(word完整版)高三数学专题复习(函数与方程练习题)

(word完整版)高三数学专题复习(函数与方程练习题)
(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题)

一、选择题

1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ]

2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b )

3、设点P 为曲线y =x 3-3 x +3

2

上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2

π]∪(65π,π)

D 、[0,2

π

]∪[32π,π)

4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1

3

2+-m m ,则m 的取

值范围为( ) A 、m <

32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3

2

或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( )

A 、f (-1)<f (3)

B 、f (0)>f (3)

C 、f (-1)=f (3)

D 、f (0)=f (3)

6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定

7、函数y =log 2

1 (x 2+kx +2)的值域为R ,则k 的范围为( )

A 、[22 ,+∞]

B 、(-∞,-22)∪[22,+∞]

C 、(-22,22)

D 、(-∞,-22]

8、设α、β依次是方程log 2x +x -3=0及2x +x -3=0的根,则α+β=( ) A 、3 B 、6 C 、log 23 D 、22

9、已知函数y =f (2x +1)是定义在R 上的偶函数,则函数y =f (2x)的图象的对称轴为( ) A 、x =1 B 、x =

21 C 、x =-2

1

D 、x =-1 10、已知y =f (x )是定义在R 上的奇函数,若g (x)为偶函数,且g (x)=f (x -1)g (2)=2008,则 f (2007)

值等于( ) A 、-2007 B 、2008 C 、2007 D 、-2008 11、(理)对于R 上可导的任意函数f (x),若满足(x -1)·f '(x)≥0,则必有( ) A 、f (0) +f (2)<2f (1) B 、f (0)+f (2)≤2 f(1) C 、f (0)+f (2)≥2f (1) D 、f (0)+f (2)>2 f (1) 12、函数f (x )=??

?=≠-)

2(1)

2(|2|lg x x x 若关于x 的方程[f (x)]2+b ·f (x)+C =0,恰有3个不同的实数解

x 1、x 2、x 3,则f (x 1+x 2+x 3)等于( )

A 、0

B 、lg2

C 、lg4

D 、1 13、已知f (x)=2+log 3 x ,x ∈[1,9],则函数y =[f (x)]2+f (x 2 )的最大值为( ) A 、3 B 、6 C 、13 D 、22

14、已知f (x)=lgx ,则函数g (x)=|f (1-x)|的图象大致是( )

15、下列函数的图象中,经过平移或翻折后不能与函数y =log 2x 的图象重合的是( )

A 、y =2x

B 、y =log 21x

C 、y =24x

D 、y =log 2x

1+1

16、已知x 、y ∈[-

4π,4

π],a ∈R ,且x 3+sinx -2a =0,4y 3+sinxcosy +a =0,则cos(x +2y )的值为中( )

A 、0

B 、2

C 、3

D 、1 二、填空题 17、已知函数f (x)=

22

x

+lg (x +12+x ),且f (-1)≈1.62,则f (1)近似值为 。 18、已知f (x)=???<+≥)

4)(2()4(2x x f x x ,则f (log 21

3 )= 。

19、函数f (x)=x 5 -5x 4+5x 3+2,x ∈[-1,2]的值域为 。

20、(理)已知f (x)=x (x +1(x +2)…(x +2006),则f '(0)= 。 21、函数y =

1

---a x x

a 反函数的图象关于点(-1,4)成中心对称,则a = .

22、在函数y = f (x)的图象上任意两点的斜率k 属于集合M ,则称函数y =f (x)是斜率集合M 的函数,写出一个M ?(0,1)上的函数 。 23、若方程lg (-x 2+3x -m )=lg (3-x )在x ∈(0,3)内有唯一解,则m ∈ 。 24、已知定义在R 上的偶函数f (x),满足f (x +2)*f (x)=1,对x ∈R 恒成立,且f (x)>0,则 f (119)= 。

25、已知函数f (3x +2)的定义域为(-2,1),则f (1-2x)的定义域为 。

26、对任意实数x 、y 定义运算x*y =ax +by +cxy ,其中a 、b 、c 为常数,等号右边的运算是通常意义的加、乘运算,现已知1*2=3,2*3=4,且有一个非零常数m ,使得对任意实数x ,都有 x *m =x ,则m = 。 27、在锐角△ABC 中,tamA ,tanB 是方程x 2+mx +m +1=0的两根,则m ∈ 。 28、已知x ∈R ,[x ]表示不大于x 的最大整数,如[π]=3,[-1,2]=-2,则使 [|x 2-1|]=3成立的x 取值范围为 。 29、对于正整数n 和m ,其中m <n ,定义n m !=(n -m )(n -2m )…(n -km ),其中k 是满足 n >km 的最大整数,则

!

20!

1864= 。

三、解答题: 30、(理)设f (x)=(x +1)ln (x +1),若对所有的x ≥0,都有f (x)≥ax 成立,求实数a 的取值范围。

31、已知f (x)是定义在[-1,1]上的奇函数,且f (1)=1,若a 、b ∈[-1,1],a +b ≠0,有

b

a b f a f ++)

()(>0。

⑴判断f (x)在[-1,1]上是增函数还是减函数,并证明你的结论; ⑵解不等式f (x +

2

1

)<f ( 11-x );

⑶若f (x)≤m 2-2am +1对所有x ∈[-1,1],a ∈[-1,1]恒成立,求实数m 的范围。

32、已知f (x)=b ax c x ++2为奇函数,f (1)<f (3),且不等式0≤ f (x)≤2

3

的解集是[-2,-1]∪ [2,4]。

(1)求a 、b 、c 的值;(2)是否存在实数m 使不等式f (-2+sin θ)<-m 2+2

3

对一切θ∈R 成立?若存在,求出m 的取值范围。若不存在,请说明理由。

33、设函数f (x)的定义域为(0,+∞)且对任意正实数x、y有f (xy)=f (x)+f (y)。已知f (2)=1,且当x>1时,f (x)>0。

(1)判断f (x)在(0,+∞)上的单调性。

(2)正数数列{an}的前n项和为Sn,且满足f (S n)=f (a n)+f (a n+1)-1(n∈N*),求{a n}的通项公式。

34、设f (x)=ax2+bx+c(a>0)且存在m、n∈R,使得[f (m)-m]2+[f (n)-n]2=0成立。

(1)若a=1,当n-m>1且t<m时,试比较f (t)与m的大小;

(2)若直线x=m与x=n分别与f (x)的图象交于M、N两点,且M、N两点的连线被直线3(a2+1)x+(a2+1)y+1=0平分,求出b的最大值。

高三数学专题复习答案(函数与方程练习题)

二、填空题 17、2.38 18、

3

64 19、[-9,3] 20、2006! 21、3 22、y =2

1

x (不唯一) 23、(-3,0)∪{1} 24、1

25、(-2,

25

) 26、-5

27、[22+2,+∞) 28、(-5,2]Y )5,2[

29、2

15

三、解答题:

30、(理)解:设g (x )=(x +1)ln (x +1)-ax ,则g ‘

(x )=ln (x +1)+1-a , 令g ′(x )=0?x =e

1

-a -1,当a ≤1时,?x >0,g ‘

(x )>0,∴g (x )在[0,+∞)↑

又g (0)=0,∴当x ≥0有g (x )≥g (0)即a ≤1时,都有f (x )≥ax ∴a ≤1真, 当a >1时,0<x <e 1

-a -1时,g ‘

(x )<0,g (x )在(0,e

1

-a -1)↓ g (0)=0

∴当x ∈(0,e 1

-a -1)有g (x )<g (0)∴f (x )<ax ∴当a >1时f (x )≥ax 不一定真,故a ∈(-∞,

1]

31、解(1)设-1≤x 1<x 2≤1,则x 1-x 2<0,-1-x 2<1

2

121)

()(x x x f x f --+>0 ∴f (x 1)-f (x 2)<0 ∴f (x 1)<f (x 2)↑

(2)1231121x 111

121<---<+--x x x x ≤????

?

??

???≤≥+?

(3)∵f (x )在],11(-↑,m 2-2am +1≥1∴m 2-2am ≥0

令g (a )=-2am +m 2 则有???≥≥-010)1()(y g ∴???

??≥≥+0

2022

2

m m m m -????≤≥≤≥0220m m m m 或-或 ∴{{]2,(0),2[--∞+∞∈Y Y

32、解(1)f (x )奇∴b =0,f (2)=0,f (4)=

2

3

知a =2,c =-4 (∵f (x )=a 1(x -x 4)在[2,4]↑又f (2)=0 f (4)=2

3

(2)∵f (x )=21(x -x

4

)在(-∞,0)↑而-3≤-2+sim θ≤-1

∴f (-2+sin θ)∈[-65,23] ∴23-m 2>2

3

即m 2<0 不存在m

33、(1)x 1>x 2>0则

21x x >1 ∵f (1)=0 ∴f (x 1)+f (x )=0 ∴f (x

1

)=-f (x )

f (x 1)-f (x 2)=f (x 1)+f (

2

1

x )=f (21x x )>0 ∴f (x 1)>f (x 2)↑

(2)f (S n )=f (a n )+f (a n +1)-f (2)∴f (2S n )=f (a 2

n +a n ) ∴2S n =a n +a n 当n =1时,a 1=1 2S n -1=a 2

1-n +a n -1 ∴a n =n

相减的a n -a n -1=1(n ≥2)

34、解(1)易知m 、n 为方程ax 2+(b -1)x +c =0两根,对称轴为x =2

1b

-(a =1) 又n +m =1-b ∴n =1-b -m >1+m ∴m <-2b <21b - ∴t <m <2

1b

-

又f (x )=x 2+bx +c 在(-∞,-2b ]↓ ∴f (t )>f (m )(∵t <m <-2

b

)

即f (t )>m

(2)M (m ,f (m )),N (n ,f (n ))由题改知

012

)1(2)

1(322=++++++n

m a n m a ∴)1(21)1(4222+-=+-=

+a a n m m +n =

a

b 2)

1(-∴b =1-(m +n )=1+)1(222+a a =1+

232111

1=+

≤+

a

a ∴

b 最大值2

3

高考文科数学函数专题讲解及高考真题精选含答案

函 数 【1.2.1】函数的概念 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数 x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须 a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2 x k k Z π π≠+ ∈. ⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集. ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出. ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是

函数与方程练习题.doc

圆梦教育中心高考数学专题 1. 若不等式x2+ax+1>0对于一切xe(O ,刃成立,则a的最小值是(). A. 0 B . — 2 C .—号 D . — 3 2. 已知函数f(x)=log a[&一?门对任意xw [二,+1时,f(x)的递减区间为(). 5_ 5_ A.[车,+8) B.(l , 4 ] 7_ 7_ C.[车,4-oo) D. ( 1 , T] 4. 已知f(x)=asinx+b^/^- +4 (a, beR),且f(lglog310)=5,则f(lglg3)的值是(). A. - 5 B. - 3 C. 3 D. 5 5?己知卫各上J=l(a, b, ce R),则有(). ja A. b2>4ac B. b2>4ac C. b2<4ac D. b2<4ac 6. 方程lgx+x=3的解所在的区间为_______ o A. (0,1) B. (1,2) C. (2,3) D. (3, + -) 7. f(x)定义在R 上的函数,f(x+1)=-缶,当xw[—2,T]时,f(x)=x, 则f(-3.5)为() A.—0.5 B. — 1.5 C.1.5 D.—3.5 PA丄平而丄平而0, A,B为垂足,PA = 4,PB = 2,则AB 8.设P是60°的二而角a-l-0内一点, 的长为( ) A. 2^3 B. 2^5 C? 2>/7 D?4迥 9. 若函数Xx)=(l-m)?-2/7U-5 是偶函数,则7U) () A.先增后减 B.先减后增C?单调递增D?单调递减 10. 对任意非负实数x,不等式厂一皿)Sa恒成立,処I实数a的最小值是(). 1 2 3 A. 2 B. 2 C. D.才

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

高三文科数学三角函数专题测试题(后附答案)

高三文科数学三角函数专题测试题 1.在△ABC 中,已知a b =sin A cos B ,则B 的大小为( ) A .30° B .45° C .60° D .90° 2.在△ABC 中,已知A =75°,B =45°,b =4,则c =( ) A . 6 B .2 6 C .4 3 D .2 3.在△ABC 中,若∠A=60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C . 3 D . 32 在△ABC 中, AC sin B =BC sin A ,∴AC =BC ·sin B sin A =32× 22 3 2 =2 3. 4.在△ABC 中,若∠A=30°,∠B =60°,则a∶b∶c=( ) A .1∶3∶2 B .1∶2∶4 C .2∶3∶4 D .1∶2∶2 5.在△ABC 中,若sin A>sin B ,则A 与B 的大小关系为( ) A .A> B B .A

高考数学二轮专题复习-函数与方程思想

第1讲函数与方程思想 1.函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点 (1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解. (4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论. (5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用 例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3) 解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为 a ≥3x 2-1x 3. 设g (x )=3x 2-1 x 3,则g ′(x )=3(1-2x )x 4 ,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减, 因此g (x )max =g ???? 12=4,从而a ≥4; 当x <0即x ∈[-1,0)时, f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 设g (x )=3x 2-1 x 3,且g (x )在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. (2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数. 又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数. 因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3). 所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解. 已知函数f (x )=1 2 x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范

(word完整版)高三数学专题复习(函数与方程练习题)

高三数学专题复习(函数与方程练习题) 一、选择题 1、定义域为R 的函数y =f (x)的值域为[a ,b ],则函数y =f (x +a )的值域为( ) A 、[2a ,a +b ] B 、[a ,b ] C 、[0,b -a ] D 、[-a ,a +b ] 2、若y =f (x)的定义域为D ,且为单调函数,[a ,b ]D ,(a -b )·f (a)·f (b)>0,则下列命题正确为( ) A 、若f (x)=0,则x ∈(a ,b ) B 、若f (x)>0,则x ? (a ,b) C 、若x ∈(a ,b ),则f (x)=0 D 、若f (x)<0,则x ? (a ,b ) 3、设点P 为曲线y =x 3-3 x +3 2 上的任意一点,P 点处切线倾斜角为α,则α的取值范围为( ) A 、[32π,π] B 、(2π,π) C 、[0,2 π]∪(65π,π) D 、[0,2 π ]∪[32π,π) 4、设函数f (x)是定义R 上的奇函数,若f (x)的最小正周期为3,且f (1)>1,f (2)=1 3 2+-m m ,则m 的取 值范围为( ) A 、m < 32 B 、m <32且m ≠-1 C 、-1<m <32 D 、m >3 2 或m <-1 5、定义在R 上的函数f (x)在(-∞,2)上是增函数,且f (x +2)的图象关于x =0对称,则( ) A 、f (-1)<f (3) B 、f (0)>f (3) C 、f (-1)=f (3) D 、f (0)=f (3) 6、已知对一切x ∈R ,都有f (x)=f (2-x )且方程f (x)=0有5个不同的根,则这5个不同根的和为( ) A 、10 B 、15 C 、5 D 、无法确定 7、函数y =log 2 1 (x 2+kx +2)的值域为R ,则k 的范围为( ) A 、[22 ,+∞] B 、(-∞,-22)∪[22,+∞]

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

高三文科数学知识点总结

高中数学 必修1知识点 第一章 集合与函数概念 【1.1.1】集合的含义与表示 (1)集合的概念 集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法 N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集. (3)集合与元素间的关系 对象a 与集合M 的关系是a M ∈,或者a M ?,两者必居其一. (4)集合的表示法 ①自然语言法:用文字叙述的形式来描述集合. ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类 ①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?). 【1.1.2】集合间的基本关系 名称 记号 意义 性质 示意图 子集 B A ? (或 )A B ? A 中的任一元素都属 于B A ?(1)A A ?? (2) A C ?,则B C ?且B A ?若(3) A B =,则B A ?且B A ?若(4) A(B) 或 B A 真子集 A ≠?B (或B ≠ ?A ) B A ?中至少 B ,且有一元素不属于A 为非空子集) A (A ≠ ??)1( A C ≠ ?,则 B C ≠ ?且A B ≠ ?若(2) B A 集合 相等 A B = A 中的任一元素都属 于B ,B 中的任一元素 都属于A B ?(1)A A ?(2)B A(B) (7)已知集合A 有(1)n n ≥个元素,则它有2个子集,它有21-个真子集,它有21-个非空子集,它有22-非空真 子集. 【1.1.3】集合的基本运算 名称 记号 意义 性质 示意图 交集 A B I {|,x x A ∈且 }x B ∈ (1) A A A =I (2)A ?=?I (3)A B A ?I A B B ?I B A 并集 A B U {|,x x A ∈或 }x B ∈ (1)A A A =U (2)A A ?=U (3)A B A ?U A B B ?U B A 补集 U A e {|,}x x U x A ∈?且 ()U A A U =U e2 ()U A A =? I e1 (1不等式 解集 ||(0)x a a <> {|}x a x a -<< ||(0)x a a >> |x x a <-或}x a > ||,||(0)ax b c ax b c c +<+>> , ||x a <看成一个整体,化成 ax b +把 型不等式来求解 ||(0)x a a >> (2()()()U U U A B A B =I U 痧 ?()()() U U U A B A B =U I 痧?

人教版数学必修一函数与方程练习题

人教版数学必修一函数与方程练习题 重点:掌握零点定理的内容及应用 二次函数方程根的分布 学会利用图像进行零点分布的分析 1. 下列函数中,不能用二分法求零点的是() 2. 如果二次函数有两个不同的零点,则的取值范围是() 3. A. B. C. D. 4. 已知函数22)(m mx x x f --=,则)(x f () A .有一个零点 B .有两个零点 C .有一个或两个零点 D .无零点 5. 已知函数)(x f 的图象是连续不间断的,有如下的)(,x f x 对应值表 A .2个 B .3个 C .4个 D .5个 6. 若方程0=--a x a x 有两个根,则a 的取值范围是( ) A .)1(∞+ B .)1,0( C .),0(+∞ D .? 7. 设函数? ??>≤++=,0,3,0,)(2x x c bx x x f 若2)2(),0()4(-=-=-f f f ,则函数x x f y -=)(的零点的个数为( ) A .1 B .2 C .3 D .4 8. 无论m 取哪个实数值,函数)2 3(232--+-=x m x x y 的零点个数都是( ) A .1 B .2 C .3 D .不确定 9. 已知函数).0(42)( 2>++=a ax ax x f 若0,2121=+ B .)()(21x f x f = C .)()(21x f x f < D .)(1x f 与)(2x f 大小不能确定 )3(2+++=m mx x y m ()6,2-[]6,2-{}6,2-()(),26,-∞-+∞

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

高三数学一轮复习必备精品6:函数与方程 【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】

第6讲 函数与方程 备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】 一.【课标要求】 1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。 二.【命题走向】 函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。高考试题中有近一半的试题与这三个“二次”问题有关 预计2010年高考对本讲的要求是:以二分法为重点、以二次函数为载体、以考察函数与方程的关系为目标来考察学生的能力 (1)题型可为选择、填空和解答; (2)高考试题中可能出现复合了函数性质与函数零点的综合题,同时考察函数方程的思想。 三.【要点精讲】 1.方程的根与函数的零点 (1)函数零点 概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。 函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数)(x f y =有零点。 二次函数)0(2 ≠++=a c bx ax y 的零点: 1)△>0,方程02 =++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点; 2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点; 3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。 零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有 0)()(

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

全国高考数学复习微专题:函数的图像

函数的图像 一、基础知识 1、做草图需要注意的信息点: 做草图的原则是:速度快且能提供所需要的信息,通过草图能够显示出函数的性质。在作图中草图框架的核心要素是函数的单调性,对于一个陌生的可导函数,可通过对导函数的符号分析得到单调区间,图像形状依赖于函数的凹凸性,可由二阶导数的符号决定(详见“知识点讲解与分析”的第3点),这两部分确定下来,则函数大致轮廓可定,但为了方便数形结合,让图像更好体现函数的性质,有一些信息点也要在图像中通过计算体现出来,下面以常见函数为例,来说明作图时常体现的几个信息点 (1)一次函数:y kx b =+,若直线不与坐标轴平行,通常可利用直线与坐标轴的交点来确定直线 特点:两点确定一条直线 信息点:与坐标轴的交点 (2)二次函数:()2 y a x h k =-+,其特点在于存在对称轴,故作图时只需做出对称轴一侧的图像,另一侧由对称性可得。函数先减再增,存在极值点——顶点,若与坐标轴相交,则标出交点坐标可使图像更为精确 特点:对称性 信息点:对称轴,极值点,坐标轴交点 (3)反比例函数:1 y x = ,其定义域为()(),00,-∞+∞U ,是奇函数,只需做出正版轴图像即可(负半轴依靠对称做出),坐标轴为函数的渐近线 特点:奇函数(图像关于原点中心对称),渐近线 信息点:渐近线 注: (1)所谓渐近线:是指若曲线无限接近一条直线但不相交,则称这条直线为渐近线。渐近线在作图中的作用体现为对曲线变化给予了一些限制,例如在反比例函数中,x 轴是渐近线,那么当x →+∞,曲线无限向x 轴接近,但不相交,则函数在x 正半轴就不会有x 轴下方的部分。 (2)水平渐近线的判定:需要对函数值进行估计:若x →+∞(或-∞)时,()f x →常

高一数学函数与方程练习题

函数与方程(1) 姓名________ 班级__________ 学号__________ 日期__________ 成绩_______ 1、函数f(x)=2x+5的零点是________ 2、已知关于x 的一元二次方程2x 2+px+15=0有一个零点是-3,则另一个零点是_______ 3、函数y=-x 2+8x-16在区间[3,5]上零点个数是____ 4、设函数?? ?-∞∈-+∞∈-=)1,(,2),1[,22)(2x x x x x x f ,则函数41)(-x f 的零点是______ 5、函数f(x)=ax+b 有一个零点是2,那么函数g(x)=bx 2-ax 的零点是_______ 6、定义在R 上的偶函数y=f(x)在[0,+∞)上单调递减,函数f(x)的一个零点为2 1,则不等式f(log 4x)<0的解集是_______ 7、求证:方程5x 2-7x-1=0的根在一个在区间(-1,0)上,另一个在区间(1,2)上。

8、已知函数f(x)=2(m-1)x 2-4mx+2m-1 (1)m 为何值时,函数的图象与x 轴有两个不同的交点; (2)如果函数的一个零点在原点,求m 的值。 函数与方程(2) 姓名________ 班级__________ 学号__________ 日期__________ 成绩_______ 1、函数f(x)=3x-16在区间[3,5]上有____个零点 2、已知f(x)的图象是连续不断的,有如下的x 与f(x)的对应值表: 则函数f(x)存在零点的区间是______ 3、函数x x x f 2)2ln()(-+=的零点所在区间是(n,n+1),则正整数n=______

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

高考复习文科函数知识点总结

函数知识点 一.考纲要求 注:ABC分别代表了解理解掌握 二.知识点 一、映射与函数 1、映射f:A→B 概念 (1)A中元素必须都有象且唯一; (2)B 中元素不一定都有原象,但原象不一定唯一。 2、函数f:A→B 是特殊的映射 (1)、特殊在定义域A 和值域B都是非空数集。函数y=f(x)是“y是x 的函数” 这句话的数学表示,其中x是自变量,y是自变量x的函数,f 是表示对应法则, 它可以是一个解析式,也可以是表格或图象,

也有只能用文字语言叙述.由此可知函数图像与 x 轴至多有一个公共 点,但与 y 轴的公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决 定作用的 要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 它是一个区间概念,即函数的单调性是针对定义域内的区间而言的。判断方法如下: 1、作差(商)法(定义法) 2、导数法 3、复合函数单调性判别方法(同增异减) 三.函数的奇偶性 ⑴偶函数:)()(x f x f =- 设(b a ,)为偶函数上一点,则(b a ,-)也是图象上一点. 偶函数的判定:两个条件同时满足 ①定义域一定要关于y 轴对称,例如:12+=x y 在)1,1[-上不是偶函数. ②满足)()(x f x f =-,或0)()(=--x f x f ,若0)(≠x f 时,1) () (=-x f x f . ⑵奇函数:)()(x f x f -=- 设(b a ,)为奇函数上一点,则(b a --,)也是图象上一点. 奇函数的判定:两个条件同时满足 ①定义域一定要关于原点对称,例如:3x y =在)1,1[-上不是奇函数. ②满足)()(x f x f -=-,或0)()(=+-x f x f ,若0)(≠x f 时, 1)() (-=-x f x f ※四.函数的变换 ①()()y f x y f x =?=-:将函数()y f x =的图象关于y 轴对称得到的新的图像 就是()y f x =-的图像; -a -c -b d c b a y=f(x) o y x ? -a -c -b d c b a y=f(-x) o y x ②()()y f x y f x =?=-:将函数()y f x =的图象关于x 轴对称得到的新的图像就是()y f x =-的图像;

数学高一上册函数与方程专项练习

2019学年数学高一上册函数与方程专项练习方程,是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,通常在两者之间有一等号=。精品准备了数学高一上册函数与方程专项练习,具体请看以下内容。 一、选择题: 1.(2019课标全国)在下列区间中,函数f(x)=ex+4x-3的零点所在的区间为( ) A.(,0) B.(0,) C ) D.(,) 444224 2.方程|x2-2x|=a2+1 (a0)的解的个数是( ) A.1 B 2 C.3 D.4 3.(2019福建)若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m 的取值范围是 A.(-1,1) B.(-2,2) C (-,-2)(2,+) D.(-,-1)(1,+)2??x+2x-3,x0,4.函数f(x)=?的零点个数为()?-2+lnx,x0? A.3 B 2 C.1 D.0 5.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则( ) A.a 二、填空题(每小题5分,共15分) 116若函数f(x)=x2-ax-b的两个零点是2和3,则函数 g(x)=bx2-ax-1的零点是_______.(答案- 23 7.已知函数f(x)=ln x-x+2有一个零点所在的区间为(k,k+1) (kN*),则k的值为________.(答案3) 8.定义在R上的奇函数f(x)满足:当x0时,f(x)=2014x+log2 014x,则在R 上,函数f(x)

零点的个数为________.答案3 9. (2019深圳模拟)已知函数f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零点分别为x1, x2,x3,则x1,x2,x3的大小关系是______________.答案x1 2??x-x-1,x2或x-1,10.若f(x)=?则函数g(x)=f(x)-x的零点为____________.答案12或1 ?1,-1 11.(13分)已知函数f(x)=4x+m2x+1有且仅有一个零点,求m的取值范围,并求出该零点. (m=-2时,f(x)有唯一零点,该零点为x=0.) 12.下列说法正确的有________: ①对于函数f(x)=x2+mx+n,若f(a)0,f(b)0,则函数f(x)在区间(a,b)内一定没有零点. ②函数f(x)=2x-x2有两个零点. ③若奇函数、偶函数有零点,其和为0. ④当a=1时,函数f(x)=|x2-2x|-a有三个零点. B组专项能力提升 一、选择题(每小题5分,共15分) 1x1.已知函数f(x)=log2x-??3,若实数x0是方程f(x)=0的解,且0 A恒为负B.等于零C.恒为正D.不小于零 二、填空题(每小题4分,共12分) 2.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间 [1.4,1.5],则要达到精确度要求至少需要计算的次数是________.答案7

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

相关文档
最新文档