(完整word版)2013-2014学年第一学期概率论与数理统计期末考试试卷(A卷)答案
2012,2013,2014年概率论与数理统计期末考试试卷答案

2012年概率论与数理统计期末考试试卷一. 填空题(每题5分, 共30分)1. 设随机变量X 服从正态分布(1,4)N , 已知(1)a Φ=, 其中()x Φ表示标准正态分布的分布函数, 则{13}P X -≤≤=21a -.解: 111311{13}11(1)(1)2222(1)(1(1))2(1)12 1.X X P X P P a -----⎧⎫⎧⎫-≤≤=≤≤=-≤≤=Φ-Φ-=⎨⎬⎨⎬⎩⎭⎩⎭Φ--Φ=Φ-=- 2. 设概率()0.3,()0.5,()0.6P A P B P A B ==+=, 则()P AB = 0.1 . 解: ()()()()0.2P AB P A P B P A B =+-+=,()()()0.30.20.1P AB P A P AB =-=-=.3. 设随机变量,X Y 的数学期望分布是-2, 1, 方差分别是1, 4, 两者相关系数是—0.5, 则由契比雪夫不等式估计(|2|6)P X Y +≥≤ 13/36 . 解: 由已知条件得, (2)2220E X Y EX EY +=+=-+=,(2)4()2(,2)4()4(,)D X Y DX D Y Cov X Y DX D Y Cov X Y +=++=++4()41164(1/2)213DX D Y ρ=++=++⋅-⋅=, 所以, 13(|2|6)36P X Y +≥≤. 4. 已知,X Y 是具有相同分布的两个独立随机变量, 且1(1)(1)2P X P Y =-==-=, 1(0)(0)2P X P Y ====, 则()P X Y == 1/2 . 解:()(0,0)(1,1)1(0)(0)(1)(1).2P X Y P X Y P X Y P X P Y P X P Y ====+=-=-===+=-=-=5. 设1216,,,X X X 是来自2(0,)N σ的样本, S 是样本均方差, 则1614ii XS=∑服从t (15).解: 由定理3(15)t ,161611(15)4i ii X X X t S ===∑∑.6. 设1281,,,(,9)X X X N μ, 要检验假设0:0H μ=, 则当0H 为真时, 用于检验的统计量3X 服从的分布是(0,1)N . 解: 由定理1(0,1)X N , 3(0,1)X N .二. 解答下列各题:7. (10分)已知男人中色盲人数所占比例是5%, 女人中色盲人数所占比例是0.25%. 现从男女人数各占一半的人群中随机选取一人, 求该人恰是色盲者的概率.解: 设A =“该人是色盲”, 1A =“该人是男人”, 2A =“该人是女人”.由全概率公式知, 2111()()()0.050.0025 2.625%22i i i P A P A P A A ===⨯+⨯=∑.8. (10分) 从只含3红, 4白两种颜色的球袋中逐次取一球, 令1,,0,i X ⎧=⎨⎩第次取出球第次取出白球,i 红i 1,2i =. 实在不放回模式下求12,X X 的联合分布律,4/7 3/7 j P因为1212{0,0}{0}{0}P X X P X P X ==≠==, 所以12,X X 不独立. 9. (10分)设随机向量(,)X Y 的联合概率密度函数为3,01,,(,)20,xx x y x f x y ⎧<<-<<⎪=⎨⎪⎩其他,求,X Y 的边缘概率密度函数. 解: 当01x <<时, 23()(,)32xX x xf x f x y dy dy x +∞-∞-===⎰⎰.所以,23,01,()0,.其他X x x f x ⎧<<=⎨⎩当10y -<<时, 1233()(1)24Y y x f y dx y -==-⎰;当01y ≤<时, 1233()(1)24Y y x f y dx y ==-⎰; 所以,23(1),11,()40,.其他Y y y f y ⎧--<<⎪=⎨⎪⎩10. (10分) 设,X Y 相互独立, 且(1)(1)0P X P Y p ====>, (0)(0)10P X P Y p ====->,令1,0,X Y Z X Y +⎧=⎨+⎩当为偶数,当为奇数,求Z 的分布律.解:{0}{0,1}{1,0}{0}{1}{1}{0}2(1)P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===- 22{1}{0,0}{1,1}{0}{0}{1}{1}(1).P Z P X Y P X Y P X P Y P X P Y p p ====+=====+===+- 所以, Z11. (10分12,,X 是来自具有分布的总体的随机样本,试用中心极限定理计算()5P X >.(已知(2)0.508Φ=.)解: 由题知1()3i E X =,2()1i E X =,故()228()9i i i D X EX EX =-=. 由中心极限定理知,20012001600(,)39ii X N =∑. 所以, 11111()4014052005n i n n i i i i i X P X P P X P X ===⎛⎫ ⎪⎛⎫⎛⎫ ⎪>=>=>=-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎝⎭∑∑∑1200200403311(2)(2)0.508404033n i i X P =⎛⎫-- ⎪ ⎪=-≤≈-Φ-=Φ= ⎪ ⎪⎝⎭∑. 12. (10分)设总体X 的密度函数为36(),0,(;)0,其他,xx x f x θθθθ⎧-<<⎪=⎨⎪⎩求θ的矩估计ˆθ并计算ˆD θ.解: 依题意,306()()2xE X xx dx X θθθθ=-==⎰,得参数θ的矩估计量为ˆ2X θ=. 4ˆ4D DX DX n θ==. 而2223063()()10x E X x x dx θθθθ=-=⎰,故22244ˆ()5D DX EX E X n n n θθ==-=.13. (10分) 某电器零件平均电阻一直保持在2.64Ω,使用新工艺后,测得100个零件平均电阻在2.62Ω,如改变工艺前后电阻均方差保持在0.06Ω,问新工艺对零件电阻有无显著影响?(取0.01α=)(1.96)0.975,Φ=(1.64)0.95,Φ=(2.58)0.995Φ=. 解: 设X 为零件的平均电阻, 则2~(,0.06)X N μ. (1)假设0: 2.64H μ=; (2)取统计量~(0,1)X U N=;(3)由0.01α=, 确定临界值22.58u α=, , 使得2{||}0.01P U u α>=;(4)由样本值 2.62x =, 得统计量U 的观察值3.33x u ==≈-.(5)因为 2.58u >,所以拒绝原假设0H ,认为新工艺对零件电阻有显著影响.2013年概率论与数理统计期末考试试卷一. 填空题(每题4分, 共20分)1. 设随机变量,X Y 相互独立, 且同分布, {1}{1}0.5P X P X =-===,{1}{1}0.5P Y P Y =-===, 则{}P X Y == 1/2 .解: 1{}{1,1}{1,1}{1}{1}{1}{1}.2P X Y P X Y P X Y P X P Y P X P Y ===-=-+====-=-+===2.22x edx +∞-=⎰2. 解:因为221x +∞--∞=⎰,所以22xe +∞--∞=⎰即2202x e +∞-=⎰. 3. 设连续型随机变量X的密度函数22()2()x f x μσ--=, x -∞<<+∞, 则EX =μ, DX =2σ. 解:因为22()2()x X f x μσ--=, 所以2(,)X N μσ.4. 设总体(3,10)XN , 12100,,,X X X 为来自总体X 的简单随机样本, 则10011100i i X X ==∑1~(3,)10X N . 解: 由定理1知, 1~(3,)10X N . 5. 设袋中有8个红球, 2个黑球, 每次从袋中摸取一个球并且不放回, 那么第一次与第三次都摸到红球的概率是 28/45 . 解: 记i A =“第i 次摸到红球”, 1,2,3i =.13131223123123()()(())()P A A P A A P A A A A P A A A A A A =Ω=+=+123123121312121312()()()()()()()()P A A A P A A A P A P A A P A A A P A P A A P A A A =+=+876827281098109845=⨯⨯+⨯⨯=. 二. 解答题6. (12分) 某矿内有甲乙两个报警系统, 单独使用时甲的有效性为0.92, 乙为0.93, 且在甲失灵的条件下乙有效的概率为0.85, 求意外发生时, 甲乙至少有一个有效的概率, 以及乙失灵时甲有效的概率. 参考练习册反12第4题. 解: 设A =“甲有效”, B =“乙有效”.题目转为: 已知()0.92,()0.93P A P B ==, {}0.85P B A =, 求()P A B +和{}P A B . 因为()()()(){}0.851()1()()P BA P B A P B P AB P B A P A P A P A --====--, 所以, ()0.862P AB =.所以, ()()()()0.988P A B P A P B P AB +=+-=;()()()()0.920.862{}0.831()1()10.93()P AB P A B P A P AB P A B P B P B P B ---====≈---. 7. (12分)设连续型随机变量X 的分布函数为()arctan ()F x a b x x =+-∞<<+∞, 求常数,a b 以及随机变量X 的密度函数. 解: 根据分布函数的性质得()1,2()0,2b F a b F a ππ⎧+∞=+=⎪⎪⎨⎪-∞=-=⎪⎩ 所以1,21.a b π⎧=⎪⎪⎨⎪=⎪⎩X 的密度函数为21()(1)f x x π=+.8. (14分) 设某种类型人造卫星的寿命X (单位: 年)的密度函数为21,0,()20,0.xe xf x x -⎧>⎪=⎨⎪≤⎩若2颗这样的卫星同时升空投入使用, 试求:(1) 3年后这2颗卫星都正常运行的概率;(2) 3年后至少有1颗卫星正常运行的概率. 参考教材P37例3 解: 1颗卫星3年内正常运行的概率为32231{3}2x P X e dx e +∞--≥==⎰. 记Y 表示2颗卫星在3年内正常运行的颗数, 则32(2,)Y B e -.(1) 3年后这2颗卫星都正常运行的概率2332{2}P Y e e --⎛⎫=== ⎪⎝⎭;(2) 3年后至少有1颗卫星正常运行的概率232{1}1{0}11P Y P Y e -⎛⎫≥=-≥=-- ⎪⎝⎭.9. (14分) 设某高校英语考试成绩近似服从均值为72的正态分布, 96分以上的考生占总数的2.3%(已知满分为100, 合格线为60), 试求: (1) 考生成绩在60-84之间的概率;(2) 该校考生的合格率.((2)0.977,(1)0.8413)Φ=Φ= 解: 设某高校英语考试成绩为X , 则2(72,)XN σ.由题意知{96}0.023P X ≥=, 即7296720.023X P σσ--⎧⎫≥=⎨⎬⎩⎭, 所以241()0.023σ-Φ=, 即24()0.977(2)σΦ==Φ.因此, 12σ=.(1) 考生成绩在60-84之间的概率6072728472{6084}(1)(1)2(1)10.6826;121212X P X P ---⎧⎫≤≤=≤≤=Φ-Φ-=Φ-=⎨⎬⎩⎭(2) 合格率726072{60}1(1)(1)0.8413.1212X P X P --⎧⎫≥=≥=-Φ-=Φ=⎨⎬⎩⎭10. (14分) 一工厂生产的某种电池的寿命服从正态分布(25,100)N , 现在从这种电池中随机抽取16个, 测得平均寿命为23.8小时, 由此能否断定: 在显著性水平为0.05α=时, 该种电池的平均寿命小于25小时. ((1.96)0.975,(1.64)0.95)Φ=Φ= 解: 设X 为电池寿命, 则~(,100)X N μ.(1)假设00:25H μμ≥=; (2)取统计量~(0,1)X U N=;(3) 由0.05α=, 确定临界值 1.64u α-=-, 使得{}0.05P U u α<-=; (4)由样本均值23.8x =, 得统计量U 的观察值00.48u ===-.(5)因为00.48 1.64u =->-,此时没有充分理由说明小概率事件{ 1.64}u <-一定发生. 所以接受原假设0H , 认为这种电池的平均寿命不小于25小时. 注: 原假设不能设为00:25H μμ<=,此时μ取不到0μ,统计量X U =就没有意义了!11. (14分)设总体X 是离散型随机变量, 其所有可能的取值为0, 1, 2, 已知2(1)EX θ=-, 2{2}(1)P X θ==-, θ为参数. 对X 取容量为10的样本如下 1, 1, 0, 2, 2, 1, 1, 1, 0, 2.求参数θ的矩估计和极大似然估计.解:(1) 由2(1)X θ=-, 得θ的矩估计量为12Xθ=-; 结合 1.1x =, θ的矩估计值为10.452x θ=-=.(2) 构造似然函数为11912101210(){1,1,,2}{1}{1}{2}32(1)L P X X X P X P X P X θθθ=========-,取对数ln ()ln3211ln(1)9ln L θθθ=+-+,求导数(ln ())11901d L d θθθθ=-+=-, 得θ的极大似然估计值为920θ=.2014年概率论与数理统计期末考试试卷一. 填空题(共40分, 每空5分)1. 设~(,)X B n p , ~(,)Y B m p , 且X 与Y 独立, 则X Y +~(),(p m n B +)分布;2. 设2~(,)X N μσ, 则X 的密度函数()f x =(222)(21σμσπ--x e);3. 设总体X 的方差为2σ, 12,,,n X X X 为样本, X 为样本均值, 则期望211()n i i E X X n =⎛⎫-= ⎪⎝⎭∑(21σn n -); 4. 设12,,,n X X X 为样本, 则统计量211n i i X n =∑的名称为(样本2阶原点矩);5. 设总体~(,1)X N μ, 12,,,n X X X 为来自该总体的样本, 则21()ni i X μ=-∑服从()(2n χ)分布;6. 一批产品中有5个正品, 3个次品, 从中任取2个, 恰有1个次品, 1个正品的概率为(2815281315=C C C );7. 样本的特性是(独立、同分布且与总体分布相同);8. 在假设检验中, 可能犯两类错误. 其中第一类错误也称为弃真, 弃真的确切含义为(当原假设是真的时,拒绝了它). 二. 计算题(60分, 每题10分)1. 假设某贪官收受一次贿赂而被曝光的概率为0.05, 到目前为止共收受80次贿赂, 假设案发前每次收受贿赂是否曝光相互独立. 试用概率说明 “多行不义必自毙”. (取20190.3520⎛⎫≈ ⎪⎝⎭)解:记i A 为事件“第i 次收受贿赂而被曝光”(1,2,,80i),---------------------2 于是案发的概率为 )(801∑=i i A P ------------- ------------- -----------------4 )(1)(1801801∏∏==-=-=i i i i A P A P----------------------6985.035.01)2019(195.0148080=-=-=-=。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。
天津科技大学2013-2014学年第一学期《概率论与数理统计》(多统计)期末考试试题(A卷)参考答案及评分标准DOC

)0.5B=则他们将此密码(1)P,()1e,即()X Y+=;(,Nμσ34)X X ++二、(12分)已知随机变量X 的概率密度为||()x f x ae -=,x -∞<<+∞.求(1)参数a 的值;(2)概率(1)P X >;(3)数学期望()E X .三、(12分)某保险公司多年的资料表明,在索赔户中被盗索赔户占20%,用X 表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数. (1)写出X 的概率函数;(2)利用棣莫佛-拉普拉斯中心极限定理,求索赔户中被盗索赔户不少于14户且不多于30户的概率{1430}P X ≤≤的近似值. 四、(10分)设~(0,1)X U ,求X Y e =的概率密度. 五、(10分)设连续总体X 的概率密度函数为1,01( )0,x x f x θθθ-⎧<<=⎨⎩;其它,其中0θ>, n X X X ,,,21 为来自总体X 的样本,求未知参数θ的最大似然估计量.六、(8分)从一批钉子中抽取16枚,测得长度的样本均值 2.125X =,样本标准差为0.017S =,设钉长分布为正态,σ为未知,试求总体期望μ的置信度为0.90的置信区间.七、(10分)从一批轴料中取15件测量其椭圆度,已知椭圆度服从正态分布,计算得0.25S =,问该批轴料椭圆度的总体方差与规定的20.04σ=有无显著差别?(取0.05α=).八、(8分)考察硫酸铜晶体在100克水中的溶解量()y 与温度()x 间的相关关系时,做了9组独立试验,结果见下表:温度x (0C)0 10 20 30 40 50 60 70 80 溶解量y (g)14.017.521.226.129.233.340.048.054.8已算得x =40,y =31.567,xx S =6000,xy S =2995,yy S =1533.38。
求回归方程B(100,0.2)={}P X k(2)()1000.220E X =⨯=,()1000.20.816D X =⨯⨯=,(6分) 由D L -中心极限定理得142020302020{1430}{}{1.5 2.5}4444X X P X P P ----≤≤=≤≤=-≤≤(9分)(2.5)( 1.5)(2.5)(1.5)10.99380.933210.927≈Φ-Φ-=Φ+Φ-=+-=(12分) 四、(10分); 解 X 的密度为 1,01,()0,X x f x <<⎧=⎨⎩其它.(2分)当1y <时,()()()0X Y F y P Y y P e y =≤=≤=, (3分)当1y e ≤<时,()()(ln )(ln )Y X F y P Y y P X y F y =≤=≤=, (7分) 当y e ≥时,()(ln )1Y F y P X y =≤=, (8分) 所以Y 的密度为11(ln ),1,()()0,.XY Y f y y e y y f y F y ⎧⋅=<<⎪'==⎨⎪⎩其他 (10分)五、(10分)解 最大似然估计:设样本观测值为12,,,n x x x ,似然函数1111()()nnnii i i L x x θθθθθ--====∏∏,(3分) 1ln[()]ln()(1)ln()ni i L n x θθθ==+-∑, (5分)由 1ln[()]ln()0n i i d L n x d θθθ==+=∑, (8分)得θ的最大似然估计量1ˆln()nii nX θ==-∑。
(完整word版)《概率论与数理统计》期末考试试题及答案

)B =________________.3个,恰好抽到),(8ak ==(24)P X -<= 乙企业生产的50件产品中有四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、136、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知 01.0.20.10.10.a +++++= 故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X .解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰ ................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: 没有任何人的生日在同一个月份的概率4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= ,分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -;2、(12分)设随机变量(X,Y)的密度函数为1)1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他求边缘密度函数(),()X Y x y ϕϕ;2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。
(完整版)自考本概率论与数理统计真题10套

2.设F(x)为随机变量X的分布函数,则有
A.F(-∞)=0,F(+∞)=0B.F(-∞)=1,F(+∞)=0
C.F(-∞)=0,F(+∞)=1D.F(-∞)=1,F(+∞)=1
3.设二维随机变量(X,Y)服从区域D:x2+y2≤1上的均匀分布,则(X,Y)的概率密度为
19. 设随机变量X与Y相互独立,且X~N(0,5),Y~X2(5),则随机变量 服从
自由度为5的_______________分布。
20. 设随机变量X与Y相互独立,且D(X)=2,D(Y)=1,则D(X-2Y+3)=___________.
21. 已知二维随机向量(X,Y)服从区域G:0≤x≤1, 0≤y≤2上的均匀分布,则 _______________.
Y
X
-1
0
1
0
0.3
0.2
0.1
1
0.1
0.3
0
求:(1)X和Y的分布律;(2)Cov(X,Y).
四、综合题(本大题共2小题,每小题12分,共24分)
28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布N(75,σ2),已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率.
22. 设总体X~N( …,Xn为来自总体X的样本, 为样本均值,则D( )=.
23. 设二维随机向量(X,Y)的概率密度为f(x,y)= 则当
0≤y≤1时,(X,Y)关于Y的边缘概率密度fY(y)=.
24. 设总体X的分布列为
X
0
1
P
1-p
P
其中p为未知参数,且X1,X2,…,Xn为其样本,则p的矩估计 =___________.
(完整word版)概率论和数理统计考试试题和答案解析.doc

一. 填空题(每空题 2 分,共计 60 分)1、A、B是两个随机事件,已知p(A )0.4, P(B) 0.5,p( AB) 0.3 ,则p(A B)0.6 ,p(A - B)0.1,P( A B )= 0.4 ,p(A B)0.6 。
2、一个袋子中有大小相同的红球 6 只、黑球 4 只。
(1)从中不放回地任取 2 只,则第一次、第二次取红色球的概率为:1/3。
(2)若有放回地任取2只,则第一次、第二次取红色球的概率为:9/25。
(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55。
3、设随机变量 X 服从 B(2,0.5 )的二项分布,则p X 1 0.75, Y 服从二项分布 B(98, 0.5), X 与 Y 相互独立 , 则 X+Y服从 B(100,0.5) ,E(X+Y)= 50 ,方差 D(X+Y)= 25 。
4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1 、0.15 .现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取一件。
(1)抽到次品的概率为:0.12 。
(2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 .5、设二维随机向量( X ,Y)的分布律如右,则 a 0.1, E( X ) 0.4 ,X 0 1X与 Y 的协方差为: - 0.2Y,-1 0.2 0.3Z X Y2的分布律为 : z 1 21 0.4 a概率0.6 0.46、若随机变量X ~ N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则 P{ 2 X 4}0.815,Y 2X 1,则Y~N( 5,16)。
7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2,方差D(X)=1,D(Y)=2,且X、Y相互独立,则:E(2X Y)-4,D(2X Y)6。
8、设D(X)25,D(Y)1,Cov ( X ,Y ) 2 ,则 D( X Y)309、设X1,, X 26是总体 N (8,16) 的容量为26 的样本,X为样本均值,S2为样本方差。
2013~2014年全国自考概率论与数理统计试题及答案要点

全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北 京 交 通 大 学2013~2014学年第一学期概率论与数理统计期末考试试卷(A 卷)参 考 答 案某些标准正态分布的数值其中()x Φ是标准正态分布的分布函数. 一.(本题满分8分)某人钥匙丢了,他估计钥匙掉在宿舍里、教室里以及路上的概率分别为4.0、35.0和25.0,而钥匙在上述三个地方被找到的概率分别为5.0、65.0和45.0.如果钥匙最终被找到,求钥匙是在路上被找到的概率. 解:设=B “钥匙被找到”.=1A “钥匙掉在宿舍里”,=2A “钥匙掉在教室里”,=3A “钥匙掉在路上”. 由Bayes 公式,得 ()()()()()∑==31333i iiA B P A P A B P A P B A P2083.045.025.065.035.05.04.045.025.0=⨯+⨯+⨯⨯=.二.(本题满分8分)抛掷3枚均匀的硬币,设事件{}至多出现一次正面=A ,{}正面与反面都出现=B判断随机事件A 与B 是否相互独立(4分)?如果抛掷4枚均匀的硬币,判断上述随机事件A 与B 是否相互独立(4分)?解:⑴ 如果抛掷3枚硬币,则样本点总数为823=.()2184==A P ,()4386==B P ,()83=AB P , 所以有 ()()()B P A P AB P =⨯==432183,因此此时随机事件A 与B 是相互独立的.⑵ 如果抛掷4枚硬币,则样本点总数为1624=.()165=A P ,()871614==B P ,()41164==AB P , 所以有 ()()()B P A P AB P =⨯≠=8716541,因此此时随机事件A 与B 不是相互独立的.三.(本题满分8分)设随机变量X 的密度函数为()()⎩⎨⎧<<-=其它010143x x x f .求:⑴ ()X E (4分);⑵ (){}X E X P >(4分). 解: ⑴ ()()()⎰⎰-⋅==+∞∞-1314dx x x dx x xf X E()2.051514312143341432==⎪⎭⎫ ⎝⎛-+-⋅=-+-=⎰dx x x xx .⑵ (){}{}()⎰-=>=>12.03142.0dx x X P X E X P()4096.062525641234331412.043212.032==⎪⎭⎫ ⎝⎛-+-⋅=-+-=⎰x x x x dx x xx .四.(本题满分8分)某加油站每周补给一次汽油,如果该加油站每周汽油的销售量X (单位:千升)是一随机变量,其密度函数为()⎪⎩⎪⎨⎧<<⎪⎭⎫ ⎝⎛-⨯=其它0100010012014x x x f试问该加油站每次的储油量需要多大,才能把一周内断油的概率控制在%2以下? 解:设该加油站每次的储油量为a .则由题意,a 应满足1000<<a ,而且()02.0≤>a X P .而 ()()()()5100410010010011001201⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⨯=+==>⎰⎰⎰⎰+∞+∞a dx x dx x f dx x f dx x f a X P aaa.所以,应当有, 02.010015≤⎪⎭⎫ ⎝⎛-a .所以,得 502.01001≤-a ,即 10002.015a≤-, 因此有 ()26949481.5402.011005=-⨯≥a .因此可取55=a (千升),即可使一周内断油的概率控制在%5以下.五.(本题满分8分)设平面区域D 是由双曲线xy 1=,()0>x 以及直线x y =,2=x 所围,二维随机变量()Y X ,服从区域D 上的均匀分布.求:⑴ 二维随机变量()Y X ,的联合密度函数()y x f ,(4分);⑵ 随机变量Y的边缘密度函数()y f Y (4分). 解:⑴ 区域D 的面积为()2ln 6ln 2121221-=-=⎪⎭⎫ ⎝⎛-=⎰xx dx x x A ,所以,二维随机变量()Y X ,的联合密度函数为()()()⎪⎩⎪⎨⎧∉∈-=Dy x D y x y x f ,,2ln 61,.⑵ 当121<≤x 时, ()()⎪⎪⎭⎫⎝⎛--=-==⎰⎰+∞∞-y dx dx y x f y f yY 122ln 612ln 61,21; 当21≤≤x 时,()()()y dx dx y x f y f yY --=-==⎰⎰+∞∞-22ln 612ln 61,2. 所以,随机变量Y 的边际密度函数为()()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤--<≤⎪⎪⎭⎫ ⎝⎛--=其它02122ln 61121122ln 61y y y y y f Y . 六.(本题满分8分)设随机变量X 与Y 满足:()2var =X ,()4var =Y ,()1,cov =Y X ,再设随机变量Y X U 32-=,Y X V 23-=,求二维随机变量()V U ,的相关系数V U ,ρ.解:()()()()()32124924,cov 12var 9var 432var var =-⨯+⨯=-+=-=Y X Y X Y X U , ()()()()()22124429,cov 12var 4var 923var var =-⨯+⨯=-+=-=Y X Y X Y X V , ()()Y X Y X V U 23,32cov ,cov --=()()()()231134626,cov 9,cov 4var 6var 6=⨯-⨯+⨯=--+=Y X Y X X X . 所以,二维随机变量()V U ,的相关系数为 ()()()8668451157.011823223223var var ,cov ,====V U V U V U ρ.七.(本题满分8分) 设()21,X X 是取自正态总体()2,0σN 中的一个样本.试求随机变量22121⎪⎪⎭⎫ ⎝⎛-+=X X X X Y 的分布.(不必求出Y 的密度函数,只需指出Y 是哪一种分布,以及分布中的参数即可.) 解:由于()21,0~σN X ,()22,0~σN X ,而且1X 与2X 相互独立,所以 ()2212,0~σN X X +,()2212,0~σN X X -.由于 ()()()0v a r v a r ,c o v 212121=-=-+X X X X X X ,而且()2121,X X X X -+服从二元正态分布,所以21X X +与21X X -相互独立.所以,()1~22221χσ⎪⎭⎫ ⎝⎛+X X ,()1~22221χσ⎪⎭⎫ ⎝⎛-X X ;而且2212⎪⎭⎫ ⎝⎛+σX X 与2212⎪⎭⎫ ⎝⎛-σX X 相互独立.所以,()1,1~2222122122121F X X X X X X X X Y ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛+=⎪⎪⎭⎫⎝⎛-+=σσ. 八.(本题满分8分)某射手射击,他打中10环的概率为5.0,打中9环的概率为3.0,打中8环的概率为1.0,打中7环的概率为05.0,打中6环的概率为05.0.他射击100次,试用中心极限定理近似计算他所得的总环数介于900环与930环之间的概率.(附表:标准正态分布分布函数()x Φ的部分数值表:解:设k X 表示该射手射击的第k 发时所得的环数()100,,2,1 =k ,则k X的分布律为所以,()15.905.0605.071.083.095.010=⨯+⨯+⨯+⨯+⨯=k X E ,()95.8405.0605.071.083.095.010222222=⨯+⨯+⨯+⨯+⨯=k X E ,所以,()()()[]2275.115.995.84222=-=-=k k k X E X E X D .因此,10021,,,X X X 是独立同分布的随机变量,故()()()()()()⎪⎪⎪⎪⎪⎭⎫⎝⎛-≤-≤-=⎪⎭⎫ ⎝⎛≤≤∑∑∑∑∑∑∑∑========10011001100110011001100110011001930900930900k k k k k k k k k k k k k k k k X D X E X D X E X X D X E P X P⎪⎪⎪⎪⎭⎫⎝⎛⨯⨯-≤⨯⨯-≤⨯⨯-=∑=2275.110015.91009302275.110015.91002275.110015.91009001001k kX P ⎪⎪⎪⎪⎭⎫⎝⎛≤⨯⨯-≤-=∑=35388.12275.110015.910035388.11001k k X P ()()()82289.0191149.02135.1235.135.1=-⨯=-Φ=-Φ-Φ≈. 九.(本题满分9分)设随机变量X 与Y 相互独立而且同分布,其中随机变量X 的分布列为{}{}010,01>-==>==p X P p X P ,再设随机变量⎩⎨⎧++=为奇数为偶数Y X Y X Z 01.⑴ 写出随机变量()Z X ,的联合分布律以及X 与Z 各自的边缘分布律;⑵ 问p 取什么值时,随机变量X 与Z 相互独立?解:⑴ X 与Z 的联合分布列以及X 与Z 各自的边际分布列为其中{}{}{}{}()p p Y P X P Y X P Z X P -=========1101,00,0; {}{}{}{}()21000,01,0p Y P X P Y X P Z X P -=========;{}{}{}{}()p p Y P X P Y X P Z X P -=========1010,10,1; {}{}{}{}2111,11,1p Y P X P Y X P Z X P =========;⑵ 如果X 与Z 相互独立,则有{}(){}{}()p p p Z P X P p p Z X P -⋅====-===120110,1, 解方程 ()()p p p p p -⋅=-121,得1=p .并且当1=p 时,有可以验证,此时X 与Z 是相互独立的.十.(本题满分9分)两台相同型号的自动记录仪,每台无故障工作的时间分别为X 和Y ,假设X 与Y 相互独立,都服从参数为5=λ的指数分布.X 的密度函数为()⎩⎨⎧≤>=-055x x e x f x. 现首先开动其中一台,当其损坏停用时另一台自动开动,直至第二台记录仪损坏为止.令:T :从开始到第二台记录仪损坏时记录仪的总共工作时间,试求随机变量T 的概率密度函数. 解:X 的密度函数为()⎩⎨⎧≤>=-00055x x e x f xX , Y 的密度函数为()⎩⎨⎧≤>=-055y y e y f yY 由题意,知 Y X T +=,设T 的密度函数为()t f T ,则 ()()()()⎰⎰+∞-+∞∞--=-=55dx x t f e dx x t f x f t f Y x Y X T作变换 x t u -=,则 dx du -=,当0=x 时,t u = ;当+∞→x 时,-∞→u .代入上式,得()()()()⎰⎰∞---∞--=-=tY u ttY u t T du u f e edu u f et f 55555当0≤t 时,由()0=y f Y ,知()0=t f T ; 当0>t 时, ()t t u u tT te du e e et f 55552555-∞---=⋅=⎰综上所述,可知随机变量T 的密度函数为()⎩⎨⎧≤>=-00255t t te t f tT .十一.(本题满分9分) 设总体X 的密度函数为()θθθxe xf -=21;,()+∞<<∞-x ,其中0>θ是未知参数.()n X X ,,1 是从中抽取的一个样本.求θ的最大似然估计量.解:θ的似然函数为()()()⎭⎬⎫⎩⎨⎧-==∑∏==n i i nni i x x f L 111e x p 21;θθθθ, 则有()()∑=--=ni ix n L 112ln ln θθθ,对θ求导,得()∑=+-=ni ixn L d d 121ln θθθθ,令()0ln =θθL d d,即有0112=+-∑=ni i x n θθ,解似然方程,得∑==ni i x n 11θ.所以,θ的最大似然估计量为∑==n i i X n 11ˆθ. 十二.(本题满分9分) 设总体X 的密度函数为()()⎪⎩⎪⎨⎧<<-=其它0063θθθx x xx f ,其中0>θ是未知参数,()n X X ,, 1是从该总体中抽取的一个样本.⑴. 求未知参数θ的矩估计量θˆ(5分);⑵. 求方差()θˆvar (4分).解:⑴. ()()()26032θθθθ=-==⎰⎰+∞∞-dx x x dx x xf X E ,所以,()X E 2=θ ,将()X E 用样本均值∑==ni i X n X 11来替换,得未知参数θ的矩估计为X 2ˆ=θ⑵. ()()()()X nX X var 4var 42var ˆvar ===θ,而 ()()()[]22X E X E X D -=()()204622203322θθθθθθ=--=⎪⎭⎫⎝⎛-=⎰⎰+∞∞-dx x x dx x f x所以,()()nn X n 5204var 4ˆvar 22θθθ=⨯==。