范围. 【详解】解:设()()4f x a x =+,2()4g x x =-,则函数244y ax a x =+--存在零点等价于()()4f x a x =+与2()4g x x =-图像有交点, 如图:函数()()4f x a x =+的图像恒过点(4,0)-,当其和函数2()4g x x =-2=,解得3a =±,由图像可知,0a >,所以3a =, 所以()()4f x a x =+与()g x =03a ≤≤.故答案为:⎡⎢⎣⎦. 【点睛】本题考查函数零点问题的研究,关键是将零点问题转化为函数图像的交点问题,考查数形结合的思想,是中档题.14.9720【分析】按题意从最低纳税额开始计算最高纳税同时考虑到专项附加扣除后可得【详解】设他的工资是元工资是8000元时纳税为由于他有专项附加扣1000元因此他工资是9000元时纳税90元纳税后收入为解析:9720 【分析】按题意从最低纳税额开始计算最高纳税,同时考虑到专项附加扣除后可得. 【详解】设他的工资是x 元,工资是8000元时纳税为30003%90⨯=,由于他有专项附加扣1000元,因此他工资是9000元时,纳税90元,(9000)10%18090x -⨯=-,9900x =,纳税后收入为9900-180=9720(元). 故答案为:9720. 【点睛】本题考查函数的应用,解题时根据分段函数的意义分段计算纳税额即可得.解题关键是正确理解题意,弄懂工资收入与纳税额之间的关系.15.【分析】由函数的定义域是即结合函数的解析式列出不等式组即可求解【详解】由题意函数的定义域是即则函数有意义则满足解得解得即函数的定义域是故答案为:【点睛】本题主要考查了抽象函数定义域的求解以及对数函数 解析:(0,1)【分析】由函数()f x 的定义域是[1,1]-,即11x -≤≤,结合函数的解析式(21)()ln(1)f xg x x -=-,列出不等式组12111011x x x -≤-≤⎧⎪->⎨⎪-≠⎩,即可求解. 【详解】由题意,函数()f x 的定义域是[1,1]-,即11x -≤≤,则函数(21)()ln(1)f x g x x -=-有意义,则满足12111011x x x -≤-≤⎧⎪->⎨⎪-≠⎩ ,解得0110x x x ≤≤⎧⎪<⎨⎪≠⎩,解得01x <<,即函数(21)()ln(1)f xg x x -=-的定义域是(0,1).故答案为:(0,1). 【点睛】本题主要考查了抽象函数定义域的求解,以及对数函数的性质的应用,其中解答中熟记抽象函数的定义域的求解方法,以及对数函数的性质是解答的关键,着重考查推理与运算能力.16.【分析】根据指数与对数之间的关系求出利用对数的换底公式即可求得答案【详解】∵∴∴∴故答案为:【点睛】本题考查了指数与对数之间的关系掌握对数换底公式:是解本题的关键属于基础题解析:13【分析】根据指数与对数之间的关系,求出,x y ,利用对数的换底公式,即可求得答案. 【详解】∵12512.51000x y ==, ∴12512.51000100011log 1000,log 1000log 125log 12.5x y ====,∴1000100011log 125,log 12.5x y==, ∴1000111log 103x y -==. 故答案为:13. 【点睛】本题考查了指数与对数之间的关系.掌握对数换底公式:log log log c a c bb a=是解本题的关键.属于基础题.17.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)【解析】由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .18.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.19.【分析】由f (x )=x2﹣(a+2)x+2﹣a <0可得x2﹣2x+1<a (x+1)﹣1即直线在二次函数图像的上方的点只有一个整数1则满足题意结合图象即可求出【详解】f (x )=x2﹣(a+2)x+2﹣解析:12(,]23【分析】由f (x )=x 2﹣(a +2)x +2﹣a <0可得x 2﹣2x +1<a (x +1)﹣1,即直线在二次函数图像的上方的点只有一个整数1,则满足题意,结合图象即可求出. 【详解】f (x )=x 2﹣(a +2)x +2﹣a <0, 即x 2﹣2x +1<a (x +1)﹣1, 分别令y =x 2﹣2x +1,y=a(x+1)﹣1,易知过定点(﹣1,﹣1),分别画出函数的图象,如图所示:∵集合A={x∈Z|f(x)<0}中有且只有一个元素,即点(0,0)和点(2,1)在直线上或者其直线上方,点(1,0)在直线下方,结合图象可得∴10 {120 311aaa-≤--≤<,解得12<a23≤故答案为(12,23]【点睛】本题考查了二次函数的性质以及参数的取值范围,考查了转化思想和数形结合的思想,属于中档题20.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当解析:2a≥或1a=【分析】分集合A为φ或有且仅有一个元素两种情况进行求解,其中当集合A有且仅有一个元素时,注意对方程()21210a x x-++=的二次项系数分10a-=和10a-≠两种情况进行分别求解即可.【详解】由题意可得,集合A为φ或有且仅有一个元素,当Aφ=时,方程()21210a x x-++=无实数根,所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根,当10a -=,即1a =时,方程有一根12x =-符合题意;当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=,解得2a =;综上可知a 的取值范围为:2a ≥或1a =. 故答案为:2a ≥或1a = 【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.三、解答题21.(1)1%,0.5%;(2)211()50x y =⨯,*x ∈N ;(3)7. 【分析】 (1)1次过滤后,11502⨯,2次过滤后,1115022⨯⨯,化简即可; (2)由每经过一次过滤均可使溶液杂质含量减少一半得12%(1)2xy =⨯-,*x ∈N ;(3)结合lg20.301=,解不等式11()0020.2%5x ⨯,即可得到x 的范围. 【详解】(1)1次过滤后,溶液杂质含量1110.011%502y =⨯==, 2次过滤后,溶液杂质含量21110.0050.5%5022y =⨯⨯==; (2)因为每经过一次过滤均可使溶液杂质含量减少一半,所以过滤次数为*()x x N ∈时溶液杂质含量111222%(1)()50x x y =⨯-=⨯,*x ∈N .(3)设至少应过滤x 次才能是产品达到市场要求,则11()0020.2%5x ⨯, 即0121()10x ,所以121lg2100 6.7lg 2lgx=≈, 又*x ∈N ,所以7x ,即至少应过滤7次才能使产品达到市场要求. 【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.22.(1)7,032.40.2,3x F x x <≤⎧=⎨->⎩,212.3 1.6(0)4000C x x x =++>;(2)100km. 【分析】(1)根据在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费求得F ,设折旧费2z kx =,由路程为20km 时,折旧费为0.1元.代入求得k ,再根据运输成本包含固定费用,二是燃油费和折旧费求得C . (2)根据F Cy x-=,结合(1)求得y ,再根据分段函数的最值的求法求解. 【详解】(1)由题意得:7,037 2.4(3),3x F x x <≤⎧=⎨+->⎩,.即7,032.40.2,3x F x x <≤⎧=⎨->⎩.设折旧费2z kx =,将(20,0.1)代入, 得0.1400k =,解得14000k =. 所以212.3 1.6(0)4000C x x x =++>. (2)因为F Cy x-=, 所以 4.7 1.6,2340002.50.8,34000x x x y x x x ⎧--≤≤⎪⎪=⎨⎛⎫⎪-+> ⎪⎪⎝⎭⎩,当3x >时,由基本不等式,得0.80.75y ≤-=, 当且仅当100x =时取等号.当23x ≤≤时,由y 在[2,3]上单调递减, 当2x =时,得max 10.750.752000y =-<. 综上所述,该市出租汽车一次载客路程为100km 时,每千米的收益y 取得最大值. 【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.23.(1)2-;(2)当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭,当01a <<时;()210,,a a ⎛⎫+∞ ⎪⎝⎭(3)(3,11,22⎫⎤⎪⎢⎦⎪⎣⎭.【分析】(1)将2a =直接代入解析式计算即可.(2)将()2()log log 20a a f x x x =-->整理为()()log 2log 10a a x x -+>,解得log 1<-a x 或log 2a x >,再对a 讨论即可解不等式.(3)将问题转化为min ()4f x ≥,分别分1a >和01a <<讨论,求()f x 最小值,令其大于4,即可求解.【详解】(1)当2a =时,()()222log log 2f x x x =--()21122f ∴=--=-(2)由()0f x >得:()()()2log log 2log 2log 10a a a a x x x x --=-+>log 1a x ∴<-或log 2a x >当1a >时,解不等式可得:10x a <<或2x a > 当01a <<时,解不等式可得:1x a>或20x a <<综上所述:当1a >时,()0f x >的解集为()210,,a a ⎛⎫+∞ ⎪⎝⎭;当01a <<时,()0f x >的解集为()210,,aa ⎛⎫+∞ ⎪⎝⎭(3)由()4f x ≥得:()()()2log log 6log 3log 20a a a a x x x x --=-+≥log 2a x ∴≤-或log 3a x ≥①当1a >时,()max log log 4a a x =,()min log log 2a a x =2log 42loga a a -∴≤-=或3log 23log a a a ≥=,解得:1a <≤②当01a <<时,()max log log 2a a x =,()min log log 4a a x =2log 22log a a a -∴≤-=或3log 43log a a a ≥=,解得:12a ≤<综上所述:a 的取值范围为(31,2⎫⎤⎪⎦⎪⎣⎭【点睛】本题主要考查了复合函数的单调性、考查函数的最值和恒成立问题、考查分类讨论的思想,属于中档题. 24.最大值为43,无最小值. 【分析】首先根据对数真数大于0,解不等式2340x x -+>求出定义域M ,然后利用换元法,即可求出函数()f x 的最值. 【详解】由2340x x -+>,解得1x <或3x >,所以(,1)(3,)M =-∞+∞,22()234423(2)x x x x f x +=-⨯=⨯-⨯,令2x t =,由x M ∈得02t <<或8t >,则原函数可化为2224()433()33g t t t t =-=--+,其对称轴为23t =,所以当02t <<时,4()(4,]3g t ∈-;当8t >时,()(,160)g t ∈-∞-.所以当23t =,即223log x =时,()g t 取得最大值43,即函数()f x 取得最大值43,函数()g t 无最小值,故函数()f x 无最小值.【点睛】本题主要考查函数定义域的求法及换元法求函数最值.25.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥ 【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域;(2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果. 【详解】 (1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈,又()0f x ≥,所以()2]f x ∈.(2)()h x ==令t =2]∈,则22t =-,所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或,所以1m ≤-或1m ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤; 26.(1)()U {|12A x B x =-≤<或45}x <≤.(2)514a ≤≤. 【分析】(1)解不等式确定集合,A B ,然后由集合运算法则计算; (2)由C A A =,C B B =,得B C A ⊆⊆,利用包含关系可得参数满足的不等关系,从而得出结论.【详解】(1){}2450{|15}A x x x x x =--≤=-≤≤,{}2124{|022}{|24}x B x x x x x -=≤≤=≤-≤=≤≤.∴{|2UB x x =<或4}x >,∴()U{|12Ax B x =-≤<或45}x <≤.(2)∵C A A =,C B B =,∴B C A ⊆⊆,∴12445aa-≤≤⎧⎨≤≤⎩,解得514a≤≤.【点睛】关键点点睛:本题考查集合的综合运算,考查集合的包含关系.集合的运算中确定集合中的元素是解题关键.本题有两个结论值得注意:C A A C A=⇔⊆,C B B=B C⇔⊆.。
2023最新人教版高中数学必修一第五章《三角函数》单元测试(附答案解析)

试卷第 4 页,共 4 页
1.C
参考答案:
【解析】运用诱导公式,结合特殊角的三角函数值即可化简求解..
【详解】 cos
150
cos150 cos(1800 300 ) cos 300
3, 2
故选:C.
【点睛】关键点点睛:该题考查的是有关三角函数化简求值问题,正确解题的关键是熟练应 用诱导公式以及熟记特殊角三角函数值. 2.A
答案第 2 页,共 12 页
【详解】 f (x) sin x cos
2
sin( x
π 4
)
,因为
x
a
,
b
,所以
x
π 4
a
π 4
,
b
π 4
,因
为 1
2
sin( x
π 4
)
2 ,所以
2 2
sin( x
π 4
)
1.
正弦函数
y
sin
x
在一个周期
π 2
,
3π 2
内,要满足上式,则
x
π 4
π 4
f
x
sin x
的图象过点
1 3
,1
,若
f
x 在2, a 内有
5
个
零点,则 a 的取值范围为______.
四、解答题
17.在① sin
6 3
,②
tan 2
2 tan 4 0 这两个条件中任选一个,补充到下面的
问题中,并解答.
已知角 a 是第一象限角,且___________.
(1)求 tan 的值;
S1 S2
2
1 2
可求得
【浙教版】高中数学必修一期末试题(附答案)(1)

一、选择题1.已知函数()22020,0,,0,x x f x x x x <⎧=⎨-≥⎩若关于x 的方程()()21610f x kf x ++=有四个不同的实数根,则k 的取值范围为( ) A .(4,)+∞B .(8,)+∞C .(,4)-∞-D .(,8)-∞-2.关于x 的方程x x a a -=有三个不同的实根,则实数a 的取值范围是( ) A .(0,4) B .(4,0)-C .(4,4)-D .(,4)(4,)-∞-⋃+∞3.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t 的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,24.如图是指数函数①y =x a ;②y =x b ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是( )A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c5.已知函数()sin 2f x x x =-,且()0.3231ln ,log ,223a f b f c f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则以下结论正确的是 A .c a b >>B .a c b >>C .a b c >>D .b a c >>6.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( ) A .2,13⎛⎫⎪⎝⎭B .(0,1)C .20,3⎛⎫ ⎪⎝⎭D .[)3,+∞ 7.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦8.已知定义在R 上的奇函数()y f x =,当0x ≥时,22()f x x a a =--,若对任意实数x 有()()f x a f x -≤成立,则正数a 的取值范围为( ) A .)1,4⎡+∞⎢⎣ B .)1,2⎡+∞⎢⎣ C .(10,4⎤⎥⎦D .(10,2⎤⎥⎦9.已知函数()f x 的定义域为R ,对任意的 12,x x <都有1212()(),f x f x x x -<-且(3)4,f =则(21)2f x x ->的解集为( )A .(2,)+∞B .(1,)+∞C .(0,)+∞D .(1,)-+∞10.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个11.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( ) A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]212.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .2二、填空题13.已知函数()21f x x =-+,().g x kx =若方程()()f x g x =有两个不等实数根,则实数k 的取值范围是______.14.函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同的实数解,则正数m 的取值范围为______.15.已知函数()f x 的定义域是[1,1]-,则函数(21)()ln(1)f xg x x -=-的定义域是________.16.关于x 的不等式()()222log 1log 2x x ->-的解集为______.17.若函数()f x 满足()()1f x f x =-,()()13f x f x +=--当且仅当(]1,3x ∈时,()f x x =,则()57f =______.18.函数()f x =的单调递增区间为__________.19.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________.20.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.三、解答题21.某工厂准备引进一种新型仪器的生产流水线,已知投资该生产流水线需要固定成本1000万元,每生产x 百台这种仪器,需另投入成本f (x )万元,()f x =2550500,040,100,25003013000,40,100.x x x x N x x x N x ⎧++<<∈⎪⎨+-≥∈⎪⎩假设生产的仪器能全部销售完,且售价为每台3万元.(1)求利润g (x )(万元)关于产量x (百台)的函数关系式; (2)当产量为多少时,该工厂所获利润最大?并求出最大利润.22.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年:当420x ≤≤时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.23.已知函数()2()log 41xf x kx =++是偶函数. (1)求k 的值;(2)若函数()y f x =的图像与直线y x a =+没有交点,求实数a 的取值范围;(3)设函数()()221f x xx g x m +=+⋅-,[]20,log 3x ∈,是否存在实数m ,使得()g x 的最小值为0?若存在,求出m 的值;否则,说明理由.24.已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x >时,()232f x ax ax =-+,(a R ∈).(1)求()f x 的函数解析式:(2)当1a =时,求满足不等式()21log f x >的实数x 的取值范围. 25.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;(2)若()f x 在区间[]2,1a a +上不单调,求实数a 的取值范围;(3)若()f x 在区间[1,]m -上的最小值为1,最大值为9,求实数m 的取值范围.26.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围; (2)若BC ≠∅,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设()f x t =,可得方程21610t kt ++=有两个不同的实数根214t <- ,1104t -<<,再利用一元二次方程根的分布列不等式求解即可. 【详解】作出()f x 的图象如图所示,设()f x t =, 要使方程()()21610fx kf x ++=有四个不同的实数根,则方程()21610g t t kt =++=有两个不同的实数根1t ,2t . 且()1f x t =有三个根,方程()2f x t =有一个根, 由图可知,214t <-1104t -<<. 设2()161g t t kt =++,则()10,400,g g ⎧⎛⎫-<⎪ ⎪⎝⎭⎨⎪>⎩,解得8k >. 故选:B.【点睛】函数零点的几种等价形式:函数()()y f x g x =-的零点⇔函数()()y f x g x =-在x 轴的交点⇔方程()()0f x g x -=的根⇔函数()y f x =与()y g x =的交点.2.D解析:D 【分析】画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得【详解】数形结合法:画出函数()22,(),()x ax x a f x x x a x ax x a ⎧-≥=-=⎨-+<⎩与y a =图象可得由图可得:204a a <<解得4a > 或204a a >>-解得4a故选:D 【点睛】数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.3.D解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-,0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-,则3n =, 则12m n +<,故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解4.B解析:B 【分析】根据指数函数的图象与性质可求解. 【详解】根据函数图象可知函数①y =x a ;②y =x b 为减函数,且1x =时,②y =1b <①y =1a , 所以1b a <<,根据函数图象可知函数③y =c x ;④y =d x 为增函数,且1x =时,③y =c 1>④y =d 1, 所以1c d >> 故选:B 【点睛】本题主要考查了指数函数的单调性,指数函数的图象,数形结合的思想,属于中档题.5.D解析:D 【解析】因为()cos 20f x x '=-<,所以函数()sin 2f x x x =-的单调递减函数,又因为0.3213log 0,ln ln 1,12232e <<=<<,即0.3213log ln 232<<,所以由函数的单调性可得:0.3213(log )(ln )(2)32f f f >>,应选答案D .6.C解析:C 【分析】根据对数函数性质与复合函数的单调性求解. 【详解】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数,由对数函数性质知230a ->,即23<a , 综上023a <<. 故选:C . 【点睛】本题考查复合函数的单调性,掌握对数函数性质是解题关键,考查逻辑思维能力和计算能力,属于常考题.7.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。
高一上期数学(必修1+必修4)期末复习培优专题卷附详解

高一上期数学(必修1+必修4)期末复习培优专题卷附详解高一上学期数学(必修1+必修4)期末复培优专题卷一.选择题1.已知定义域为实数集的函数f(x)的图像经过点(1,1),且对任意实数x1<x2,都有f(x1)≤f(x2),则不等式的解集为()。
A。
(-∞,1)∪(1,+∞) B。
(-∞,+∞)C。
(1,+∞) D。
(-∞,1)2.对任意x∈[0,2π],任意y∈(-∞,+∞),不等式-2cosx≥asinx-x恒成立,则实数a的取值范围是()。
A。
[-3,3] B。
[-2,3] C。
[-2,2] D。
[-3,2]3.定义在实数集上的偶函数f(x)满足f(2-x)=f(x),且当x∈[1,2]时,f(x)=lnx-x+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()。
A。
(-∞,-1/2) B。
(-∞,0)C。
(-1,+∞) D。
(0,+∞)4.定义在实数集上的函数y=f(x)为减函数,且函数y=f (x-1)的图像关于点(1,0)对称,若f(x-2x)+f(2b-b)≤0,且-2≤x≤2,则x-b的取值范围是()。
A。
[-2,0] B。
[-2,2] C。
[0,2] D。
[0,4]5.设函数f(x)=x^2-2x+1,当x∈[-1,1]时,恒有f(x+a)<f(x),则实数a的取值范围是()。
A。
(-∞,-1) B。
(-1,+∞)C。
(-∞,1) D。
(-∞,-2)6.定义域为实数集的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=x^2-x,若当x∈[-4,-2)时,不等式f(x)≥-t+2恒成立,则实数t的取值范围是()。
A。
[2,3] B。
[1,3] C。
[1,4] D。
[2,4]7.已知函数f(x)的定义域为D,若对于∀a,b,c∈D,f(a),f(b),f(c)分别为某个三角形的三边长,则称f (x)为“三角形函数”.给出下列四个函数:①f(x)=lg(x+1)(x>0);②f(x)=4-cosx;③f(x)=|sinx|;④f(x)=|x|+1.其中为“三角形函数”的个数是()。
高中数学必修1同步优化训练第一章 集合与简易逻辑2 A卷(附答案)
第一章 集合与简易逻辑(二)●知识网络简易逻辑逻辑联结词四种命题及其关系充分条件与必要条件简单命题与复合命题逻辑联结词或、且、非●范题精讲【例1】 判断下列语句是否是命题,若不是,请说明理由;若是,判断命题的真假. (1)质数是奇数;(2)偶数的平方是偶数; (3)3x >x ; (4)x 2-x +2>0;(5)我一定学好数学;(6)这是多么好的时代啊!分析:判断语句是否是命题,关键是看能否判定其真假. 解:(1)是命题,且是假命题.因为2是质数也是偶数. (2)是命题,且是真命题.(3)不是命题.因为x 是未知数,不能判断其真假. (4)是命题,且是真命题.因为x 2-x +2=(x -21)2+47>0对任意x ∈R 都成立.(5)不是命题.祈使句不是命题. (6)不是命题.感叹句不是命题.评注:表达命题的语句一般是陈述句,祈使句、感叹句、疑问句都不是命题.同时应注意,只有能够判断真假的陈述句才是命题,否则也不是命题.【例2】 有命题a 、b 、c 、d 、e ,已知: ①a 是b 的必要条件; ②b 是d 的充要条件;③由d 不可推出c ,但c 可推出d ; ④c ⇒e 成立,e 又等价于b . 问:(1)d 是a 的什么条件? (2)a 是c 的什么条件? (3)c 是b 的什么条件? (4)d 是e 的什么条件?分析:本题条件之间有较多的交叉,从文字叙述的条件来推理容易混淆,但是若将各个命题间的关系用“⇒”“⇐”“”联接起来,形成一个网络,那么就易解答了.ad cbe解:把已知的a 、b 、c 、d 、e 间的关系表示出来,构成上图,那么, (1)∵a ⇐bd ,∴d 是a 的充分不必要条件. (2)∵a ⇐bd ⇐c 或a ⇐be ⇐c ,∴a 是c 的必要不充分条件. (3)∵bd ⇐c 或be ⇐c ,∴c 是d 的充分不必要条件. (4)∵ebd ,∴d 是e 的充要条件.评注:将语言叙述符号化,可以起到简化推理过程的作用,这是一种常用的方法. 【例3】 求证:一元二次方程ax 2+bx +c =0(a ≠0)至多有两个不相等的实根. 分析:本题直接证明比较困难,可采用反证法.证明:假设方程ax 2+bx +c =0(a ≠0)有三个不相等的实根x 1、x 2、x 3,则ax 12+bx 1+c =0, ① ax 22+bx 2+c =0, ② ax 32+bx 3+c =0. ③ ①-②得a (x 12-x 22)+b (x 1-x 2)=0.∵x 1≠x 2,∴a (x 1+x 2)+b =0. ④ 同理,由①-③得a (x 1+x 3)+b =0. ⑤ ④-⑤得a (x 2-x 3)=0.∵x 2≠x 3,∴a =0.这与已知a ≠0矛盾,∴假设不成立,原命题成立. 评注:反证法的关键是归谬,即推出矛盾,常有以下几种情形:①与已知条件矛盾; ②与定义、定理、公理矛盾;③自相矛盾;④与假设矛盾.反证法常用于以下问题的证明:①否定性问题;②唯一性问题;③“至多”“至少”问题;④条件较少,直接证明困难的问题.【例4】 已知p :{x |⎩⎨⎧≤-≥+01002x x },q :{x |1-m ≤x ≤1+m ,m >0},若p 是q 的必要不充分条件,求实数m 的取值范围.分析:先写出⌝p 和⌝q ,然后由⌝q ⌝p 但⌝p ⇒⌝q ,求得m 的取值范围. 解法一:p 即{x |-2≤x ≤10},∴⌝p :A ={x |x <-2或x >10}, ⌝q :B ={x |x <1-m 或x >1+m ,m >0}. ∵⌝p 是⌝q 的必要不充分条件,∴B A ⎪⎩⎪⎨⎧≥+≥⇒-≤->101,921,0m m m m即m 的取值范围是{m |m ≥9}.解法二:∵⌝p 是⌝q 的必要不充分条件,∴q 是p 的必要不充分条件. ∴p 是q 的充分不必要条件.而p :P ={x |-2≤x ≤10},q :Q ={x |1-m ≤x ≤1+m ,m >0}.∴PQ ,即⎪⎩⎪⎨⎧≥+≥⇒-≤->.101.921,0m m m m∴m 的取值范围是{m |m ≥9}.评注:对于充分必要条件的判断,除了直接使用定义及其等价命题进行判断外,还可以根据集合的包含关系来判断条件与结论之间的逻辑关系:设p 包含的对象组成集合A ,q 包含的对象组成集合B ,若A B ,则p 是q 的充分不必要条件;若A B ,则p 是q 的必要不充分条件;若A =B ,则p 是q 的充要条件;若A B 且B A ,则p 是q 的既不充分也不必要条件.●试题详解高中同步测控优化训练(三) 第一章 集合与简易逻辑(二)(A 卷)说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共100分,考试时间90分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分) 1.下列语句不是命题的有①x 2-3=0 ②与一条直线相交的两直线平行吗 ③3+1=5 ④5x -3>6 A.①③④ B.①②③ C.①②④ D.②③④解析:可以判断真假的语句(包括式子)叫做命题.其中①④在不给定变量值之前,无法判定真假;②是问句,不涉及真假.答案:C2.下列命题为简单命题的是 A.5和10是20的约数B.正方形的对角线垂直平分C.6是无理数D.方程x 2+x +2=0没有实数根解析:不含逻辑联结词的命题叫做简单命题,A 、B 是p 且q 的形式,D 是非p 的形式. 答案:C3.下列理解错误的是A.命题3≤3是p 且q 形式的复合命题,其中p :3<3,q :3=3.所以“3≤3”是假命题B.“2是偶质数”是一个p 且q 形式的复合命题,其中p :2 是偶数,q :2是质数C.“不等式|x |<-1无实数解”的否定形式是“不等式|x |<-1有实数解”D.“2001>2008或2008>2001”是真命题解析:命题3≤3是p 或q 形式的复合命题,其中p :3<3,q :3=3.所以“3≤3”是真命题. 答案:A4.如果命题“p 且q ”与命题“p 或q ”都是假命题,那么 A.命题“非p ”与命题“非q ”的真值不同 B.命题p 与命题“非q ”的真值相同 C.命题q 与命题“非p ”的真值相同 D.命题“非p 且非q ”是真命题解析:由“p 且q ”是假命题可知,p 和q 至少有一个是假命题,由“p 或q ”是假命题可知,p 和q 都是假命题.这样“非p ”和“非q ”就都是真命题.由真值表可知,“非p 且非q ”是真命题.答案:D5.给出命题:p:3>1,q:4∈{2,3},则在下列三个复合命题:“p且q”“p或q”“非p”中,真命题的个数为A.0B.3C.2D.1解析:因为p真q假,由复合命题的真值表可知:“p且q”为假,“p或q”为真,“非p”为假.答案:D6.命题“若A∩B=A,则A⊆B”的逆否命题是A.若A∪B≠A,则A⊇BB.若A∩B≠A,则A BC.若A B,则A∩B≠AD.若A⊇B,则A∩B≠A答案:C7.在如下图所示的电路图中,“开关A的闭合”是“灯泡B亮”的_________条件.A.充分不必要B.必要不充分C.充要D.既不充分又不必要解析:由“A闭合”“B亮”可知是B亮的必要不充分条件.答案:B8.用反证法证明命题“a、b∈N*,ab可被5整除,那么a、b中至少有一个能被5整除”,那么假设内容是A.a、b都能被5整除B.a、b都不能被5整除C.a不能被5整除D.a、b有一个不能被5整除答案:B9.设甲是乙的充分不必要条件,乙是丙的充要条件,丙是丁的必要不充分条件,那么丁是甲的A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件解析:由甲⇒乙丙⇐丁,可知丁甲且甲丁,所以丁是甲的既不充分也不必要条件.答案:D10.已知a为非零实数,x为实数,则命题“x∈{-a,a}”是“|x|=a”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 解析:当a >0时,x ∈{-a ,a }|x |=a ;当a <0时,x ∈{-a ,a } |x |=a .答案:D第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分) 11.分别用“p 或q ”“p 且q ”“非p ”填空. (1)命题“3的值不超过2”是_______形式;(2)命题“方程(x -2)(x -3)=0的解是x =2或x =3”是_______形式; (3)命题“方程(x -2)2+(y -3)2=0的解是⎩⎨⎧==3,2y x ”是_______形式.答案:(1)非p (2)p 或q (3)p 且q 12.“a ≥5,且b ≥2”的否定是_______. 答案:a <5或b <213.函数y =ax 2+bx +c (a ≠0)过原点的充要条件是_______. 答案:c =014.给定下列命题:①若k >0,则方程x 2+2x -k=0有实数根; ②“若a >b ,则a +c >b +c ”的否命题; ③“矩形的对角线相等”的逆命题;④“若xy =0,则x 、y 中至少有一个为0”的否命题. 其中真命题的序号是________. 解析:∵①Δ=4-4(-k)=4+4k >0, ∴是真命题. ②否命题:“若a ≤b ,则a +c ≤b +c ”是真命题. ③逆命题:“对角线相等的四边形是矩形”是假命题. ④否命题:“若xy ≠0,则x 、y 都不为零”是真命题. 答案:①②④三、解答题(本大题共5小题,共54分.解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)写出下面“p 或q ”“p 且q ”“非p ”“非q ”形式的复合命题,并判断真假.p :7是21的约数;q :7是26的约数.解:因为p 真q 假,所以①p 或q :7是21的约数或是26的约数(真). ②p 且q :7是21的约数且是26的约数(假). ③非p :7不是21的约数(假). ④非q :7不是26的约数(真).16.(本小题满分10分)证明:ax 2+bx +c =0有一根是1的充要条件是a +b +c =0. 分析:证题的关键是要分清a +b +c =0是条件,ax 2+bx +c =0是结论. 证明:先证必要性.由ax 2+bx +c =0有一根为1,把它代入方程,即得a +b +c =0. 再证充分性.由a +b +c =0,得a =-b -c ,代入ax 2+bx +c =0,得 (-b -c )x 2+bx +c =0,-bx 2-cx 2+bx +c =0,bx (1-x )+c (1-x 2)=0,(1-x )[bx +c (1+x )]=0, (1-x )(bx +cx +c )=0,∴x =1是方程ax 2+bx +c =0的一个根.17.(本小题满分10分)判断命题"若a >0,则方程x 2+x -a =0有实数根"的逆否命题的真假. 解法一:∵a >0,∴a >0>-41.∴1+4a >0.∴方程x 2+x -a =0的判别式Δ=1+4a >0. ∴方程有实数根,原命题为真.而原命题与逆否命题等价,故逆否命题为真.解法二:原命题:若a >0,则方程x 2+x -a =0有实数根.其逆否命题为:若方程x 2+x -a =0无实根,则a ≤0.∵x 2+x -a =0无实根,则Δ=1+4a <0,即a <-41.从而a <-41<0,原命题的逆否命题为真.18.(本小题满分12分)已知A :|5x -2|>3,B :5412-+x x >0,则非A 是非B 的什么条件?并写出解答过程.解法一:化简A 、B 得A :{x |x <-51或x >1},B :{x |x <-5或x >1}.∵A B 但B ⇒A ,∴B 是A 的充分不必要条件.∴它的逆否命题:非A 是非B 的充分不必要条件. 解法二:化简A 、B 得 A :{x |x <-51或x >1},B :{x |x <-5或x >1}.∴非A :{x |-51≤x ≤1},非B :{x |-5≤x ≤1}.∵非A非B ,∴非A 是非B 的充分不必要条件.19.(本小题满分12分)已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.解:若方程x2+mx +1=0有两个不等的负根,则⎩⎨⎧>>-=∆.0,042m m解得m >2,即p :m >2.若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0. 解得1<m <3,即q :1<m <3.∵p 或q 为真,∴p 、q 至少有一为真.又p 且q 为假,∴p 、q 至少有一为假.因此,p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真.∴⎩⎨⎧≥≤>31,2m m m 或或⎩⎨⎧<<≤.31,2m m解得m ≥3或1<m ≤2.。
(完整word版)高一数学必修1试题附答案详解
高一数学必修1试题1。
已知全集I ={0,1,2},且满足C I (A ∪B )={2}的A 、B 共有组数2。
如果集合A ={x |x =2k π+π,k ∈Z},B ={x |x =4k π+π,k ∈Z },则集合A,B 的关系3.设A ={x ∈Z ||x |≤2},B ={y |y =x 2+1,x ∈A },则B 的元素个数是4.若集合P ={x |3〈x ≤22},非空集合Q ={x |2a +1≤x 〈3a -5},则能使Q ⊆ (P ∩Q )成立的所 有实数a 的取值范围为5。
已知集合A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b ,若4和10的原象分别对应是6和9, 则19在f 作用下的象为6。
函数f (x )=错误! (x ∈R 且x ≠2)的值域为集合N ,则集合{2,-2,-1,-3}中不属于N 的元 素是7.已知f (x )是一次函数,且2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )的解析式为8。
下列各组函数中,表示同一函数的是 A.f (x )=1,g (x )=x 0B.f (x )=x +2,g (x )=错误!C.f (x )=|x |,g (x )=错误! D 。
f (x )=x ,g (x )=(错误!)29。
f (x )=⎩⎪⎨⎪⎧x 2 x >0π x =00 x <0,则f {f [f (-3)]}等于10。
已知2lg (x -2y )=lg x +lg y ,则错误!的11。
设x ∈R ,若a 〈lg (|x -3|+|x +7|)恒成立,则a 取值范围是12.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是高一数学必修1试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集I={0,1,2},且满足C I (A∪B)={2}的A、B共有组数A。
【浙教版】高中数学必修一期末试卷(附答案)(1)
一、选择题1.已知关于x 的方程|2|1x m -=有两个不等实根,则实数m 的取值范围是( )A .(-∞,1]-B .(,1)-∞-C .[1,)+∞D .(1,)+∞2.已知函数23()log f x x x=-,(0,)x ∈+∞,则()f x 的零点所在的区间是 A .(0,1) B .(1,2)C .(2,3)D .(3,4)3.已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩若a b c <<,且满足()()()f a f b f c ==,则abc 的取值范围为( ) A .(],0-∞B .(],1-∞-C .[]2,0-D .[]4,0-4.已知函数()()2log 2xf x m =+,则满足函数()f x 的定义域和值域都是实数集R 的实数m 构成的集合为 ( ) A .{}|0m m =B .{}0|m m ≤C .{}|0m m ≥D .{}|1m m =5.已知函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点分别为,,a b c ,则,,a b c 的大小顺序为( )A .a b c >>B .c a b >>C .b c a >>D .b a c >>6.已知函数()()213log f x x ax a =--对任意两个不相等的实数1x 、21,2x ⎛⎫∈-∞- ⎪⎝⎭,都满足不等式()()21210f x f x x x ->-,则实数a 的取值范围是( )A .[)1,-+∞B .(],1-∞-C .11,2⎡⎤-⎢⎥⎣⎦D .11,2⎡⎫-⎪⎢⎣⎭7.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<8.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .69.已知定义在R 上的函数()2||·x f x x e =,(a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>10.已知集合{}11M x Zx =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,211.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个B .2个C .3个D .4个12.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()AB C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭二、填空题13.已知函数227,03()1108,333x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若()y f x =的图象与y m =的图象有A ,B ,C ,D 四个不同的交点,交点横坐标为1234,,,x x x x ,满足1234x x x x <<<,则()()341233222x x x x --++的取值范围是________14.方程()2332log log 30x x +-=的解是______. 15.有以下结论:①将函数xy e =的图象向右平移1个单位得到1x y e-=的图象;②函数()x f x e =与()g x lnx =的图象关于直线y =x 对称③对于函数()xf x a =(a >0,且1a ≠),一定有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭④函数()22log (2)f x x x =-+的图象恒在x 轴上方.其中正确结论的序号为_________.16.设正数,x y 满足222log (3)log log x y x y ++=+,则x y +的取值范围是_____. 17.已知()13 =f x x ,则不等式(21)f x -() 230f x ++>的解集为_________. 18.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.19.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 20.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.三、解答题21.设函数()()21f x ax ax a R =+-∈.(1)当12a =时,求函数()f x 的零点; (2)讨论函数()f x 零点的个数. 22.已知函数()((1,1))1||xf x x x =∈--,有下列结论: ①(1,1)x ∀∈-,等式()()0f x f x 恒成立;②[)0,m ∀∈+∞,方程|()|f x m =有两个不等的实根; ③12,,(11)x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;④存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点 则其中正确结论的序号为? 23.已知函数21()log 1x f x x +=-. (1)求函数()f x 的定义域并证明该函数是奇函数;(2)若当(1,)x ∈+∞时,2()()log (1)g x f x x =+-,求函数()g x 的值域.24.已知函数()442xx f x =+;(1)若01a <<,求()()1f a f a +-的值; (2)求12320202021202120212021f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值. 25.若函数f (x )()()2211,02,0b x b x x b x x ⎧-+->⎪=⎨-+-≤⎪⎩,满足对于任意的12x x ≠,都有()()12120f x f x x x ->-成立,g (x )=23x +.(1)求b 的取值范围;(2)当b =2时,写出f [g (x )],g [f (x )]的表达式.26.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分离参数,再根据指数函数性质求出. 【详解】解:21x m -=或21x m -=-,即21x m =-,或者21x m =+, 当211x m =->-时,有一个解, 当211x m =+>时,有一个解,所以1m 时,方程|2|1x m -=有两个不等实根, 故选:D . 【点睛】考查方程根的个数问题,利用了分类讨论法,分离参数法,属于中档题.2.C解析:C 【分析】由题意结合零点存在定理确定()f x 的零点所在的区间即可. 【详解】由题意可知函数()23f x log x x=-在()0,+∞上单调递减,且函数为连续函数, 注意到()130f =>,()1202f =>,()231log 30f =-<,()34204f =-<, 结合函数零点存在定理可得()f x 的零点所在的区间是()2,3. 本题选择C 选项. 【点睛】应用函数零点存在定理需要注意: 一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f (x )在(a ,b )上单调且f (a )f (b )<0,则f (x )在(a ,b )上只有一个零点.3.A解析:A 【分析】画出()f x 的图象结合图象,求得1bc =、求得a 的取值范围,由此求得abc 的取值范围. 【详解】由函数()f x 的图象(如图),可知1022a b c ≤<≤<≤,由22log log b c =得22log log b c -=,所以1bc =,所以(],0abc a =∈-∞.故选:A【点睛】本小题主要考查分段函数的图象与性质,属于中档题.4.A解析:A 【分析】若定义域为实数集R ,则20x m +>对于x ∈R 恒成立,可得0m ≥,若值域为实数集R ,令2x t m =+,则2log y t = 此时需满足2x t m =+的值域包括()0,∞+,可得0m ≤,再求交集即可. 【详解】若()()2log 2xf x m =+定义域为实数集R ,则20x m +>对于x ∈R 恒成立,即2x m >-对于x ∈R 恒成立, 因为20x >,所以20x -<,所以0m ≥, 令2x t m =+,则2log y t =若()()2log 2xf x m =+值域为实数集R ,则2x t m =+的值域包括()0,∞+, 因为t m >,所以0m ≤, 所以0m =, 故选:A 【点睛】关键点点睛:本题的关键点是要找到定义域为R 的等价条件即20x m +>对于x ∈R 恒成立,分离参数m 求其范围,值域为R 的等价条件即2x t m =+可以取遍所有大于0的数,由t m >,所以0m ≤,再求交集.5.B解析:B 【分析】将函数3131()(),()log ,()(0)2x f x x g x x x h x x x x =-=-=->的零点,转化为函数y x=的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标,利用数形结合法求解. 【详解】函数3131()(),()log ,()(0)2xf x xg x x xh x x x x =-=-=->的零点, 即为函数y x =的图象分别与函数3131(),log ,(0)2x y y x y x x ===>的图象交点的横坐标, 如图所示:由图象可得:c a b >>, 故选:B 【点睛】本题主要考查函数的零点以及指数函数,对数函数和幂函数的图象的应用,还考查了数形结合的思想方法,属于中档题.6.C解析:C 【分析】由题意可知,函数()()213log f x x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递增,利用复合函数的单调性可知,内层函数2u x ax a =--在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且0>u 对任意的1,2x ⎛⎫∈-∞- ⎪⎝⎭恒成立,进而可得出关于实数a 的不等式组,由此可解得实数a 的取值范围. 【详解】因为()()21210f x f x x x ->-,所以()()213f x log x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上是增函数, 令2u x ax a =--,而13log y u =是减函数,所以2u x ax a =--在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,且20u x ax a =-->在1,2⎛⎫-∞- ⎪⎝⎭上恒成立,所以212211022a a a ⎧≥-⎪⎪⎨⎛⎫⎛⎫⎪----≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得112a -≤≤. 故选:C. 【点睛】本题考查利用对数型复合函数在区间上的单调性求参数,解题时还应注意真数要恒为正数,考查分析问题和解决问题的能力,属于中等题.7.C解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩. 8.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值. 【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意; (2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.9.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln 3log log 2>,根据增函数的定义即可得出a ,b ,c 的大小关系.【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<<=,ln3ln 1e >=,∴33ln 3log log 2>>, ∴33(ln 3)(log (log 2)f f f >>,c a b ∴>>. 故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.10.B解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.11.C解析:C 【分析】根据新定义,对每个选项逐一判断,即可得到答案. 【详解】对于(1),因为20155403÷=,余数为0,所以2015[0]∈,故(1)正确; 对于(2),因为()3512-=⨯-+,所以33[]-∉,故(2)错误; 对于(3),因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故(3)正确;对于(4),因为整数,a b 属于同一“类”,所以整数,a b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”.故(4)正确.综上所述,正确的个数为:3个. 故选C . 【点睛】本题考查了集合的新定义,解题关键是理解被5所除得余数为k 的所有整数组成一个“类”,考查了分析能力和计算能力.12.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.二、填空题13.【分析】根据题意得进而得由于故的取值范围是【详解】解:如图根据题意得满足:即关于直线对称故所以所以由于所以所以故答案为:【点睛】本题考查函数与方程的综合应用考查数形结合思想与运算求解能力是中档题本题 解析:(15,22)【分析】根据题意得122214x x +=,3410x x +=,进而得()()2334312103321142222x x x x x x -+---=+++,由于()33,4x ∈,故()()341233222x x x x --++的取值范围是(15,22).【详解】解:如图,根据题意得12,x x 满足:1227270x x -+-=,即122214x x +=.34,x x 关于直线5x =对称,故3410x x +=,所以4310x x =-,()33,4x ∈所以()()()()23343331210333721141422222x x x x x x x x --+----=+=+++,由于()33,4x ∈,()()3232321540,031x x x -=--+∈-+,所以()233120121,8x x --+∈所以()()()()()233433312103337211414215,222222x x x x x x x x -+-----++=+=+∈故答案为:(15,22) 【点睛】本题考查函数与方程的综合应用,考查数形结合思想与运算求解能力,是中档题.本题解题的关键在于根据题意作图得122214x x +=,3410x x +=,()33,4x ∈,故将问题转化为求2331102142x x -+-+,()33,4x ∈的值域问题.14.或【分析】设原方程等价转化为由此能求出原方程的解【详解】设则原方程转化为解得当即解得当即解得所以原方程的解为或故答案为:或【点睛】本题考查方程的解的求法解题时要认真审题注意换元法的合理运用属于基础题33 【分析】设3log x t =,原方程等价转化为2230t t +-=,由此能求出原方程的解. 【详解】设3log x t =,则原方程转化为2230t t +-=,解得132t =-,21t =, 当132t =-,即33log 2x =-,解得39x =, 当21t =,即3log 1x =,解得3x =, 33. 故答案为:39或3.【点睛】本题考查方程的解的求法,解题时要认真审题,注意换元法的合理运用,属于基础题.15.②③④【分析】①根据图象的平移规律直接判断选项;②根据指对函数的对称性直接判断;③根据指数函数的图象特点判断选项;④先求的范围再和0比较大小【详解】①根据平移规律可知的图象向右平移1个单位得到的图象解析:②③④ 【分析】①根据图象的平移规律,直接判断选项;②根据指对函数的对称性,直接判断;③根据指数函数的图象特点,判断选项;④先求22x x -+的范围,再和0比较大小. 【详解】①根据平移规律可知xy e =的图象向右平移1个单位得到1x y e -=的图象,所以①不正确;②根据两个函数的对称性可知函数()xf x e =与()g x lnx =的图象关于直线y =x 对称,正确;③如下图,设1a >,122x x f +⎛⎫ ⎪⎝⎭对应的是曲线上横坐标为122x x +的点C 的纵坐标,()()122f x f x +是线段AB 的中点D 的纵坐标,由图象可知()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,同理,当01a <<时,结论一样,故③正确;④2217721244x x x ⎛⎫-+=-+≥> ⎪⎝⎭ 根据函数的单调性可知()222log 2log 10x x -+>=,所以函数()22log (2)f x x x =-+的图象恒在x 轴上方,故④正确. 故答案为:②③④ 【点睛】思路点睛:1.图象平移规律是“左+右-”,相对于自变量x 来说,2.本题不易判断的就是③,首先理解122x x f +⎛⎫⎪⎝⎭和()()122f x f x +的意义,再结合图象判断正误.16.【分析】由题设知再由得到所以设由此可求出的取值范围【详解】解:正数满足又所以左右加上得到所以由得到设即解得或即或根据定义域均大于零所以取值范围是故答案为:【点睛】本题考查对数的运算法则基本不等式的应 解析:[)6,+∞【分析】由题设知3x y xy ++=,再由2220x xy y -+,得到2224x xy y xy ++,所以2()4x y xy +,设x y a +=,由此可求出x y +的取值范围.【详解】 解:正数x ,y 满足222log (3)log log x y x y ++=+,22log (3)log x y xy ∴++=,3x y xy ∴++=,又2220x xy y -+,所以左右加上4xy 得到2224x xy y xy ++,所以2()4x y xy +,由3x y xy ++=得到2()34x y x y +++,设x y a +=即2412a a +,解得6a ≥或2a ≤-即(],2a ∈-∞-或[)6,+∞.根据定义域x ,y 均大于零,所以x y +取值范围是[)6,+∞. 故答案为:[)6,+∞. 【点睛】本题考查对数的运算法则,基本不等式的应用,解题时要认真审题,仔细解答,注意公式的灵活运用,属于中档题.17.【分析】先利用幂函数性质和奇函数定义判断是R 上单调递增的奇函数再结合奇偶性和单调性解不等式即可【详解】由幂函数性质知时在是增函数故函数在是增函数又定义域是R 而故是R 上的奇函数根据奇函数对称性知在R 上解析:1,2⎛⎫-+∞ ⎪⎝⎭【分析】先利用幂函数性质和奇函数定义判断()f x 是R 上单调递增的奇函数,再结合奇偶性和单调性解不等式即可. 【详解】由幂函数性质知,01α<<时y x α=在[)0,+∞是增函数,故函数()13=f x x 在[)0,+∞是增函数,又()f x 定义域是R ,而()()()1133=f x x x f x =-=---,故()f x 是R 上的奇函数,根据奇函数对称性知,()f x 在R 上单调递增.故不等式(21)f x -() 230f x ++>即(21)f x -()() 2323f x f x >-+=--,故2123x x ->--,即12x >-,故解集为1,2⎛⎫-+∞ ⎪⎝⎭. 故答案为:1,2⎛⎫-+∞ ⎪⎝⎭.【点睛】 思路点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.18.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()xxf x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).19.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.20.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2- 【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆, 当0m >时,1{|}B x x m=>-, ∵1{}2A =-,, ∴11m-<- 解得01m <<,当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m -> 解得102m -<<,当0m =时也有A B ⊆.综上,实数m 的取值范围是1(,1)2- 故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题三、解答题21.(1)2-和1;(2)答案见解析. 【分析】 (1)当12a =时,直接解方程()0f x =,即可求得函数()f x 的零点;(2)分0a =和0a ≠两种情况讨论,在0a =时,直接求解即可;在0a ≠时,结合∆的符号可得出函数()f x 的零点个数. 【详解】 (1)当12a =时,()211122f x x x =+-,令()0f x =,可得220x x +-=,解得2x =-或1x =.此时,函数()f x 的零点为2-和1;(2)当0a =时,()1f x =-,此时函数()f x 无零点; 当0a ≠时,24a a ∆=+. ①若∆<0,即40a 时,此时函数()f x 无零点;②若0∆=,即4a =-时,函数()f x 有且只有一个零点; ③若0∆>,即4a 或0a >时,此时函数()f x 有两个零点. 综上所述,当40a 时,函数()f x 无零点;当4a =-时,函数()f x 有且只有一个零点; 当4a或0a >时,函数()f x 有两个零点.【点睛】思路点睛:本题考查含参二次函数零点个数的分类讨论,步骤如下: (1)首先确定首项系数为零的情况,直接解方程()0f x =即可;(2)对首项系数不为零进行讨论,分∆<0、0∆=、0∆>三种情况讨论,可得出函数()f x 在不同情况下的零点个数.22.①③④ 【分析】根据()f x 与()f x -的解析式代入运算可知①正确;取0m =可知②错误;分析函数()f x 的单调性可知③正确,由(0)0g =,当1k >时,()g x 在(0,1)和(1,0)-内都必有一个零点,可知④正确. 【详解】对于①,(1,1)x ∀∈-,()()01||1||1||1||x xx x f x f x x x x x ,①正确;对于②,当0m =时,|()|0f x =,即||01||xx =-只有一个实根0,错误; 对于③,任取1201x x ≤<<,则12()()f x f x -=12121||1||x x x x ---121211x xx x =---122112(1)(1)(1)(1)x x x x x x ---=--1212(1)(1)x x x x -=--, 因为1201x x ≤<<,所以120x x -<,12(1)(1)0x x -->,所以12()()f x f x <,所以()f x 在[0,1)上为增函数,又由①知,()f x 为奇函数, 所以()f x 在(1,1)-上为增函数,所以③正确; 对于④,1()()1||1||x g x kx x k x x =-=---,因为(0)0g =,所以0恒是()g x 的一个零点,当1k >,01x <<时,101k x-=-必有一个解, 当1,10k x >-<<时,11k x-+0=也必有一解, 所以④正确,综上所述:正确结论的序号为①③④. 【点睛】关键点点睛:对于③,判断出函数的单调性是解题关键;对于④,分01x <<和(1,0)-两种情况判断零点是解题关键.23.(1){1x x <-或}1x >,证明见解析;(2)()1,+∞. 【分析】(1)本题首先可通过求解101xx +>-得出函数()f x 的定义域,然后通过()()f x f x -=-证得函数()f x 是奇函数;(2)本题可根据题意将函数转化为2()log (1)g x x =+,然后通过当1x >时2log (1)1x +>即可求出函数()g x 的值域.【详解】(1)因为函数21()log 1x f x x +=-, 所以101xx +>-,解得1x <-或1x >, 则函数的定义域为{1x x <-或}1x >,且定义域关于原点对称, 因为222111()log log log ()111x x x f x f x x x x --+-===-=---+-, 所以函数()f x 为奇函数.(2)22221l ()()log (1)log (1)log (1)og 1g x x x f x x x x +=+-==-+-+, 当1x >时,22log (1)log 21x +>=,函数2()log (1)g x x =+是增函数,故当(1,)x ∈+∞时,()1g x >,函数()g x 的值域为()1,+∞. 【点睛】方法点睛:判断或证明函数奇偶性,首先要判断函数的定义域是否关于原点对称,然后通过()()f x f x -=-判断函数是奇函数或者通过()()f x f x -=判断函数是偶函数. 24.(1)1;(2)1010. 【分析】(1)根据4()42xx f x =+的表达式,求出()(),1f a f a -的表达式,再进行分式通分运算,可得()()11f a f a +-=. (2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再把S 的表达式运用加法交换律改写成20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,把两式相加利用()(1)1f x f x +-=求出S 的值.【详解】 (1)4()42xxf x =+,x ∈R . ∴()()1f a f a +-1144444442424224aaaa a a a a--=+=+++++4214224a a a=+=++,(2)设12320202021202120212021S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则 20201202120212021202321S f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 两式相加得:12[][][]92022020220120201202120212022120211021S f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭由(1)得:20202201109211,1,,221202120212021202120220101f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ∴220201010S S =⇒=.【点睛】本题考查指数幂运算,分式运算,利用函数的性质进行式子求值,考查运算求解能力.25.(1)12b ≤≤;(2)()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩;[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【分析】(1)先利用已知条件判断函数单调性,再根据分段函数单调性列条件计算即得结果; (2)先讨论()g x 的符号,再代入分段函数()f x 解析式中,即得[]()f g x 的解析式;利用分段函数()f x 的解析式,直接代入()g x 的解析式,即得[]()g f x 的解析式.【详解】解:(1)因为任意的12x x ≠,都有()()12120f x f x x x ->-成立,故设任意的12x x <时,有()()12f x f x <,即分段函数()f x 在R 上单调递增,故当0x >时,()()211f x b x b =-+-单调递增,即210b ->,即12b >; 当0x ≤时,()2()2f x x b x =-+-单调递增,即对称轴202b x -=≥,即2b ≤; 且在临界点0x =处,左边取值不大于右边取值,即01b ≤-,即1b ≥ .综上,b 的取值范围是12b ≤≤;(2)当b =2时,231,0(),0x x f x x x +>⎧=⎨-≤⎩,又()23g x x =+, 故当()230g x x =+>时,即32x >-时,()()3231610f g x x x ⎡⎤=++=+⎣⎦, 当()230g x x =+≤时,即32x ≤-时,[]()2()23f g x x =-+, 故()()23610,2323,2x x f g x x x ⎧+>-⎪⎪⎡⎤=⎨⎣⎦⎪-+≤-⎪⎩; 当0x >时,()31f x x =+,则[]()(31)2(31)365g f x g x x x =+=++=+,当0x ≤时,2()f x x =-,则[]22()()23g f x g x x =-=-+, 故[]265,0()23,0x x g f x x x +>⎧=⎨-+≤⎩. 【点睛】关键点点睛:本题解题关键在于:要讨论分段函数的自变量所在的取值区间确定对应的关系式,进而代入,以突破难点.26.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}.(2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4;若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.。
山西省忻州市2023-2024学年高一上学期1月期末考试 数学含答案
高一数学试题(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一册.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}31A x x =->,{}260B x x x =-≤,则A B = ()A.(]4,6 B.()4,6 C.(]2,6 D.[)4,+∞2.已知tan 13α=,tan 7β=,则()tan αβ+=()A.523-B.346C.29D.29-3.“a > 1.7a >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知某扇形的面积为12,半径为4,则该扇形圆心角(正角)的弧度数为()A.3B.2C.32 D.525.已知函数()ln f x x x =+在[]0.5,1内的一个零点附近的函数值如下表:0.510.750.6250.5625()f x 0.193-10.4620.1550.013-则该零点所在的区间为()A.()0.5,0.5625 B.()0.625,0.75 C.()0.5625,0.625 D.()0.75,16.设0.72a =,0.712b ⎛⎫= ⎪⎝⎭,6log 0.7c =,则()A.a b c<< B.c<a<bC.c b a <<D.a c b<<7.函数()()sin f x A x ωϕ=+(0A >,0ω>,2πϕ<)的部分图象如图所示,若()0f x =,则0x 可能为()A.29π8B.15π4C.27π4-D.29π48.若函数()3log (0xf x a a =>且1)a ≠在[]1,2-上的值域为[],2m ,则m 的值为()A.4-或1- B.0或2- C.2-或1- D.4-或2-二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列与100πsin 3的值相等的是()A.5πcos6 B.11πcos6 C.80πsin 3D.πsin 3⎛⎫-⎪⎝⎭10.已知0,0a b >>,且4a b +=,则()A.04b <<B.04<≤ab C.12922a b +≥ D.22log log 2a b +≤11.如图,天津永乐摩天轮有着“天津之眼”的美誉,也是世界上唯一一座建在桥上的摩天轮.以摩天轮某座舱P 距离地面高度的最小值处为初始位置,摩天轮(匀速转动)的转动时间t (单位:分钟)与座舱P 距离地面的高度()h t (单位:米)的函数关系式为()πsin 15h t A t h θ⎛⎫=++ ⎪⎝⎭,0A >,πθ<,且开始转动5分钟后,座舱P 距离地面的高度为37.5米,转动10分钟后,座舱P 距离地面的高度为92.5米,则()A.π3θ=-B.该摩天轮转动一圈所用的时间为30分钟C.55A =D.该摩天轮座舱P 距离地面的最大高度为120米12.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[)2,4x ∈时,()262f x x =--,则()A.()()4f x f x =+B.()f x 在()1,1-上单调递减C.()2024.51f = D.函数()()22logg x fx x =-恰有8个零点三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.22log 3log 6-=__________;1lg0.520.2510+=__________.14.函数61log 2axy x+=+(1a >)的图象经过定点A ,则点A 的坐标为______.15.已知()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()21x f x =-,则不等式()1f x >的解集为______.16.已知函数()2π24cos 3sin 23f x x x ωω⎛⎫=-++⎪⎝⎭(0ω>)在ππ,63⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知幂函数()()25af x a x =-.(1)求()f x 的解析式;(2)判断函数()()1g x f x x=-的奇偶性,并说明理由.18.已知角α是第一象限角,且满足25sin 6sin 80αα+-=.(1)求sin α,cos α,tan α的值;(2)求sin 2α,πcos 24α⎛⎫-⎪⎝⎭的值.19.已知函数()2xf x =,()862x g x =-.(1)求()g x 的值域;(2)求方程()()f x g x =的解集.20.某企业制定了一个关于销售人员的提成方案,如下表:销售人员个人每月销售额/万元销售额的提成比例不超过100万元的部分5%超过100万元的部分()6log 1b b+记销售人员每月的提成为()f x (单位:万元),每月的销售总额为x (单位:万元).注:表格中的b (0b ≥)表示销售额超过100万元的部分.另附参考公式:销售额×销售额的提成比例=提成金额.(1)试写出提成()f x 关于销售总额x 的关系式;(2)若某销售人员某月的提成不低于7万元,试问该销售人员当月的销售总额至少为多少万元?21.已知函数()()cos f x x ωϕ=+(0ω>,π02ϕ<<)的图象的两条相邻对称轴之间的距离是π4,将()f x 图象上所有的点先向右平移π20个单位长度,再将所得图象上所有的点的横坐标缩短到原来的12,得到函数()g x 的图象,且()g x 为偶函数.(1)求()f x 的解析式;(2)若不等式()()210f x mf x -+≥⎡⎤⎣⎦对2ππ,15120x ⎡⎤∈--⎢⎣⎦恒成立,求m 的取值范围.22.已知函数()()lg 10lg h x tx x =+-.(1)当1t =-时,求()h x 的零点;(2)设0t >,若1,14k ⎡⎤∀∈⎢⎥⎣⎦,m ∀,[],1n k k ∈+,()()lg3h m h n -≤,求t 的取值范围.高一数学试题注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一册.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}31A x x =->,{}260B x x x =-≤,则A B = ()A.(]4,6 B.()4,6 C.(]2,6 D.[)4,+∞【答案】A 【解析】【分析】解不等式化简集合,A B ,再由交集运算可得.【详解】{}{}314A x x x x =->=>,{}{}26006B x x x x x =-≤=≤≤,则{}46A B x x ⋂=<≤.故选:A.2.已知tan 13α=,tan 7β=,则()tan αβ+=()A.523-B.346C.29D.29-【答案】D 【解析】【分析】由两角和的正切公式可得.【详解】()tan tan 137202tan 1tan tan 1137909αβαβαβ+++====---⨯-.故选:D.3.“a > 1.7a >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据“充分”和“必要”条件的定义判断即可.1.732≈ 1.7>,所以“a > 1.7a >”的充分不必要条件.故选:A.4.已知某扇形的面积为12,半径为4,则该扇形圆心角(正角)的弧度数为()A.3 B.2C.32 D.52【答案】C 【解析】【分析】利用扇形的面积公式计算可得答案.【详解】设该扇形的圆心角为α,则214122α⨯=,解得32α=.故选:C.5.已知函数()ln f x x x =+在[]0.5,1内的一个零点附近的函数值如下表:0.510.750.6250.5625()f x 0.193-10.4620.1550.013-则该零点所在的区间为()A.()0.5,0.5625 B.()0.625,0.75 C.()0.5625,0.625 D.()0.75,1【答案】C 【解析】【分析】先判定函数的单调性,然后将表中数据按照x 从小到大排列,根据函数零点存在性定理即可求解.【详解】因为函数ln y x =和y x =都是()0,+∞上的单调增函数,所以函数()f x 为单调递增函数.将表格中数据按照x 从小到大排列如下:x0.50.56250.6250.751()f x 0.193-0.013-0.1550.4621由表格可得:()0.56250.0130,(0.625)0.1550f f =-=.由函数零点存在性定理可得:函数()f x 有唯一零点,所在的区间为()0.5625,0.625.故选:C.6.设0.72a =,0.712b ⎛⎫= ⎪⎝⎭,6log 0.7c =,则()A.a b c <<B.c<a<bC.c b a<< D.a c b<<【答案】C 【解析】【分析】由指对数函数性质判断大小关系.【详解】因为6log 0.7c =<0.71012b ⎛⎫<=< ⎪⎝⎭0.72a <=,所以c b a <<.故选:C7.函数()()sin f x A x ωϕ=+(0A >,0ω>,2πϕ<)的部分图象如图所示,若()0f x =,则0x 可能为()A.29π8B.15π4C.27π4-D.29π4【答案】D 【解析】【分析】由图求出A ,T ,ω,由()ππ8sin 03f ϕ⎛⎫-=-+= ⎪⎝⎭求出ϕ,由()001π8sin 33f x x ⎛⎫=+= ⎪⎝⎭求出0x 即可求解.【详解】由图可得8A =,()22ππ6πT ⎡⎤=⨯--=⎣⎦,则2π6πω=,解得13ω=,由()ππ8sin 03f ϕ⎛⎫-=-+= ⎪⎝⎭,得π03ϕ-+=,解得π3ϕ=,因为()001π8sin 33f x x ⎛⎫=+= ⎪⎝⎭所以01ππ2π334x k +=+,k ∈Z 或01π3π2π334x k +=+,k ∈Z ,解得0π6π4x k =-+,k ∈Z 或05π6π4x k =+,k ∈Z ,所以,029π4x =符合题意.故选:D.8.若函数()3log (0xf x a a =>且1)a ≠在[]1,2-上的值域为[],2m ,则m 的值为()A.4-或1-B.0或2-C.2-或1-D.4-或2-【答案】A 【解析】【分析】先根据对数函数的单调性求出函数x y a =的值域,再分01a <<和1a >两种情况讨论,结合指数函数的单调性即可得解.【详解】因为函数3log y x =在()0,∞+上单调递增,所以函数x y a =在[]1,2-上的值域为3,9m⎡⎤⎣⎦,当01a <<时,x y a =在[]1,2-上单调递减,则19a -=,解得19a =,则21381ma ==,得4m =-,当1a >时,x y a =在[]1,2-上单调递增,则29a =,解得3a =或3-(舍去),则1133ma-==,得1m =-,综上,4m =-或1-.故选:A .二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列与100πsin 3的值相等的是()A.5πcos6 B.11πcos6 C.80πsin3D.πsin 3⎛⎫-⎪⎝⎭【答案】AD 【解析】【分析】利用诱导公式求出结果,对比选项可得答案.【详解】100π4ππsinsin 32πsin 3332⎛⎫=+=-=- ⎪⎝⎭,5π3cos62=-,11π3cos 62=,80π2πsinsin 26π332⎛⎫=+= ⎪⎝⎭,πsin 32⎛⎫-=- ⎪⎝⎭.故选:AD.10.已知0,0a b >>,且4a b +=,则()A.04b <<B.04<≤abC.12922a b +≥ D.22log log 2a b +≤【答案】ABD 【解析】【分析】对于A ,44,b a =-<对于B ,由基本不等式即可得到结果;对于C ,由“1”的代换及基本不等式即可得到结果;对于D ,由对数的运算及基本不等式即可求得结果.【详解】对于A ,由题意可得044b a <=-<,A 正确.对于B ,因为0,0a b >>,a b +≥,所以4ab ≤,当且仅当2a b ==时,等号成立,B 正确.对于C ,()1211211215199224242242428b a a b a b a b a b ⎛⎫⎛⎫⎛+=++=+++≥+=⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当22b a a b =,即823b a ==时,等号成立,C 错误.对于D ,()2222log log log log 42a b ab +=≤=,D 正确.故选:ABD11.如图,天津永乐摩天轮有着“天津之眼”的美誉,也是世界上唯一一座建在桥上的摩天轮.以摩天轮某座舱P 距离地面高度的最小值处为初始位置,摩天轮(匀速转动)的转动时间t (单位:分钟)与座舱P 距离地面的高度()h t (单位:米)的函数关系式为()πsin 15h t A t h θ⎛⎫=++ ⎪⎝⎭,0A >,πθ<,且开始转动5分钟后,座舱P 距离地面的高度为37.5米,转动10分钟后,座舱P 距离地面的高度为92.5米,则()A.π3θ=-B.该摩天轮转动一圈所用的时间为30分钟C.55A =D.该摩天轮座舱P 距离地面的最大高度为120米【答案】BCD 【解析】【分析】由(0),(5),(10)h h h 即可求出,,A h θ,结合周期,即可求解.【详解】依题知(0)sin h A h A h θ=-+=+,则sin 1θ=-,因为||πθ<,所以π2θ=-,A 错误;由()πsin 15h t A t h θ⎛⎫=++ ⎪⎝⎭,则周期为2π30π15T ==,则该摩天轮转动一周需30分钟,B 正确;()ππsin 152h t A t h ⎛⎫=-+ ⎪⎝⎭,由()()ππ5sin 37.5322ππ10sin 92.532h A h h A h ⎧⎛⎫=-+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-+= ⎪⎪⎝⎭⎩,可得6555h A =⎧⎨=⎩,故座舱P 距离地面的最大高度为5565120A h +=+=,CD 正确.故选:BCD12.已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[)2,4x ∈时,()262f x x =--,则()A.()()4f x f x =+B.()f x 在()1,1-上单调递减C.()2024.51f =D.函数()()22logg x fx x =-恰有8个零点【答案】AC 【解析】【分析】利用周期定义求出周期可判断A ;结合周期画出()f x 的部分图象可判断B ;利用周期计算可判断C ;画出函数21log 2y x =、()y f x =的图象可判断D .【详解】对于A ,由()()2f x f x +=-,得()()()42f x f x f x +=-+=,可得()f x 的周期为4,A 正确;对于B ,当[)0,2x ∈时,[)22,4x +∈,则()()2222f x x f x +=--=-,得()222f x x =--+,结合周期画出()f x 的部分图象如图所示,由图可得()f x 在()1,1-上单调递增,B 错误;对于C ,()()()()2024.545060.50.5 2.55621f f f f =⨯+==-=--+=,C 正确;对于D ,因为()()()()222log2log g x fx x f x x g x -=---=-=,所以()g x 为偶函数,当0x >时,令()0g x =,得()21log 2f x x =,画出函数21log 2y x =的图象,因为2211log 17log 16222>=,所以()f x 与21log 2y x =在()0,∞+上的图象只有8个零点,根据函数奇偶性可得()g x 恰有16个零点,D 错误.故选:AC.【点睛】关键点点睛:D 选项解题的关键点是画出函数21log 2y x =与()f x 的图象解题.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.22log 3log 6-=__________;1lg0.520.2510+=__________.【答案】①.1-②.1【解析】【分析】利用指数运算性质,对数运算性质,对数的概念进行运算即可.【详解】2221log 3log 6log 12-==-,1lg0.520.25100.50.51+=+=.故答案为:1-;1.14.函数61log 2a xy x+=+(1a >)的图象经过定点A ,则点A 的坐标为______.【答案】()6,1【解析】【分析】借助对数函数的定点问题,令612xx+=,计算即可.【详解】令612xx+=,得6x =,所以点A 的坐标为()6,1.故答案为:()6,1.15.已知()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()21x f x =-,则不等式()1f x >的解集为______.【答案】()(),11,-∞-⋃+∞【解析】【分析】根据函数单调性和偶函数的对称性可解.【详解】当[)0,x ∈+∞时,()21x f x =-,令()211xf x =->,得22x >,解得1x >,因为()f x 是定义在R 上的偶函数,所以不等式()1f x >的解集为()(),11,-∞-⋃+∞.故答案为:()(),11,-∞-⋃+∞16.已知函数()2π24cos 23f x x x ωω⎛⎫=-++⎪⎝⎭(0ω>)在ππ,63⎡⎤⎢⎥⎣⎦上单调递增,则ω的取值范围为______.【答案】10,2⎛⎤⎥⎝⎦【解析】【分析】根据二倍角公式化简求解()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭,即可利用整体法求解函数的单调性,即可得ω的范围,进而可求解.【详解】()1cos 2π2423cos 22sin 226xf x x x x ωωωω+⎛⎫=-⨯++=+ ⎪⎝⎭,当ππ,63x ⎡⎤∈⎢⎥⎣⎦时,π2ππ2ππ2+,66636x ωωω⎡⎤+∈+⎢⎥⎣⎦,因为()f x 在ππ,63⎡⎤⎢⎥⎣⎦上单调递增,所以2πππ2π,6622πππ2π,362k k ωω⎧+≥-+⎪⎪⎨⎪+≤+⎪⎩(k ∈Z ),解得12632k k ω-+≤≤+(k ∈Z ),由1263,2130,2k k k ⎧-+≤+⎪⎪⎨⎪+>⎪⎩(k ∈Z )得0k =,故ω的取值范围为10,2⎛⎤ ⎥⎝⎦.故答案为:10,2⎛⎤ ⎥⎝⎦四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知幂函数()()25af x a x =-.(1)求()f x 的解析式;(2)判断函数()()1g x f x x=-的奇偶性,并说明理由.【答案】(1)()3f x x=(2)()g x 为奇函数,理由见解析【解析】【分析】(1)根据幂函数的定义求出a 可得答案;(2)()()1g x f x x=-为奇函数,利用奇函数的定义判断可得答案.【小问1详解】依题意可得251a -=,解得3a =,所以()3f x x =;【小问2详解】()()1g x f x x=-为奇函数.理由如下:()31g x x x=-的定义域为()(),00,∞-+∞U ,关于原点对称,因为()()()()3311g x x x g x x x -=--=-+=--,所以()g x 为奇函数.18.已知角α是第一象限角,且满足25sin 6sin 80αα+-=.(1)求sin α,cos α,tan α的值;(2)求sin 2α,πcos 24α⎛⎫- ⎪⎝⎭的值.【答案】(1)4sin 5α=,3cos 5α=,4tan 3α=(2)24sin 225α=,πcos 24α⎛⎫-=⎪⎝⎭50【解析】【分析】(1)解方程得4sin 5α=,再由同角基本关系式求解;(2)根据二倍角公式和和差角公式求解.【小问1详解】因为角α是第一象限角,所以sin 0α>,cos 0α>,tan 0α>.由25sin 6sin 80αα+-=,解得4sin 5α=或2-(舍去),则3cos 5α==,sin 4tan cos 3ααα==.【小问2详解】4324sin 22sin cos 25525ααα==⨯⨯=,297cos 22cos 1212525αα=-=⨯-=-,πππcos 2cos 2cos sin 2sin444ααα⎛⎫-=+ ⎪⎝⎭72425225250=-⨯+⨯=.19.已知函数()2xf x =,()862x g x =-.(1)求()g x 的值域;(2)求方程()()f x g x =的解集.【答案】(1)[)2,6-(2)221,2,log 3⎧⎫⎨⎬⎩⎭【解析】【分析】(1)换元令2x t =,结合指数函数单调性求值域;(2)分0x ≥和0x <两种情况,结合指、对数运算求解.【小问1详解】令2x t =,86y t=-,因为0x ≥,则21x t =≥,可得880t -≤-<,所以8266t-≤-<,即()g x 的值域为[)2,6-.【小问2详解】由()()f x g x =,即82602xx ⎛⎫--= ⎪⎝⎭,当0x ≥时,即82602xx ⎛⎫--= ⎪⎝⎭,整理得()()22240x x --=,可得22x =或24x =,解得1x =或2x =;当0x <时,即82602xx-⎛⎫--= ⎪⎝⎭,整理得26820x x-+⋅=,可得223x=,解得22log 3x =;综上所述:方程()()f x g x =的解集为221,2,log 3⎧⎫⎨⎬⎩⎭.20.某企业制定了一个关于销售人员的提成方案,如下表:销售人员个人每月销售额/万元销售额的提成比例不超过100万元的部分5%超过100万元的部分()6log 1b b+记销售人员每月的提成为()f x (单位:万元),每月的销售总额为x (单位:万元).注:表格中的b (0b ≥)表示销售额超过100万元的部分.另附参考公式:销售额×销售额的提成比例=提成金额.(1)试写出提成()f x 关于销售总额x 的关系式;(2)若某销售人员某月的提成不低于7万元,试问该销售人员当月的销售总额至少为多少万元?【答案】(1)()()65%,0100,5log 99,100.x x f x x x ≤≤⎧=⎨+->⎩(2)135万元【解析】【分析】(1)根据题意写出提成与销售额的关系式即可;(2)根据关系式,通过求解对数不等式可得答案.【小问1详解】根据题意可知,当0100x ≤≤时,()5%f x x =;当100x >时,()()()()66log 10015%1001005log 99100x f x x x x -+=⨯+-=+--.故提成()f x 关于销售总额x 的函数关系式为()()65%,0100,5log 99,100.x x f x x x ≤≤⎧=⎨+->⎩【小问2详解】当0100x ≤≤时,()5%5%1005f x x =≤⨯=,则该销售人员当月的销售总额必定超过100万元,令()65log 997x +-≥,得()6log 992x -≥,解得135x ≥,即该销售人员当月的销售总额至少为135万元.21.已知函数()()cos f x x ωϕ=+(0ω>,π02ϕ<<)的图象的两条相邻对称轴之间的距离是π4,将()f x 图象上所有的点先向右平移π20个单位长度,再将所得图象上所有的点的横坐标缩短到原来的12,得到函数()g x 的图象,且()g x 为偶函数.(1)求()f x 的解析式;(2)若不等式()()210f x mf x -+≥⎡⎤⎣⎦对2ππ,15120x ⎡⎤∈--⎢⎣⎦恒成立,求m 的取值范围.【答案】(1)()cos 45f x x π⎛⎫=+ ⎪⎝⎭;(2)(],2-∞.【解析】【分析】(1)通过周期求出4ω=,利用图象平移,借助偶函数求出π5ϕ=;(2)将恒成立转化为最值问题,借助基本不等式求解即可.【小问1详解】由2ππ24ω=⨯,得4ω=,则()()cos 4f x x ϕ=+,则()ππcos 42cos 8205g x x x ϕϕ⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为()g x 为偶函数,所以ππ5k ϕ-=(k ∈Z ),解得ππ5k ϕ=-(k ∈Z ),因为π02ϕ<<,所以π5ϕ=,则()πcos 45f x x ⎛⎫=+ ⎪⎝⎭.【小问2详解】因为2ππ,15120x ⎡⎤∈--⎢⎣⎦,所以πππ4,536x ⎡⎤+∈-⎢⎥⎣⎦,π1cos 4,152x ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦则不等式()()210f x mf x ⎡⎤-+≥⎣⎦对2ππ,15120x ⎡⎤∈--⎢⎣⎦恒成立可转化为()()1m f x f x ≤+对2ππ,15120x ⎡⎤∈--⎢⎥⎣⎦恒成立,即()()min 1m f x f x ⎡⎤≤+⎢⎢⎥⎣⎦,()1,12f x ⎡⎤∈⎢⎥⎣⎦因为()()12f x f x +≥,当且仅当()()1f x f x =,即()1f x =时,等号成立,所以2m ≤,即m 的取值范围为(],2-∞.22.已知函数()()lg 10lg h x tx x =+-.(1)当1t =-时,求()h x 的零点;(2)设0t >,若1,14k ⎡⎤∀∈⎢⎥⎣⎦,m ∀,[],1n k k ∈+,()()lg3h m h n -≤,求t 的取值范围.【答案】(1)5(2)[)8,+∞【解析】【分析】(1)利用()0h x =解出x 即可得答案;(2)根据函数单调性求出()h x 的最值,化简()()lg3h m h n -≤,再根据二次函数的单调性可得t 的取值范围.【小问1详解】当1t =-时,由()()lg 10lg 0h x x x =--=,得10lg0x x -=,即101xx-=,10x x -=,解得5x =,即()h x 的零点为5.【小问2详解】()1010lglg tx h x t x x +⎛⎫==+ ⎪⎝⎭,0t >.因为函数10y t x=+在()0,∞+上单调递减,函数lg y x =在()0,∞+上单调递增,所以()h x 在[],1k k +上单调递减,则()()()()max min 10101lg lg lg31h x h x h k h k t t k k ⎛⎫⎛⎫-=-+=+-+≤⎪ ⎪+⎝⎭⎝⎭,所以101031t t k k ⎛⎫+≤+ ⎪+⎝⎭,即()21050tk t k ++-≥对任意的1,14k ⎡⎤∈⎢⎥⎣⎦恒成立.设函数()()2105g k tk t k =++-,因为0t >,所以()g k 在1,14⎡⎤⎢⎥⎣⎦上单调递增,则()()2min1111050444g k g t t ⎛⎫⎛⎫==++-≥ ⎪ ⎪⎝⎭⎝⎭,解得8t ≥,故t 的取值范围为[)8,+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、填空题(本大题共6小题,每小题4分,共24分.把答案填在题中横线上)
13.若不等式x2+ax+a-2>0的解集为R,则a可取值的集合为__________.
14.函数y= 的定义域是______,值域为______.
15.若不等式3 >( )x+1对一切实数x恒成立,则实数a的取值范围为______.
解得a=3 b=-2故f(x)=3x-2
8、解:A.f(x)定义域为R,g(x)定义域为x≠0 B.f(x)定义域为R,g(x)定义域为x≠2
A.(1,9)B.[1,9]C.[6,9 D.(6,9]
5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为
A.18B.30C. D.28
6.函数f(x)= (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元素是
8.下列各组函数中,表示同一函数的是
A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)=
C.f(x)=|x|,g(x)= D.f(x)=x,g(x)=( )2
9.f(x)= ,则f{f[f(-3)]}等于
10.已知2lg(x-2y)=lgx+lgy,则 的
11.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则a取值范围是
答案
1、由题知A∪B={0,1},所以A= 或{0 }或{1}或{0,1};对应的集合B可为{0,1}或{1},{0,1}或{0},{0,1}或 ,{0},{1},{0,1}
2、解:当k为偶数即k=2m,时A={x|x=4mπ+π,m∈Z},为奇数即k=2m+1,时A={x|x=4mπ+2π,m∈Z},故.B A;注意m,k都是整数,虽字母不同但意义相同
20.已知f(x)是定义在(0,+∞)上的增函数,且满足f(xy)=f(x)+f(y),f(2)=1.
(1)求证:f(8)=3 (2)求不等式f(x)-f(x-2)>3的解集.
21.某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出,当每辆车的月租金每增加50元时,未租出的车将会增加一辆,租出的车每辆每月需维护费150元,未租出的车每辆每月需要维护费50元.
A.5B.7 C.9D.11
2.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则
A.A BB.B AC.A=BD.A∩B=
3.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A}{x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q (P∩Q)成立的所有实数a的取值范围为
A.2B.-2C.-1D.-3
7.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为
A.3x-2B.3x+2C.2x+3D.2x-3
8.下列各组函数中,表示同一函数的是
A.f(x)=1,g(x)=x0B.f(x)=x+2,g(x)=
C.f(x)=|x|,g(x)= D.f(x)=x,g(x)=( )2
16.f(x)= ,则f(x)值域为______.
17.函数y= 的值域是__________.
18.方程log2(2-2x)+x+99=0的两个解的和是______.
三、解答题(本大题共5小题,共66分.解答应写出文字说明、证明过程或演算步骤)
19.全集U=R,A={x||x|≥1},B={x|x2-2x-3>0},求(CUA)∩(CUB).
有实数a的取值范围为
5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,
则19在f作用下的象为
6.函数f(x)= (x∈R且x≠2)的值域为集合N,则集合{2,-2,-1,-3}中不属于N的元
素是
7.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为
9.f(x)= ,则f{f[f(-3)]}等于
A.0B.πC.π2D.9
10.已知2lg(x-2y)=lgx+lgy,则 的值为
A.1B.4C.1或4D. 或4
11.设x∈R,若a<lg(|x-3|+|x+7|)恒成立,则
A.a≥1B.a>1C.0<a≤1D.a<1
12.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是
高一数学必修1试题
1.已知全集I={0,1,2},且满足CI(A∪B)={2}的A、B共有组数
2.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则集合A,B的关系
3.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是
4.若集合P={x|3<x≤22},非空集合Q={x|2a+1≤x<3a-5},则能使Q (P∩Q)成立的所
12.若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是
高一数学必修1试题
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知全集I={0,1,2},且满足CI(A∪B)={2}的A、B共有组数
(1)当每辆车的月租金定为3600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
22.已知函数f(x)=log 2x-log x+5,x∈[2,4],求f(x)的最大值及最小值.
23.已知函数f(x)= (ax-a-x)(a>0且a≠1)是R上的增函数,求a的取值范围.
3、解:A={-2,-1,0,1,2},则B={5,2, 1}
4、解:由Q (P∩Q)知Q P,故 得6<a≤9
5、解:由题知 得a=2 b=-8,19×2-8=28
6、解:令y= 得x= ,当y=-3时x不存在,故-3是不属于N的元素
7、解:设f(x)=ax+b,则2(2a+b)-3(a+b)=5, 2(0a+b)-[(-1)a+b]=1,