2018年国考数量-巧解不定方程问题

合集下载

公务员考试行测答题技巧:行测数量关系常考题型之不定方程

公务员考试行测答题技巧:行测数量关系常考题型之不定方程

公务员考试行测答题技巧:行测数量关系常考题型之不定方程行测答题技巧:在公务员考试的行测数学运算部分中,涉及方程的题很多,而不定方程是其中的难点。

不定方程是指未知数的数量多于方程的数量,且未知数受到某些限制(如规定是整数)的方程。

在数学运算中最常见的不定方程是形如ax+by=c的二元一次不定方程,其中a、b、c均为整数。

北京人事考试网为广大考生提供公务员考试行测答题技巧:行测数量关系常考题型之不定方程。

中公教育专家指出,解不定方程最常见的是利用整数的奇偶性、质合性、尾数等性质来缩小解题的范围。

另外还可以根据选项通过代入排除来得出正确答案。

1.利用尾数法例1.某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?A.3B.4C.6D.8中公解析:设需要x枚5份和y枚7分的硬币恰好支付142分货款,由题意可列5x+7y=142,因为5x的尾数只能是0或5,则7y的尾数为2或7,那么y可以取1,6,11,16这四种情况,所以所求的方法数为4,选择B。

但是对于不定方程组来说,上述方法就显得有些不太够用了,中公教育专家在此另外再给各位考生讲解一下快速解不定方程组的方法。

2.利用换元法例2.小明去商店给学校购买办公用品,若买3个记事本、7支钢笔、1把尺子共需32元钱,若买4个记事本、10支钢笔、1把尺子共需43元钱。

那么,若记事本、钢笔、尺子各买一件,则需要多少钱?A.8B.10C.12D.14中公解析:设每个记事本x元,每支钢笔y元,每把尺子z元。

则可以列出两个方程:3x+7y+z=32,4 x+10y+z=43。

这个有3个求知数,2个方程,很明显是不定方程组。

这道题只需要求x+y+z=?即可。

因此可以把x+y+z当作一个整体,用另外一个未知数来代替。

将前面两个方程可以化简为:3x+7y+z=(x+y+z)+2(x+3y)32,4 x+10y+z=(x+y+z)+3(x+3y)=43。

巧解不定方程

巧解不定方程

巧解不定方程中公教育研究与辅导专家李俏琦方程思想是行测数量题型中的常客,也是广大考生很喜爱的方法,毕竟从小学开始,做数学题就喜欢列方程求解,但是,在行测做题中还是会遇到一种方程与之前学习的不太一样,比如两个方程三个未知数,一个方程两个未知数,这种题目该怎么求解呢?今天中公教育专家就带着大家走进不定方程,帮大家拨开迷雾,计算不愁。

一、基础知识不定方程是未知数的个数多于独立方程个数的方程。

这类方程中未知数受到某些限制(如要求是有理数、整数或正整数等)。

二、常见解题方法解不定方程时,往往先通过奇偶特性进行初期判断,缩小未知数取值范围,同时可以观察能否涉及到整除特性的判定(整除特性比奇偶性更具约束力)。

若题干中涉及到质合等字眼,往往需要联合奇偶性和质合性确定未知数的值(此类题目经常考查“2是唯一的质偶数”这一特性)。

若不定方程中未知数系数的尾数涉及到0、5,可以结合奇偶性与尾数法来缩小未知数取值范围1.一个质数的3倍与另一个质数的2倍之和等于20,那么这两个质数的和是()。

A.9B.8C.7D.6中公解析:A。

设这两个质数分别为x、y,则根据题干可列方程3x+2y=20。

其中2y为偶数,20为偶数,则3x必为偶数,x为偶数,又知x是质数,所以x只能为2,代入不定方程可得y=7,则x+y=9。

故答案为A。

2.某单位向希望工程捐款,其中部门领导每人捐50元,普通员工每人捐20元,某部门所有人员共捐款320元,已知该部门总人数超过10人,问该部门可能有几名部门领导?A.1B.2C.3D.4中公解析:B。

设领导有x人,普通员工y人,则根据题意有50x+20y=320,化简得5x+2y=32。

其中2y是偶数,32为偶数,则5x必然是偶数,x为偶数,排除A、C。

若领导为4人,则普通员工为(320-50×4)÷20=6人,总人数没有超过10,故领导为2人,答案选B。

3.一个三位自然数,把它十位上的数字去掉后变成的两位数是原来三位数的七分之一。

行测数量关系解题技巧:解不定方程

行测数量关系解题技巧:解不定方程

⾏测数量关系解题技巧:解不定⽅程 任何考试想要成功都离不开点点滴滴的积累,下⾯由店铺⼩编为你精⼼准备了“⾏测数量关系解题技巧:解不定⽅程”,持续关注本站将可以持续获取更多的考试资讯!⾏测数量关系解题技巧:解不定⽅程 题型介绍 1.不定⽅程定义:未知数的个数多于独⽴⽅程的个数(例:2x+3y=21,未知数个数2多于⽅程的个数1) 2.解不定⽅程:常见的有两个范围(正整数范围内即不定⽅程;任意范围内即解不定⽅程组);⽆论哪种情况其核⼼都为带⼊排除。

例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 若想求解其原则为带⼊选项选择符合等式即题⼲限制条件的答案,但在考试中若四个选项依次带⼊的话会浪费时间,所以有些解题技巧可以帮助快速排除选项;因此其解题核⼼为带⼊排除。

解题技巧 (⼀)正整数范围内1.整除:若某未知数系数与常数项存在公约数则可以⽤整除排除选项 例:已知2x+3y=21,且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】若想求x则需将等式中的y消除,其中常数项21与y前的系数3有公约数3则观察等式,⼀个能被3整除的数3y加上某数其和21也能被3整除,则某数2x也要能被3整除,因为2不能被3整除所以只能是x能被3整除,因此观察选项,选C。

2.奇偶性:未知数前系数为⼀奇⼀偶的情况可以⽤奇偶性排除选项 3.尾数法:某未知数前系数的位数为0或5的情况可以⽤尾数法排除选项 例:(奇偶性+尾数法)已知4x+5y=31;且x、y均为正整数,求x=()A.1B.2C.3D.4 【解析】观察等式,未知数前系数⼀奇⼀偶的情况,根据奇偶性4⼀定为偶数加上某数其和31为奇数则某数5y⼀定为奇数;y前系数为5则根据尾数法5y尾数为0或5,且5y为奇数的话则其尾数只能是5,则5y的尾数5加上某数的尾数的和是31的尾数1,那么某数4x尾数只能是6,观察选项,能使4x尾数是6的只有D项4,所以选D。

行测解题技巧——特性分析法巧解不定方程

行测解题技巧——特性分析法巧解不定方程

特性分析法巧解行测数量关系中的不定方程数量关系,是公务员考试的一个重要题型,这个题型在公务员考试初期,就一直存在,并且在近几年的试题中,数字推理消失了,数学运算部分的题量逐渐增大,同时在近几年的公务员考试数量关系部分,不定方程出现的概率呈现逐渐上升的趋势,单单就是国考里面,已经连续几年对不定方程的考察,相关题目基本集中在采用特性分析法解答上面,采用赋值分析法的,相对较少,那具体什么是不定方程,什么是特性分析法呢?所谓不定方程,就是说我们列出来的方程或者方程组中,未知数个数多于方程个数,比如说5x-6y-34。

如果我们对x、y没有任何限制,那么我们得到的解一定是无穷个的,但是在公务员考试中,试题都是有唯一的解的,这就要求对方程的解有一定的限制,通常要求是整数,或者是质数等比较特殊的数值,所以我们在解答的时候,往往是有据可依的。

所谓特性分析法,就是利用未知数的某些特性,比如是整数,是质数等等,从而确定出未知数的具体值。

我们在使用特定分析法的时候,通常会从三个方面来考虑解答不定方程,(1)整除;(2)奇偶性;(3)尾数。

一般来说,只要我们合理的利用上面的整除、奇偶以及尾数,我们就可以快速的得到试题的答案。

【真题示例1】某单位向希望工程捐款,其中部门领导每人捐50元,普通员工每人捐20元。

某部门所有人员共捐款320元,已知该部门总人数超过10人,问该部门可能有几名部门领导?A.1B.2C.3D.4【答案】B【解析】根据题意,假设这个单位有部门领导x人,有员工y人,则有x+y>10,50x+20y=320,也就是5x+2y=32。

由于32、2y均为偶数,那么5x只能是偶数,则x=2、4(选项最大的是4);如果是2,那么y=11,此时x+y=13,满足条件,故本题的正确答案为B选项。

【真题示例2】超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

2018年政法干警考试:行测--不定方程类题目的题型和解法

2018年政法干警考试:行测--不定方程类题目的题型和解法

---------------------------------------------------------------范文最新推荐------------------------------------------------------2018年政法干警考试:行测--不定方程类题目的题型和解法在考试中,大家会遇到一些让人比较头痛的题目,比如不定方程类的题目,很多考生都无从下手。

其实,这类题目,只要掌握了常考的类型和典型解法,在考场上解决掉这类题目还是非常简单的,公务员考试研究中心的专家经过反复的论证,得出了在行测中不定方程类题目的解法。

类型一,利用数字特性,结合代入法这类题目往往是会利用数字特性,例如整除、奇偶、尾数等特性,然后结合代入法,得到正确答案。

各位新团员:你们大家好!今天在此隆重地举行入团宣誓仪式。

这是个大喜的日子,也是你们终生难忘的纪念日,因为你们光荣地加入了中国共产主义青年团,我代表校党支部、校团总支,向你们表示热烈的祝贺。

中国共产主义青年团是中国共产党领导的先进青年的群众组织,是广大青年在实践中学习共产主义的学校,在此我想对各位新团员提以下三点要求与三点希望:要求一:在政治上,接受中国共产党的领导,坚决拥护党的纲领,坚1 / 6定不移地执行党的路线、方针、政策。

要求二:在思想上,要以马列主义,毛泽东思想,邓小平理论作为自己的行动指南,坚持用邓小平理论武装自己。

要求三:在组织上,要有严密的组织生活,有严格的组织纪律性,要严格按照团员的标准约束自己的一言一行。

各位同学,你们是学生中的先进分子。

从今天开始,你们就是一名光荣的共青团员,从此将全面享有团员的权利和义务,已成为党的助手和后备军,身上将肩负着更重的历史使命和责任,将要承担起党、国家和共青团组织对你们的重托。

共青团是一个学习的岗位、锻炼的岗位、实践的岗位,是展示青春才华的大舞台。

广大团员要在共青团这个大的学校中陶冶高尚的思想道德情操,时刻牢记自己是一名光荣的共青团员,应该敢于创新,养成良好的习惯。

行测数量关系技巧:不定方程

行测数量关系技巧:不定方程

行测数量关系技巧:不定方程任何一场考试取得成功都离不开每日点点滴滴的积累,下面为你精心准备了“行测数量关系技巧:不定方程”,持续关注本站将可以持续获取的考试资讯!行测数量关系技巧:不定方程公职类考试行测试卷中数量关系部分近几年考察题目类型较多。

对于题型较多且杂找到对应的解题方法至关重要。

方程的面孔在近几年公职类考试中频频出现,特别是不定方程。

不定方程无任何限制可能会有多组解,甚至无数组解,但公考题目都是单选题,因此符合题意的解是唯一的。

在考试过程中,大多数考生只能列出方程,但却对于如何去解无从下手,下面就具体介绍一下几种常用关于不定方程的解题方法帮助考生学习。

一、概念未知数的个数大于独立方程的个数。

比如7x+8y=111,典型的不定方程。

二、解法1、整除法当等式后边的常数项与前边某一未知数系数有相同整除特性(有公共因数)考虑用整除法。

例1:幼儿园向小朋友发放小红花,其中表现优秀的小朋友每人发6朵小红花,表现良好的小朋友每人发1朵小红花,获花的所有小朋友一共获得18朵小红花,已知表现优秀、良好的小朋友都有,问可能有多少小朋友表现良好?A.5B. 6C.7D.8解析:B。

设表现优秀的小朋友人数为x,表现良好的人数y,x>0,y>0。

根据题意有:6x+y=18,一个独立方程两个未知数为不定方程,观察等式后边常数项与前边未知数x的系数6有公共的因数6,既都能被6整除,因此y一定能被6整除,结合选项排除A、C和D选项,选择B项。

注意:以找最大公约数为准。

2、奇偶法未知数系数中出现偶数考虑用奇偶法。

注:奇数±奇数=偶数±偶数=偶数,奇数±偶数=奇数例2:装某种产品的盒子有大、小两种,大盒每盒装11个,小盒每盒装8个,要把89个产品装入盒中,要求每个盒子都恰好装满,需要大、小盒子各多少个?A.3、7B. 4、6C.5、4D.6、3解析:A。

设大盒个数为x,小盒个数为y,x>0,y>0。

行测数量关系:不定方程的解题思路.doc

行测数量关系:不定方程的解题思路.doc

行测数量关系:不定方程的解题思路行测数量的运算一直是行测考试的重点题型,下面由我为你精心准备了“行测数量关系:不定方程的解题思路”,持续关注本站将可以持续获取更多的考试资讯!行测数量关系:不定方程的解题思路在我们数量关系中,同样你如果集齐五福,你就可以快速解决不定方程,让我们离上岸更近一步,那么接下来就带大家看一下到底需要集齐哪五福。

一、奇偶福当未知数系数前出现偶数时。

例如不定方程3X+4Y=47(X,Y为正整数),47是一个奇数,4Y一定是一个偶数,所以3X一定是个奇数,那么X的值也一定是一个奇数,取X=1,3,5......二、尾数福当看到未知数系数以0或5结尾的数,则用尾数法。

例如不定方程5X+3Y=45(X,Y为正整数),5X尾数为0或5,45尾数为5,所以3Y的尾数为0或5,而3Y不可能尾数为0,所以3Y的尾数一定是5,Y取5,15....例1:现有149个同样大小的苹果往大、小两个袋子装,已知大袋每袋装17个苹果,小袋每袋装10个苹果。

每个袋子都必须装满,则需要大袋子的个数是?A.5B.6C.7D.8【解析】答案:C。

设大袋子X个,小袋子Y个,则17X+10Y=149,10Y的尾数为0,149尾数为9,则17尾数一定为9,所以X=7,选C。

三、整除福当未知数系数与常数有公约数时。

例如不定方程7X+4Y=56(X,Y为正整数),7和56有都能被7整除,所以4Y也一定能被7整除,所以Y取7,14,21.....四、特值福仅运用在不定方程组中,且让我们求所有未知数之和。

不定方程组有无穷组解。

而我们只需求未知数之和。

也就意味着未知数之和是确定的。

所以此时我们只需求出中的某一组求和就能得到答案。

例2:甲、乙、丙三种货物,如果购买甲3件、乙7件、丙1件需花3.15元,如果购买甲4件、乙10件、丙1件需花4.2元,那么购买甲、乙、丙各1件需花多少钱?A.1.05B.1.4C.185D.2.1【解析】答案:A。

公务员考试行测不定方程解法大全

公务员考试行测不定方程解法大全

公务员考试行测不定方程解法大全公务员考试数量关系主要测查报考者理解、把握事物间量化关系和解决数量关系问题的能力,主要涉及数据关系的分析、推理、判断、运算等。

觉的题型有:数字推理、数学运算等。

了解公务员成绩计算方法,可以让你做到心中有数,高效备考。

公务员行测题库帮助您刷题刷出高分来!>>>我想看看国考课程。

不定方程是公务员考试行测试卷当中最为常见的一种题型,也是考生在备考过程中重点关注的内容。

所谓不定方程,是指未知数的个数多于方程的个数,例如一个方程两个未知数、两个方程三个未知数等等。

这样的方程我们直接解是解不出来的,需要借助一些其他的方法来选出正确答案,常见的解决不定方程的方法包括:尾数法、奇偶性、质合性、整除特性、代入排除等方法,下面中公教育专家就结合例子讲解下如何运用这些方法解不定方程问题。

(一)尾数法绝大多数题目描述的量是整数,可以通过这些数的尾数的特点选出正确选项。

例1 .超市将99个苹果装进两种包装盒,大包装盒每个装12个苹果,小包装盒每个装5个苹果,共用了十多个盒子刚好装完。

问两种包装盒相差多少个?A.3B.4C.7D.13【中公解析】选D。

设有x个大包装盒,y个小包装盒,则12x+5y=99,其中5y的尾数应为5或0,但是12x为偶数,99为奇数,所以5y必为奇数,这样就确定了5y的尾数一定为5,那么12x就是尾数为4的数,所以x可能为2或7,对应的y等于15或3,根据“共用了十多个盒子刚好装完”,排除x=7,y=3。

即x=2,y=15,15—2=13。

总结:可用尾数法的不定方程问题的题型特点:当未知数的系数中出现了5的倍数,比如20x、35y、105z时,可能会用到尾数法。

因为如果是10的倍数,其尾数必然是0,如果是5的倍数,其尾数必然是5或0,这样尾数就容易确定,范围比较小。

(二)奇偶性和质合性奇偶性和质合性的运用也是在题干中描述的量是整数的前提下。

例2.某儿童艺术培训中心有5名钢琴老师和6名拉丁舞教师,培训中心将所有的钢琴学员和拉丁舞学员共76人分别平均地分给各个老师带领,刚好能够分完,且每位老师所带的学员数量都是质数,后来由于学生人数减少,培训中心只保留了4名钢琴教师和3名拉丁舞教师,但每名教师所带的学生数量不变,那么目前培训中心还剩下学员多少人?A.36B.37C.39D.41【中公解析】选D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巧解不定方程问题
哈尔滨华图房曼
不定方程,顾名思义,一个方程中有多个未知数,无法通过正常的解方程来得出答案,也是省考国考考察的热点、重点。

2017年的国家公务员考试副省级的64题,2017年山东省考的51题,都考察了不定方程的应用。

对于不定方程,我们有很多种方法来解决,包括用数字特性法、代入排除法等方法,其中代入排除法可以解决绝大多数不定方程问题,但是四个选项挨个代入比较耗费时间,相当于战争中的核武器,可以解决问题,但是代价比较大;对于一些不定方程题目,我们也可以首先考虑用数字特性来排除几个不靠谱的选项,再用代入法来做,可以大大缩短做题时间,相当于战争中的冲锋枪,可以轻快的解决问题,使用方便。

下面列举两道真题来应用一下。

2017年的国家公务员考试副省级64题:
例1、某超市购入每瓶200毫升和500毫升两种规格的沐浴露各若干箱,200毫升沐浴露每箱20瓶,500毫升沐浴露每箱12瓶。

定价分别为14元/瓶和25元/瓶。

货品卖完后,发现两种规格沐浴露的销售收入相同,那么这批沐浴露中,200毫升的最少有几箱?
A.3B.8C.10D.15
解析:设200毫升的最少有a箱,400毫升的有b箱,可以得到一个等式:20*14a=12*25b,为不定方程,求得是a,可以将四个选项从最小的选项挨个代入,求出b,根据题意,b为正整数,符合这个条件的选项即为答案,这是用代入排除法直接做,比较耗费时间。

如果先把等式化简一下的话可以得到:14a=15b。

可知a需要为15的倍数,直接选出D选项。

2017年山东省考51题:
例2、小张的孩子出生的月份乘以29,出生的日期乘以24.所得的两个乘积加起来刚好等于900,问孩子出生在哪一个季度?
A.第一季度
B.第二季度
C.第三季度
D.第四季度
解析:设出生的月份为a,出生的日期为b,得到等式:29a+24b=900,为不定方程。

观察等式,900为3的倍数,24b同样为3的倍数,所以要求29a为3的倍数,即要求a为3的倍数,可以为3,6,9,12,分别代入,可以解出b,b需要为小于32的正整数,只有当a为12时,解出b=23,符合条件,12月属于第四季度,故选D选项。

对于不定方程,是公务员考试中的一座小高地近来来考察越来越多我们攻克它有数字特性法和代入排除法等武器在平时的练习和考试中要熟练运用各种方法,才能迅速的解得答案。

相关文档
最新文档