高考数学函数与方程的思想方法

合集下载

高考数学方程与函数知识点

高考数学方程与函数知识点

高考数学方程与函数知识点一、一次函数一次函数是指函数的最高次数为1的函数,通常表达为y=ax+b 的形式,其中a称为斜率,b称为截距。

1. 斜率:斜率可以用来表示函数图像的增减趋势,斜率为正表示函数递增,斜率为负表示函数递减。

2. 截距:截距表示函数图像与y轴之间的交点,可以用来确定函数图像的位置。

二、二次函数二次函数是指函数的最高次数为2的函数,通常表达为y=ax^2+bx+c的形式,其中a、b、c均为常数。

1. 抛物线:二次函数的图像是一条抛物线,其开口方向由a的正负决定。

2. 零点:通过解方程y=0,可以求得二次函数的零点,即方程的根。

3. 非负性:当a>0时,二次函数的值大于等于c,当a<0时,二次函数的值小于等于c。

4. 顶点:二次函数的顶点坐标可以通过求得x=-b/(2a)来确定。

三、指数函数指数函数是指函数关系中包含以常数e为底数的指数函数。

1. 指数规律:指数函数的数学规律为a^x=a^y,当x=y时,指数函数取相同的值。

2. 增长与衰减:指数函数具有快速增长或衰减的特点,指数函数的指数为正时,函数递增;指数为负时,函数递减。

3. 自然指数函数:自然指数函数是指以常数e≈2.71828为底的指数函数,形式为f(x)=e^x。

四、对数函数对数函数是指函数关系中包含以常数e为底数的对数函数。

1. 对数规律:对数函数的数学规律为a^loga(x)=x,当x>0时,对数函数取正值。

2. 增长与衰减:对数函数具有递增但增长速度逐渐减小的特点。

3. 自然对数函数:自然对数函数是指以常数e≈2.71828为底的对数函数,形式为f(x)=ln(x)。

五、三角函数三角函数包括正弦函数、余弦函数和正切函数,常用于解决与角度相关的问题。

1. 正弦函数:正弦函数表示一个角的对边与斜边的比值,通常表示为sin(x)。

2. 余弦函数:余弦函数表示一个角的邻边与斜边的比值,通常表示为cos(x)。

[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)

[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)

[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。

函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。

经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。

2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。

3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。

4.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nbax)((n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

函数与方程思想

函数与方程思想

函数与方程的思想 函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其它内容时,起着重要作用;方程思想是解决各类计算问题的基本思想,是培养运算能力的基础,高考把函数与方程思想作为重要思想方法重点来考查.函数是高中数学的主线,它用联系和运动、变化的观点研究、描述客观世界中相互关联的量之间的依存关系,形成变量数学的一大重要基础和分支. 函数思想以函数知识做基石,用运动变化的观点分析、研究数学对象间的数量关系,使函数知识的应用得到极大的扩展,丰富并优化了数学解题活动,给数学解题带来很强的创新能力. 因此,函数思想是数学高考常考的热点. 函数思想在高考中的应用主要是函数的概念、性质及图像的应用.方程的思想,就是分析数学问题中各个量及其关系,运用数学语言建立方程或方程组、不等式或不等式组或构造方程或方程组、不等式或不等式组,通过求方程或方程组、不等式或不等式组的解的情况,使问题得以解决.函数思想与方程思想的联系十分密切,解方程()0f x =就是求函数()y f x =当函数值为零时自变量x 的值;求综合方程()()f x g x =的根或根的个数就是求函数()y f x =与()y g x =的图像的交点横坐标或交点个数,正是这些联系,促成了函数与方程思想在数学解题中的互化互换,丰富了数学解题的思想宝库.函数与方程的思想在解题应用中主要体现在两个方面:(1) 借助有关初等函数的图象性质,解有关求值、解(证)方程(等式)或不等式,讨论参数的取值范围等问题;(2) 通过建立函数式或构造中间函数把所要研究的问题转化为相应的函数模型,由所构造的函数的性质、结论得出问题的解.由于函数在高中数学中的举足轻重的地位,因而函数与方程的思想一直是高考考查的重点,对基本初等函数的图象及性质要牢固掌握,另外函数与方程的思想在解析几何、立体几何、数列等知识中的广泛应用也要重视.一、函数思想的应用1.显化函数关系在方程、不等式、数列、圆锥曲线等数学问题中,将原有隐含的函数关系凸显出来,从而利用函数知识或函数方法解决问题.【例1】已知,,若点在线段上,则的最大值为()(2,5)A (4,1)B (,)P x y AB 2x y -A.−1B.3C.7D.8【分析】本题是解析几何问题,由所在直线方程可得x 与y 的函数关系,转化为函数求值域的问题。

2022年高考数学解题技巧:第1讲 函数与方程思想

2022年高考数学解题技巧:第1讲 函数与方程思想

第 1 页 共 3 页 2022年高考数学解题技巧:第1讲 函数与方程思想 思想概述 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析问题、转化问题,使问题得以解决. 方法一 运用函数相关概念的本质解题在理解函数的定义域、值域、性质等本质的基础上,主动、准确地运用它们解答问题.常见问题有求函数的定义域、解析式、最值,研究函数的性质.例1 (1)若函数f (x )=⎩⎪⎨⎪⎧ -x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则实数a 的取值范围为( )A .(0,1)B.⎣⎡⎭⎫13,1C.⎝⎛⎭⎫13,1D.⎝⎛⎭⎫0,13 思路分析 先求出f (x )=a x 是减函数时a 的范围→满足-0+3a ≥a 0时a 的范围→取交集 答案 B解析 ∵函数f (x )是R 上的减函数,∴⎩⎪⎨⎪⎧0<a <1,3a ≥a 0,解得13≤a <1. ∴实数a 的取值范围为⎣⎡⎭⎫13,1.故选B.批注 在函数的第一段中,虽然没有x =0,但当x =0时,本段函数有意义,故可求出其对应的“函数值”,且这个值是本段的“最小值”,为了保证函数是减函数,这个“最小值”应不小于第二段的最大值,即f (0),这是解题的一个易忽视点.(2)已知定义域为R 的函数f (x )=-2x +12x +1+m是奇函数,当x ∈[-1,1]时,f (x )≥a ,则a 的最大值为________.思路分析 f (x )为奇函数→m 的取值→判断f (x )的单调性→f (x )的最值→a 的范围答案 -16解析 ∵f (x )为奇函数,∴f (-x )=-f (x ),即-2-x +12-x +1+m =--2x +12x +1+m ,。

高考数学复习初等函数知识点:函数与方程

高考数学复习初等函数知识点:函数与方程

高考数学复习初等函数知识点:函数与方程
高考数学复习初等函数知识点:函数与方程
数学思想是对数学事实与理论经过概括后产生的本质认识,下面是高考数学复习初等函数知识点:函数与方程,希望对考生有帮助。

一、函数的概念与表示
1、映射
(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.
注意点:(1)对映射定义的理解.(2)判断一个对应是映射的方法.一对多不是映射,多对一是映射
2、函数
构成函数概念的三要素①定义域②对应法则③值域
两个函数是同一个函数的条件:三要素有两个相同
二、函数的解析式与定义域
1、求函数定义域的主要依据:
(1)分式的分母不为零;
(2)偶次方根的被开方数不小于零,零取零次方没有意义;
(3)对数函数的真数必须大于零;
(4)指数函数和对数函数的底数必须大于零且不等于1;
三、函数的值域
②若函数f(x)的定义域关于原点对称,则f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1 ,D2,D1∩D2要关于原点对称]
3.奇偶性的判断
①看定义域是否关于原点对称②看f(x)与f(-x)的关系五、函数的单调性
1、函数单调性的定义:
2 设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数.
高考数学复习初等函数知识点:函数与方程就为大家分享到这里,更多精彩内容请关注高考数学知识点栏目。

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。

高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。

第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

如何备考高考数学函数与导数部分重点知识点及解题思路

如何备考高考数学函数与导数部分重点知识点及解题思路

如何备考高考数学函数与导数部分重点知识点及解题思路高考数学是每位学生备战高考的关键科目之一,其中函数与导数部分作为数学的重点内容之一,需要我们充分理解其中的知识点和解题思路。

本文将详细介绍备考高考数学函数与导数部分的重点知识点和解题思路,帮助同学们在备考过程中更好地准备这一部分考试内容。

一、函数的基本概念与性质在备考高考数学函数与导数部分,首先要掌握函数的基本概念与性质。

函数是两个集合之间的一种对应关系,其中自变量和因变量之间存在确定的对应关系。

在学习函数的过程中,需要掌握函数的定义域、值域、图像和性质等相关概念。

在解题时,常用的函数有线性函数、二次函数、指数函数、对数函数等。

每种函数都有自己的特点和主要的解题方法。

在备考过程中,我们需要深入理解每种函数的定义及其特点,同时掌握它们的常用解题方法。

例如,对于一元一次方程,可以通过求解方程组或消元法来确定方程的解。

二、函数的运算与复合函数函数的运算与复合函数也是备考高考数学函数与导数部分的重点内容。

在函数的运算中,我们常遇到的有函数的加减乘除、复合函数的概念和求导法则等。

同学们要熟练掌握函数的运算方法,能够熟练解答相关题目。

复合函数是由两个或多个函数按照一定的顺序组成的新函数。

在解题时,常用的方法是利用函数之间的复合关系求导,根据链式法则将复合函数的导数转化为基本函数的导数。

通过反复练习和掌握相关的解题技巧,我们能够更好地应对高考中的相关题目。

三、导数的基本概念和运算规则导数是函数在某一点的变化速率,也是备考高考函数与导数部分需要掌握的重点内容之一。

在备考过程中,我们需要理解导数的定义和运算规则,并能够熟练计算导数。

导数的定义是函数变化率的极限值,也可以理解为函数曲线在某一点的切线斜率。

计算导数时,常用的方法有基本导数法则、导数的四则运算法则和复合函数求导法则等。

在备考过程中,我们要掌握这些法则的使用方法,能够熟练计算各种函数的导数。

四、函数的应用数学函数在实际问题中有着广泛的应用,备考高考数学函数与导数部分也需要理解其中的应用题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学函数与方程的思想方法Last revised by LE LE in 2021第4讲 函数与方程的思想方法一、知识整合函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。

就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。

函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。

方程思想是动中求静,研究运动中的等量关系.3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。

函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。

(2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。

(3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。

(4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。

(5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论。

(6) 立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

二、例题解析Ⅰ.运用函数与方程、表达式相互转化的观点解决函数、方程、表达式问题。

例1 已知155=-ac b ,(a 、b 、c ∈R ),则有( ) (A) ac b 42> (B) ac b 42≥ (C) ac b 42< (D) ac b 42≤解析 法一:依题设有 a ·5-b ·5+c =0 ∴5是实系数一元二次方程02=++c bx ax 的一个实根;∴△=ac b 42-≥0 ∴ac b 42≥ 故选(B)法二:去分母,移项,两边平方得:22210255c ac a b ++=≥10ac +2·5a ·c =20ac∴ac b 42≥ 故选(B)点评解法一通过简单转化,敏锐地抓住了数与式的特点,运用方程的思想使问题得到解决;解法二转化为b 2是a 、c 的函数,运用重要不等式,思路清晰,水到渠成。

练习1 已知关于x 的方程 2x -(2 m -8)x +2m -16 = 0的两个实根1x 、2x 满足 1x <23<2x ,则实数m 的取值范围_______________。

答案:17{|}22m m -<<; 2 已知函数 32()f x ax bx cx d =+++的图象如下,则( )(A )(),0b ∈-∞ (B)()0,1b ∈(C) (1,2)b ∈ (D)(2,)b ∈+∞答案:A.3 求使不等式)lg(xy ≤a lg ·y x 22lg lg +对大于1的任意x 、y 恒成立的a 的取值范围。

Ⅱ:构造函数或方程解决有关问题:例2 已知tt f 2log )(=,t ∈[2,8],对于f(t)值域内的所有实数m ,不等式x m mx x 4242+>++恒成立,求x 的取值范围。

解析∵t ∈[2,8],∴f(t)∈[21,3] 原题转化为:2)2()2(-+-x x m >0恒成立,为m 的一次函数(这里思维的转化很重要)当x =2时,不等式不成立。

∴x ≠2。

令g(m)=2)2()2(-+-x x m ,m ∈[21,3] 问题转化为g(m)在m ∈[21,3]上恒对于0,则:⎪⎩⎪⎨⎧>>0)3(0)21(g g ; 解得:x>2或x<-1评析 首先明确本题是求x 的取值范围,这里注意另一个变量m ,不等式的左边恰是m 的一次函数,因此依据一次函数的特性得到解决。

在多个字母变量的问题中,选准“主元”往往是解题的关键。

例3 为了更好的了解鲸的生活习性,某动物保护组织在受伤的鲸身上装了电子监测装置,从海洋放归点A 处,如图(1)所示,把它放回大海,并沿海岸线由西向东不停地对它进行了长达40分钟的跟踪观测,每隔10分钟踩点测得数据如下表(设鲸沿海面游动),然后又在观测站B 处对鲸进行生活习性的。

a 、b 近似地满足的关系式并画出鲸的运动路线草图;(2)若鲸继续以(1)-②运动的路线运动,试预测,该鲸经过多长时间(从放归时开设计时)可进入前方观测站B 的观测范围并求出可持续观测的时间及最佳观测时刻。

(注:41≈;精确到1分钟)解析(1)由表中的信息可知:①鲸沿海岸线方向运动的速度为:101(km/分钟) 海岸 西东图1 B②a 、b 近似地满足的关系式为:a b =运动路线如图(2)以A 为原点,海岸线AB 为x 轴建立直角坐标系,设鲸所在位置点P (x ,y ),由①、②得:x y =,又B (15,0),依题意:观测站B 的观测范围是:22)15(y x +-≤5 (y ≥0) 又x y =∴x x +-2)15(≤25 解得:≤x ≤由①得:∴该鲸经过t =10130.11=113分钟可进入前方观测站B 的观测范围 持续时间:10130.1170.17-=64分钟 ∴该鲸与B 站的距离d =22)15(y x +-=225292+-x x当d 最小时为最佳观测时刻,这时x =229=,t =145分钟。

练习4.已知关于x 的方程x a x cos sin 2+-2a = 0有实数解,求实数a 的取值范围。

(答案:0≤a ≤4-32)Ⅲ:运用函数与方程的思想解决数列问题例4设等差数列{a n }的前n 项和为S n ,已知123=a ,12S >0,13S <0,(1)求公差d 的取值范围;(2)指出1S 、2S 、3S …,12S 中哪一个最大,并说明理由。

解析(1)由123=a 得:d a 2121-=,∵12S =d d a 4214444121+=+>0 13S =d d a 5215678131+=+<0 ∴724-<d<-3 (2)n d dn d n n na S n )2512(212)1(21-+=-+= ∵d<0,n S 是关于n 的二次函数,对称轴方程为:x =d 1225-∵724-<d<-3 ∴6<d 1225-<213 ∴当n =6时,n S 最大。

三、强化练习 1.8(x-展开式中5x 的系数为____________. 2.已知方程22(2)(2)0x x m x x n -+-+=的四个根组成一个首项为14的等差数列,则m n -=( ) A 1 B34 C 12 D 383.设双曲线的焦点x 在轴上,两条渐近线为12y x =±,则该双曲线的离心率e =( )C 2D 544.已知锐角三角形ABC 中,31sin(),sin()55A B A B +=-=。

Ⅰ.求证tan 2tan A B =;Ⅱ.设3AB =,求AB 边上的高。

5.甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29。

Ⅰ.分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;Ⅱ.从甲、乙、丙加工的零件中各取一个进行检验,求至少有一个是一等品的概率。

6.设0a >,2()f x ax bx c =++,曲线()y f x =在点00(,())P x f x 处切线的倾斜角的取值范围为0,4π⎡⎤⎢⎥⎣⎦,则点P到曲线()y f x =对称轴距离的取值范围是( )1.0,2A ⎡⎤⎢⎥⎣⎦ 1.0,2B a ⎡⎤⎢⎥⎣⎦ .0,2b C a ⎡⎤⎢⎥⎣⎦1.0,2b D a ⎡-⎤⎢⎥⎣⎦7.设双曲线C:2221(0)xy aa-=>与直线:1l x y+=相交于两个不同的点A、B。

Ⅰ.求双曲线C的离心率e的取值范围;Ⅱ.设直线l与y轴的交点为P,且512PA PB=,求a的值。

相关文档
最新文档