2014高考数学一轮复习课件2.8函数与方程
高考数学(文)一轮复习课件:1-9函数与方程(人教A版)

高考考点预览
■ ·考点梳理· ■ 1. 函数的零点 (1)函数零点的定义 对于函数y=f(x),我们把使f(x)=0的实数x叫做函数 y=f(x)的零点. (2)几个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交 点⇔函数y=f(x)有零点.
思考:上述等价关系在研究函数零点、方程的根及 图象交点问题时有什么作用?
思考:若函数y=f(x)在区间(a,b)内有零点,则y= f(x)在区间[a,b]上的图象是否一定是连续不断的一条曲 线,且有f(a)·f(b)<0呢?
提示:不一定.由图(1)、(2)可知.
3.二分法 (1)二分法的定义 对于在区间[a,b]上连续不断且ff((aa))··ff((bb)<0 的函数y= f(x),通过不断地把函数f(x)的零点所在的区间一分为二 , 使区间的两端点逐步逼近零点,进而得到零点的近似值 的方法叫做二分法. (2)用二分法求函数零点近似解的步骤 第一步:确定区间[a,b],验证f(a)·f(b)<0 ,给定精 确度ε;
观察图象可以发现它们有4个交点,即函数y=f(x)- log3|x|有4个零点.
3. [2012·徐州模拟]根据下面表格中的数据,可以判
定方程ex-x-2=0的一个根所在的区间为________.
x
-1 0 1 2
3
ex 0.37 1 2.72 7.39 20.09
x+2 1 2 3 4
5
答案:(1,2)
3. 二分法是求方程的根的近似值的一种计算方法.其 实质是通过不断地“取中点”来逐步缩小零点所在的范 围,当达到一定的精确度要求时,所得区间的任一点就是 这个函数零点的近似值.
4. 要熟练掌握二分法的解题步骤,尤其是初始区间的 选取和最后精确度的判断.
高考数学一轮复习函数与方程

对于在区间[a,b]如图象连续不断且f(a)f(b)<0的函数y=f(x),通过不
断地把它的零点所在区间 一分为二 ,使所得区间的两个端点逐步逼近零
点,进而得到零点近似值的方法叫做二分法.
目录
4.用二分法求函数y=f(x)零点x0的近似值的一般步骤
(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0;
目录
(多选)有如下说法,其中正确的有
(
)
A.函数f(x)的零点为x0,则函数f(x)的图象经过点(x0,0)时,函数值一定
变号
B.连续不断的函数,相邻两个零点之间的所有函数值保持同号
C.函数f(x)在区间[a,b]上连续,若满足f(a)·f(b)<0,则方程f(x)=0
在区间[a,b]上一定有实根
c)(x-a)的两个零点分别位于区间 (
)
A.(a,b)和(b,c)内
B.(-∞,a)和(a,b)内
C.(b,c)和(c,+∞)内
D.(-∞,a)和(c,+∞)内
解析:A 函数y=f(x)是开口向上的二次函数,最多有两个零点,由于a<b
<c,则a-b<0,a-c<0,b-c<0,因此f(a)=(a-b)(a-c)>0,f
知,当直线y=2mx的斜率在kOA,kOB之间时,有三个交点,即kOA<2m<
1
1
1
1
kOB,因为kOA=- ,kOB=1,所以- <2m<1,解得- <m< .
3
3
6
2
答案 (2)A
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录
考向2 探究函数多个零点(方程根)问题
− 2 −2, ≤ 0,
人教版高中总复习一轮数学精品课件 第2章 函数 2.8 函数与方程

通过画函数的图象,观察图象与x轴在给定区间上是否有公共
点来判断
对点训练1
(1)函数f(x)=πx+log2x的零点所在的区间为( A )
1 1
A. 4 , 2
1 1
B. 8 , 4
1
C. 0, 8
1
D. 2 ,1
因为函数f(x)在定义域上是增函数,所以f(x)至多存在一个零点.
数f(x)的零点个数;或将函数f(x)拆分成函数h(x)和g(x)的差,根据
f(x)=0⇔h(x)=g(x),则函数f(x)的零点个数就是函数y=h(x)和
y=g(x)的图象的公共点个数
若能确定函数的单调性,则其零点个数不难得到;若所考查的函
数是周期函数,则只需求出在一个周期内的零点个数,根据周期
性则可得函数的零点个数
e
解题心得判断函数y=f(x)在某个区间上是否存在零点的方法
解方程法
利用函数
零点存在
定理
图象法
当对应方程易解时,可通过解方程,观察方程是否有根落在给
定区间上
首先看函数y=f(x)在区间[a,b]上的图象是否是一条连续不断
的曲线,然后看是否有f(a)f(b)<0.若有,则函数y=f(x)在区间(a,b)
点的横坐标.
1
2.并不是所有的函数都有零点,如函数 y= 就没有零点.
3.当函数y=f(x)的图象在区间[a,b]上是连续的曲线,但是不满足f(a)·
f(b)<0
时,函数y=f(x)在区间(a,b)内可能存在零点,也可能不存在零点.
2.二次函数y=ax2+bx+c(a>0)的图象与函数零点的关系
(聚焦典型)2014届高三数学一轮复习《函数与方程》理 新人教B版

[第11讲 函数与方程](时间:35分钟 分值:80分)基础热身1.[教材改编试题] 函数f (x )=2x+3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)2.函数f (x )=-1x+log 2x 的一个零点落在下列哪个区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.[2013·东北名校二模] 若a >2,则函数f (x )=13x 3-ax 2+1在(0,2)内零点的个数为( )A .3B .2C .1D .04.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),3x (x ≤0),且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的范围是( )A .(-∞,0)B .(0,1)C .(1,2)D .(1,+∞)能力提升5.[2013·海口一模] 函数f (x )=e x+x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2) 6.[2013·厦门模拟] 已知函数f (x )=1+x -x 22+x 33-x 44+…+x 2 0112 011,则下列结论正确的是( )A .f (x )在(-1,0)上恰有一个零点B .f (x )在(0,1)上恰有一个零点C .f (x )在(-1,0)上恰有两个零点D .f (x )在(0,1)上恰有两个零点7.定义在R 上的函数f (x )既是奇函数,又是周期函数,T 是它的一个正周期.若将方程f (x )=0在闭区间[-T ,T ]上的根的个数记为n ,则n 可能为( )A .0B .1C .3D .58.[2013·天津卷] 对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R ,若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝⎛⎭⎪⎫-1,-34 C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞ D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞ 9.已知对于任意实数x ,函数f (x )满足f (-x )=-f (x ).若方程f (x )=0有2 013个实数解,则这2 013个实数解之和为________.10.在用二分法求方程x 3-2x -1=0的一个近似解时,已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.11.[2013·温州质检] 对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.若f (x )=ln x +x 是k 倍值函数,则实数k 的取值范围是________.12.(13分)已知a 是实数,函数f (x )=2ax 2+2x -3-a ,如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.难点突破13.(1)(6分)已知二次函数f (x )=x 2-(m -1)x +2m 在[0,1]上有且只有一个零点,则实数m 的取值范围为( )A .(-2,0)B .(-1,0)C .[-2,0]D .(-2,-1)(2)(6分)设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点的是( )A .[-4,-2]B .[-2,0]C .[0,2]D .[2,4]课时作业(十一)【基础热身】1.B [解析] 因为f (-1)f (0)<0,所以区间(-1,0)是函数f (x )=2x+3x 的零点所在的一个区间,故选B.2.B [解析] 根据函数的零点存在定理得到f (1)f (2)=(-1)×12<0,故函数的一个零点在区间(1,2)内.3.C [解析] f ′(x )=x 2-2ax ,由a >2可知,f ′(x )在x ∈(0,2)恒为负,即f (x )在(0,2)内单调递减,又f (0)=1>0,f (2)=83-4a +1<0,∴f (x )在(0,2)内只有一个零点.故选C.4.D [解析] 在同一坐标系内分别作出y 1=f (x ),y 2=-x +a 的图象,其中a 表示直线在y 轴的截距,结合图形可知当a >1时,直线y 2=-x +a 与y 1=log 2x 只有一个交点,即a ∈(1,+∞).【能力提升】5.C [解析] ∵f (-1)=e -1-1-2<0,f (0)=1-2<0,f (1)=e +1-2>0,∴函数的零点所在区间为(0,1).6.A [解析] 因为f ′(x )=1-x +x 2-x 3+…+x 2 010>0,x ∈(-1,0),所以函数f (x )=1+x -x 22+x 33-x 44+…+x 2 0112 011在(-1,0)单调增,f (0)=1>0,f (-1)<0,选A.7.D [解析] 定义在R 上的函数f (x )是奇函数,f (0)=0,又是周期函数,T 是它的一个正周期,∴f (T )=f (-T )=0,f ⎝ ⎛⎭⎪⎫-T 2=-f ⎝ ⎛⎭⎪⎫T 2=f ⎝ ⎛⎭⎪⎫-T2+T =f ⎝ ⎛⎭⎪⎫T 2,∴f ⎝ ⎛⎭⎪⎫-T 2=f ⎝ ⎛⎭⎪⎫T 2=0,则n 可能为5.8.B [解析] f (x )=⎩⎨⎧x 2-2,x 2-2-()x -x 2≤1,x -x 2,x 2-2-()x -x 2>1=⎩⎪⎨⎪⎧x 2-2,-1≤x ≤32,x -x 2,x <-1,或x >32,则f ()x 的图象如图.∵y =f (x )-c 的图象与x 轴恰有两个公共点, ∴y =f (x )与y =c 的图象恰有两个公共点,由图象知c ≤-2,或-1<c <-34.9.0 [解析] 由奇函数的性质得f (0)=0,其余2 012个实数解互为相反数,则这2 013个实数解之和为0.10.⎝ ⎛⎭⎪⎫32,2 [解析] 计算函数f (x )=x 3-2x -1在x =1,32,2处的函数值,根据函数零点的存在定理进行判断.f (1)<0,f (2)>0,f ⎝ ⎛⎭⎪⎫32=278-3-1<0,f ⎝ ⎛⎭⎪⎫32f (2)<0,故下一步断定该根在区间⎝ ⎛⎭⎪⎫32,2内. 11.⎝ ⎛⎭⎪⎫1,1+1e [解析] 因为f (x )=ln x +x 是k 倍值函数,且f (x )在[a ,b ]上单调递增,所以⎩⎪⎨⎪⎧ln a +a =ka ,ln b +b =kb ,则g (x )=ln x +(1-k )x 在(0,+∞)上有两个零点,即y =ln x 与y=(k -1)x 相交于两点,所以k -1>0.当k =1+1e 时相切,所以1<k <1+1e.12.解:(1)若a =0,f (x )=2x -3,显然在[-1,1]上没有零点,所以a ≠0.(2)若a ≠0,①令Δ=4+8a (3+a )=8a 2+24a +4=0,解得a =-3±72.当a =-3-72时,y =f (x )恰有一个零点在[-1,1]上;②当f (-1)·f (1)=(a -1)(a -5)<0,即1<a <5时, y =f (x )在[-1,1]上也恰有一个零点.③当y =f (x )在[-1,1]上有两个零点时,则⎩⎪⎨⎪⎧Δ=8a 2+24a +4>0,-1≤-12a ≤1,af (1)≥0,af (-1)≥0.解得a ≥5或a <-3-72.综上,所求实数a 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a >1或a ≤-3-72. 【难点突破】13.(1)C (2)A [解析] (1)①当方程x 2-(m -1)x +2m =0在[0,1]上有两个相等实根时,Δ=(m -1)2-8m =0且0≤m -12≤1,此时无解.②当方程x 2-(m -1)x +2m =0有两个不相等的实根时,(i)有且只有一根在[0,1]上时,有f (0)f (1)<0,即2m (m +2)<0,解得-2<m <0;(ii)有两根在[0,1]上时有⎩⎪⎨⎪⎧Δ>0,0<m -12<1,f (0)>0,f (1)>0,此时无解; (iii)当f (0)=0时,m =0,方程可化为x 2+x =0,解得x 1=0,x 2=-1,符合题意;(iv)当f (1)=0时,m =-2,方程可化为x 2+3x -4=0,解得x 1=1,x 2=-4,符合题意.综上所述,实数m 的取值范围为[-2,0].(2)f (0)=4sin1>0,f (2)=4sin5-2,由于π<5<2π,所以sin5<0,故f (2)<0,故函数在[0,2]上存在零点;由于f (-1)=4sin(-1)+1,-π2<-1<-π6,所以sin(-1)<-12,故f (-1)<0,故函数在[-1,0]上存在零点,也在[-2,0]上存在零点;令x =5π-24∈[2,4],则f ⎝ ⎛⎭⎪⎫5π-24=4sin 5π2-5π-24=4-5π-24=18-5π4>0,而f (2)<0,所以函数在[2,4]上存在零点.排除法知函数在[-4,-2]上不存在零点.。
人教版高考总复习一轮数学精品课件 主题二 函数 第三章 函数与基本初等函数-第八节 函数与方程

2.用二分法求方程 + lg − 3 = 0的近似解,以下区间可以作为初始区间的是() B
A.[1,2]B.[2,3]C.[3,4]D.[4,5]
[解析]设 = + − ,显然函数图象是连续的,且 = − < ,
= − < , = > , = + > , = + > ,
[解析]因为函数 =
−
ቤተ መጻሕፍቲ ባይዱ
− 在区间 , 上单调递增,又函数
= − − 的一个零点在区间 , 内,则有 ⋅ < ,所以
− − − < ,即 − < ,所以 < < .故选C.
4.已知函数 = e − e− + 4,若方程 = + 4 > 0 有三个不同的实根1 ,
= 或 = ,作出 的图象,如图所示:
观察图象可知, = − 无解, = 有3个解, = 有1个解.综上所述,函数
的零点个数为4.故答案为4.
[对点训练3](1)已知函数 =
实根个数为() A
A.3
2 +1
൞ 2
−1
B.4
定理得函数 的零点位于区间 , 内.故选C.
法二(数形结合):
函数 = + − 的零点所在区间转化为 = ,
= − + 的图象的交点横坐标所在范围.如图所示,可知
的零点在 , 内.故选C.
[对点训练1] (多选题)下列函数中,在区间[−1,3]上存在唯一零点的有() BCD
《课堂新坐标》高考数学一轮总复习课件:第二章 第八节 函数与方程(共33张PPT)

2+4 确度 ε=0.01,取区间(2,4)的中点 x1= 2 =3,计算
得 f(2)·f(x1)<0,则此时零点 x0 所在的区间为( )
A.(2,4)
B.(3,4)
探究·提知能
C.(2,3)
D.(2.5,3)
课后作
【解析】 由零点存在性定理知x0∈(2,3),故选C.
【答案】 C
菜单
新课标 ·文科数学(广东专用)
菜单
新课标 ·文科数学(广东专用)
Δ=b2-4ac
落实·固基础
Δ>0
二次函数 y=ax2+bx+c
(a>0)的图象
Δ=0
Δ<0
高考体验·明
探究·提知能与x轴的交点 零点个数
_(_x_1,___0_),___(x_2_,__0__) __(_x_1,___0_)_
2
1
无交点 课后作 0
菜单
新课标 ·文科数学(广东专用)
菜单
新课标 ·文科数学(广东专用)
落实·固基础
1.解答本题一要从图表中寻找数量信息,二要注 高考体验·明 意“精确度”的含义,切不可与“精确到”混淆.
2.(1)用二分法求函数零点的近似解必须满足①y
=f(x)的图象在[a,b]内连续不间断,②f(a)·f(b)<0.(2)
在第一步中,尽量使区间长度缩短,以减少计算量及计
落实·固基础
新课标 ·文科数学(广东专用)
第八节 函数与方程
高考体验·明
探究·提知能 菜单
课后作
新课标 ·文科数学(广东专用)
落实·固基础 1.函数零点
高考体验·明
(1)定义:对于函数y=f(x)(x∈D),把使____f_(x_)_=_0___成
高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(
)
A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]
)
D、[5,+∞﹚
2024届高考一轮复习数学课件(新教材新高考新人教A版) 对数与对数函数

所以a+2b>3, 所以a+2b的取值范围为(3,+∞).
思维升华
对数函数图象的识别及应用方法 (1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的 特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利 用数形结合法求解.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若M=N,则logaM=logaN.( × )
(2)函数y=loga2x(a>0,且a≠1)是对数函数.( × )
(3)对数函数y=logax(a>0,且a≠1)在(0,+∞)上是增函数.( × )
(4)函数y=log2x与y=log 1
C.(0,1)
B.(1,3) D.(1,+∞)
令t(x)=6-ax,因为a>0,所以t(x)=6-ax为减函数. 又由函数f(x)=loga(6-ax)在(0,2)上单调递减, 可得函数t(x)=6-ax>0在(0,2)上恒成立,且a>1, 故有a6>-12,a≥0, 解得 1<a≤3.
(2)(2022·惠州模拟)若函数f(x)=logax2-ax+12 (a>0,且a≠1)有最小值, 则实数a的取值范围是_(_1_,___2_)_.
命题点3 对数函数的性质及应用 例5 (2023·郑州模拟)设函数f(x)=ln|x+3|+ln|x-3|,则f(x)
√A.是偶函数,且在(-∞,-3)上单调递减
B.是奇函数,且在(-3,3)上单调递减 C.是奇函数,且在(3,+∞)上单调递增 D.是偶函数,且在(-3,3)上单调递增
函数f(x)的定义域为{x|x≠±3}, f(x)=ln|x+3|+ln|x-3|=ln|x2-9|, 令g(x)=|x2-9|, 则f(x)=ln g(x), 函数g(x)的单调区间由图象(图略)可知, 当x∈(-∞,-3),x∈(0,3)时,g(x)单调递减, 当x∈(-3,0),x∈(3,+∞)时,g(x)单调递增, 由复合函数单调性同增异减得单调区间. 由f(-x)=ln|(-x)2-9|=ln|x2-9|=f(x)得f(x)为偶函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 【解析】 由题意知函数f(x)= ,g(x)=ax2+bx(a, x b∈R,a≠0)的图象有且仅有两个公共点A(x1,y1),B(x2, 1 y2),等价于方程 =ax2+bx(a,b∈R,a≠0)有两个不同的 x 根x1,x2,即方程ax3+bx2-1=0有两个不同非零实根x1, x2, 因而可设ax3+bx2-1=a(x-x1)2(x-x2), 2 即ax3+bx2-1=a(x3-2x1x2+x 1 x-x2x2+2x1x2x- 2 x2x1), ∴b=a(-2x1-x2),x2+2x1x2=0,-ax2x2=-1, 1 1 ∴x1+2x2=0,ax2>0,
x+2 (2013· 武汉模拟)设函数f(x)=log3 -a在区间(1,2) x 内有零点,则实数a的取值范围是( ) A.(-1,log32) B.(0,log32) C.(log32,1) D.(1,log34)
【解析】 ∵函数f(x)在区间(1,2)内有零点, x+2 ∴方程log3 =a在区间(1,2)上有解, x x+2 x+2 由1<x<2,得2< <3,∴log32<log3 <1, x x 所以log32<a<1.
【思路点 拨】
(1)先根据零点存在性定理证明有 零
点,再根据函数的单调性判断零点的个数. (2)画出两个函数的图象寻找零点所在的区间.
【尝试解答】
(1)因为f′(x)=2xln 2+3x2>0,所以函数
f(x)=2x+x3-2在(0,1)上递增,且f(0)=1+0-2=-1<0,
f(1)=2+1-2=1>0,所以有1个零点.
2.“f(a)·f(b)<0”是“函数y=f(x)(函数图象连续)在 区间(a,b)内有零点”的什么条件?
【提示】
f(a)·f(b)<0⇒函数y=f(x)在区间(a,b)内有
零点,反之不一定成立,如函数f(x)=x2-2x+1在区间(0, 2)内有零点x=1,但f(0)f(2)>0,因此,“f(a)·f(b)<0”是 “函数f(x)(函数图象连续)在区间(a,b)内有零点”的充分不 必要条件.
(3)零点存在性定理:如果函数y=f(x)在区间[a,b]上的
图象是连续不断的一条曲线,并且有______________,那么 f(a)·f(b)<0
(a,b) 函数y=f(x)在区间_________内有零点,即存在x0∈(a,b), f(x0)=0 使得_____________.
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
【答案】
(1)B
(2)(1,2)
1.函数零点的判定常用的方法有:(1)零点存在性定
理;(2)数形结合;(3)解方程f(x)=0Байду номын сангаас 2.求函数的零点,从代数角度思考就是解方程f(x)= 0;从几何角度思考就是研究其图象与x轴交点的横坐标.通 过画出函数的图象,观察图象与x轴在给定区间上的交点判
定.
(1)函数f(x)= x-cos x在[0,+∞)内( A.没有零点 C.有且仅有两个零点
在一个区间的端点处函数值异号是这个函数在这个区间上存 在零点的充分不必要条件.
从近两年高考试题看,函数的零点、方程的根的问题是
高考的热点,题型以客观题为主,主要考查学生转化与化归 及函数与方程的思想.
思想方法之六
用函数与方程思想解决图象公共点问题
1 (2012· 山东高考)设函数f(x)= x ,g(x)=ax2+bx(a, b∈R,a≠0).若y=f(x)的图象与y=g(x)的图象有且仅有两 个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的 是( ) A.当a<0时,x1+x2<0,y1+y2>0 B.当a<0时,x1+x2>0,y1+y2<0 C.当a>0时,x1+x2<0,y1+y2<0 D.当a>0时,x1+x2>0,y1+y2>0
1 x-2 (2)设f(x)=x -( ) , 2 则x0是函数f(x)的零点. 在同一坐标系下画出函 1 x-2 3 数y=x 与y=( ) 的图 2 象,如图所示.
3
1 -1 ∵f(1)=1-( ) =-1<0, 2 10 f(2)=8-( ) =7>0 2 ∴f(1)f(2)<0, ∴x0∈(1,2).
【答案】
B
4.已知函数f(x)=x2+x+a在区间(0,1)上有零点,则
实数a的取值范围是________.
【解析】
函数f(x)=x2+x+a在(0,1)上递增.
由已知条件f(0)f(1)<0,即a(a+2)<0,解得-2<a<0.
【答案】
(-2,0)
(1)(2012· 天津高考)函数f(x)=2x+x3-2在区间(0,1)内 的零点个数是( ) A.0 B.1 C.2 D.3 1 x-2 3 (2)(2013· 湛江模拟)设函数y=x 与y=( ) 的图象的交 2 点为(x0,y0),则x0所在的区间(端点值为连续整数的开区间) 是________.
1.解答本题一要从图表中寻找数量信息,二要注意
“精确度”的含义,切不可与“精确到”混淆. 2.(1)用二分法求函数零点的近似解必须满足①y=f(x) 的图象在[a,b]内连续不间断,②f(a)·f(b)<0.(2)在第一步 中,尽量使区间长度缩短,以减少计算量及计算次数.
在用二分法求方程x3-2x-1=0的一个近似解时,现在 已经将根锁定在区间(1,2)内,则下一步可断定该根所在的
(2)若g(x)-f(x)=0有两个相 异的实根,即g(x)与f(x)的图象有 两个不同的交点,作出g(x)=x+ e2 (x>0)的大致图象. x
∵f(x)=-x2+2ex+m-1=-(x-e)2+m-1+e2,
∴其图象的对称轴为x=e,开口向下,最大值为m-1
+e2,故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x) 有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值 范围是(-e2+2e+1,+∞).
【解析】 【答案】
由零点存在性定理知x0∈(2,3),故选C. C
2.若函数f(x)=ax+b有一个零点是2,那么函数g(x)= bx2-ax的零点是( ) 1 A.0,2 B.0, 2 1 1 C.0,- D.2,- 2 2
【解析】 由题意知2a+b=0,即b=-2a. a 1 令g(x)=bx2-ax=0得x=0或x= =- . b 2
区间为________.
【解析】 1, 3 27 ∵f( )= -4<0,f(2)=8-4-1>0,f(1)<0, 2 8 3 ∴f(x)=0的根在( ,2)内. 2 3 在(1,2)内取中点x0= ,令f(x)=x3-2x- 2
【答案】
3 ( ,2) 2
(2013· 潮州模拟)已知函数f(x)=-x2+2ex+m-1,g(x) e2 =x+ (x>0). x (1)若g(x)=m有实数根,求m的取值范围; (2)确定m的取值范围,使得g(x)-f(x)=0有两个相异实 根.
数y=f(x),通过不断地把函数f(x)的零点所在的区间 一分为二 零点 __________,使区间的两个端点逐步逼近______,进而 得到零点近似值的方法叫做二分法.
1.函数的零点是函数y=f(x)的图象与x轴的交点吗?
【提示】
不是.函数的零点是一个实数,是函数y=
f(x)的图象与x轴交点的横坐标.
当a>0时,x2>0,∴x1+x2=-x2<0,x1<0,∴y1+y2= 1 1 x1+x2 + = >0. x1 x2 x1x2 当a<0时,x2<0,∴x1+x2=-x2>0,x1>0, 1 1 x1+x2 ∴y1+y2= + = <0. x1 x2 x1x2
【答案】 B
易错提示:(1)不能把函数图象的交点问题转化为方程 的根的问题,找不到解决问题的切入点. (2)不能把方程根的情况与相应函数的极值大小联系起 来,思维受阻,无法解答. 防范措施:(1)明确函数图象的交点、方程的根与函数
【思路点拨】 从而数形结合求解. 解答(1)可用基本不等式求出最值或数
形结合法求解,(2)转化为两个函数f(x)与g(x)有两个交点,
e2 【尝试解答】 (1)∵g(x)=x+ ≥2 e2=2e, x 等号成立的条件是x=e,故g(x)的值域是[2e,+∞), 因此,只需m≥2e,则g(x)=m就有零点.
1.(人教 A 版教材习题改编)用二分法求函数 y=f(x)在 区间(2,4)上的近似解,验证 f(2)·f(4)<0,给定精确度 ε 2+4 =0.01,取区间(2,4)的中点 x1= =3,计算得 f(2)· 1) f(x 2 <0,则此时零点 x0 所在的区间为( ) A.(2,4) B.(3,4) C.(2,3) D.(2.5,3)
)
B.有且仅有一个零点 D.有无穷多个零点 2 (2)(2013· 汕头模拟)函数f(x)=ln(x-2)- 的零点所在的 x 大致区间是( ) A.(1,2) B.(2,3) C.(3,4) D.(4,5)
【解析】 (1)令f(x)= x-cos x=0,则 x=cos x,设 函数y= x 和y=cos x,在同一坐标系下作出在[0,+∞)的 图象,显然两函数的图象的交点有且只有一个. 函数f(x)= x-cos x在[0,+∞)内有且仅有一个零点. (2)由题意知函数f(x)的定义域为{x|x>2}. 2 1 ∵f(3)=- <0,f(4)=ln 2- >0, 3 2 2 f(5)=ln 3- >0, 5 ∴f(3)· f(4)<0,f(4)· f(5)>0, ∴函数f(x)的零点在(3,4)之间.
第八节
函数与方程
1.函数零点 f(x)=0 (1)定义:对于函数y=f(x)(x∈D),把使__________成立 的实数x叫做函数y=f(x)(x∈D)的零点. (2)函数零点与方程根的关系:方程f(x)=0有实根⇔函 x轴 数y=f(x)的图象与_____有交点⇔函数y=f(x)有零点 _______.