大物习题

合集下载

大物习题答案1

大物习题答案1

习 题 一1—1 一质点在平面xOy 内运动,运动方程为x =2t ,2219t y -= (SI)。

(1)求质点的运动轨道;(2)求t =1s 和t =2s 时刻质点的位置矢量;(3)求t =1s 和t =2s 时刻质点的瞬时速度和瞬时加速度;(4)在什么时刻,质点的位置矢量和速度矢量垂直?这时x 、y 分量各为多少?(5)在什么时刻,质点离原点最近?最近距离为多大?[解] 质点的运动方程:t x 2=,2219t y -= (1)消去参数t ,得轨道方程为: 22119x y -= (2)把t=1s 代入运动方程,得j i j i r 172)219(22+=-+=t t 把t =2s 代入运动方程,可得j i j i r 114)2219(222+=⨯-+⨯= (3)由速度、加速度定义式,有4/,0/4/,2/-====-====dt dv a dt dv a t dt dy v dt dx v y y x x y x所以,t 时刻质点的速度和加速度为 j i j i t v v v y x 42-=+= j j i a 4-=+=y x a a所以,t=1s 时,j i v 42-=,j a 4-= t=2s 时,j i v 82-=,j a 4-= (4)当质点的位置矢量和速度矢量垂直时,有 0=⋅v r即 0]42[])219(2[2=-⋅-+j i j i t t t 整理,得 093=-t t解得 3,3;0321-===t t t (舍去) m 19,0,s 011===y x t 时 m 1,m 6,s 322===y x t 时 (5)任一时刻t 质点离原点的距离 222)219()2()(t t t r -+= 令d r/d t =0 可得 t =3所以,t =3s 时,质点离原点最近 r1—2 一粒子按规律59323+--=t t t x 沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动,减速运动的时间间隔。

大物实验复习题

大物实验复习题

物理实验复习题1.误差是 与 的差值,偏差是 与 的差值,偏差是误差的 值。

2.有效数字是由 数字和一位 数字组成,有效数字的多少反映着测量 的高低。

3.写出下列几个符号的含义(文字叙述及公式表达)(1)σx (2)S x (3)S x4.在工科物理实验中,不确定度一般取 位有效数字,相对不确定度一般取 位有效数字。

5.写出以下几个简单函数不确定度的传递公式:N=x+y U N = ,E N =N=x.y U N = ,E N =N=x m /y n U N = ,E N =5.作图法有什么优点?作图时应注意什么?6.使用天平前要进行那些调节?称量时应注意什么?7.使用测量望远镜必须先调节,按顺序写出调节内容。

8.测量望远镜的视差是怎样形成的?如何消除视差?9.以下电表上所标符号的含义各是什么?V mA Ω ∩ —10.系统误差的特点是具有----------------性,它来自---------------- 。

------------------- 。

-------------------随机误差 的特点是具有----------------性,其误差的大小和符号的变化是----------------的。

但它服从-------------规律。

11.测量不确定度是表征被测量的---------------------在某个-------------------------的一个评定。

A 类不确定度分量由----------------方法求出、推出或评出。

B 类不确定度分量由不同于--------------------的其他方法求出的不确定度分量。

12.据误差限评定不确定度B 分量时,对于均匀分布u j =---------------,对于正态分布u j =---------------,13.物理实验仪器中误差限的确定或估计大体有三种情况,它们是什么?14.改正下列错误:(1) M=3169+200Kg(2) D=110.430+0.3cm(3) L=12Km+100m(4) Y=(1.96×105+5.79×103)N/㎜(5) T=18.5426+0.3241cm(6) h=26.7×104+200Km15.写出下列函数 不确定度的传递公式:(1)z y x N -= (2)33121y x N -= (3) ρπh m r =16.写出下列函数 不确定度的传递公式:(1)01ρρm m m -= (2)Dd D f 422-= 17.写出下列仪器的误差限:(1) 米尺类 (2)千分尺 (3)物理天平 (4)游标卡尺(50分度值)(5)电表 (6)电阻18.下列电器元件符号各表示什么?~19.某圆直径测量结果为 d=0.600+0.002cm,求圆的面积,并估算不确定度。

大物练习题

大物练习题

第十一章真空中的静电场1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.LP2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为ˍˍˍ,通过立方体一面的电场强度通量是ˍˍˍ,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是ˍˍˍ,(2)另外三个面每个面的电通量是ˍˍˍ。

3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是()A.ER2π B.R22πC. ER22π D. ER221π4.根据高斯定理的数学表达式⎰∑⋅=SqSE/dε可知下述各种说法中,正确的是()(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( )图11-2图11-3EOr (A)E ∝1/r6.如图所示, 电荷-Q 均匀分布在半径为R ,长为L 的圆弧上,圆弧的两端有一小空隙,空隙长为)(R L L <<∆∆,则圆弧中心O 点的电场强度和电势分别为( )A.R Q i L R L Q 0204,4πεπε-∆- B.RQ i L R L Q 02024,8πεεπ-∆- C.RQ i L R L Q 0204,4πεπε ∆ D.RL L Qi L R L Q 0204,4πεπε∆-∆-7.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10­8C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________8. 如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为( )(A) E =0,U =r a ln 20ελπ. (C) E =r 02ελπ,U =rb ln 20ελπ (B) E =0,U =a b ln 20ελπ (D) E =r 02ελπ,U =a b ln 20ελπ.图11-69.如图,在点电荷+Q ,-Q 产生的电场中,abcd 为同一直线上等间距的四个点,若将一点电荷+q 0由b 点移到d 点,则电场力( )A. 作正功;B. 作负功;C.不作功;D.不能确定10.说明下列各式的物理意义(1)l d E ⋅(2)l d E b a ⋅⎰ (3)l d E L ⋅⎰(4)S d E ⋅11.已知某静电场的电势函数)(14121222SI y y x x U --=,由场强和电势梯度的关系式可得点(2,3,0)处的场强E =ˍˍˍi +ˍˍˍj +ˍˍˍk (SI)a c +Q-Q 图11-9答案:1.()d L d q +π04ε 2. 00024,0,6,εεεq q q 3.A4.C5.C ⎪⎪⎩⎪⎪⎨⎧≥=≤=)( 22)( 220020R r R rr R R r r E ρπλπελερερ,或 6. A7. 10cm8.B9.A10. (1)l d E ⋅表示电场力对单位正电荷所做的元功。

大物复习题汇总

大物复习题汇总

【7-11】一条无限长直导线在一处弯折成半径为 R 的圆弧,
如图所示,若已知导线中电流强度为 I,试利用毕奥-萨伐
I
尔定律求:(1)当圆弧为半圆周时,圆心 O 处的磁感应强度 B;
(2)当圆弧为 1/4 圆周时,圆心 O 处的磁感应强度。
解:(1) B B左 B中 B右 因左右两边的半无限长的延迟线经
S
S
4R3 30
E R3 3r 20
当 r < R 时,同理有
S
E
E
• dS EdS
S
qr 4 0R3
cos
0
E
E dS E4 r2 q
S
qr 4 0R3
rˆ, (r
R)
r3 R3
q 4r 3 3
Ex3 静电场环路定理,电势能,电势
6-17 如图所示,A 点有电荷+q,B 点有电荷-q,AB=2l,OCD 是以 B 为中心、 l 为半径的半圆。
强 dE1
dE1i
且 dE1
dx 40 x2

La dx
L
EP1 Q dE1 i a
40 x2
i 40a(a L)

P1
点场强大小为
L 4 0 a(a
L)
,方向沿
AP1
方向。
6.5 一根玻璃棒被弯成半径为 R 的半圆形,其上电荷均匀分布,总电荷为 q,求半圆中心 O 点
的场强。
解:如图,以半圆圆心为原点、对称轴为 x 轴建立坐标系,在棒上取电荷元 dq。
q 4 0
3l
q 4 0l
q 6 0l
单位正电荷从 O 点移到 D 点,电场力做功为:
WOD

大一物理习题及答案 (下)

大一物理习题及答案   (下)
8.在圆柱形空间内有一磁感应强度为 的均匀磁场,如图所示, 的大小以速率dB/d t变化。有一长度为l0的金属棒先后放在磁场的两个不同位置1(a b)和2( ),则金属棒在这两个位置时棒内的磁感应电动势的大小关系为[B]
(A) (B) .
(C) (D)
解:
二. 填空题:
1.一段导线被弯成圆心在O点、半径为R的三段圆弧 、 、 ,它们构成了一个闭合回路, 位于XOY平面内, 和 分别位于另两个坐标面中(如图)。均匀磁场 沿X轴正方向穿过圆弧 与坐标轴所围成的平面。设磁感应强度随时间的变化率为K(K>0),则闭合回路a b c a中
5.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝。当导线中的电流I为2.0A时,测得铁环内的磁感应强度的大小B为1.0T,则可求得铁环的相对磁导率 为(真空磁导率 ):[B]
(A) (B)
(C) (D)63.3
解:n=10匝/cm=1000匝/m
二.填空题:
1.铜的相对磁导率 ,其磁化率 ,它是抗磁性磁介质。 ∴
方向:
或:
(2)取顺时针方向为回路L的正方向.
, 的方向与L的正方向一致;
, 的方向与L的正方向相反.
4.如图所示,有一根长直导线,载有直流电流I,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度 沿垂直于导线的方向离开导线.设t=0时,线圈位于图示位置,求:
(1) 在任意时刻t通过矩形线圈的磁通量.
4.关于稳恒磁场的磁场强度 的下列几种说法哪个是正确的?[C]
(A) 仅与传导电流有关。(还与磁化电流有关)
(B)若闭合曲线内没有包围传导电流,则曲线上各点的 必为零。(闭合曲线外有传导电流)
(C)若闭合曲线上各点 均为零,则该曲线所包围传导电流的代数和为零。

高三物理大题练习题

高三物理大题练习题

高三物理大题练习题一、选择题1. 下列哪个物理量是标量?A. 力B. 速度C. 加速度D. 位移2. 以下哪个公式描述了牛顿第二定律?A. F = maB. F = mvC. F = msD. F = mp3. 下列哪个描述最准确地解释了动量?A. 物体所具有的质量B. 物体所具有的能量C. 物体改变运动状态的能力D. 物体运动的速度4. 以下哪个现象与牛顿第三定律相对应?A. 月球绕地球运动B. 弹簧的伸缩C. 车辆在路上行驶D. 飞机在空中飞行5. 在光的三原色中,红、绿和蓝分别对应于光的什么特性?A. 频率B. 能量C. 波长D. 速度二、填空题1. 物体自由下落的加速度近似等于 __________。

2. 一个球以10 m/s的初速度向上抛出,最高点的速度是__________。

3. 在抛体运动中,抛出速度的大小等于抛体回到地面时的__________。

4. 音速在哪种介质中传播速度最快? __________。

5. 根据质能方程E = mc^2,其中c代表光速,E代表能量,m代表__________。

三、解答题1. 描述牛顿第一定律。

2. 解释为什么冰上的摩擦力比地面上的小。

3. 列出至少两种能量转换的形式,并给出具体例子。

4. 解释为什么我们可以通过声音来判断物体的位置。

5. 谈谈光的折射现象,并解释为什么折射会发生。

以上为高三物理大题练习题,请您按照题号顺序回答。

祝你好运!。

大学物理习题

大学物理习题

自测题八一、选择题:(共24分)1. 有三个直径相同的金属小球.小球1和2带等量同号电荷,两者的距离远大于小球直径,相互作用力为F .小球3不带电,装有绝缘手柄.用小球3先和小球1碰一下,接着又和小球2碰一下,然后移去.则此时小球1和2之间的相互作用力为( )(A)F /2 (B)F /4. (C)3F /4. (D)3F /8.题8-1-2图4. 如题8-1-2图所示,电流由长直导线1沿ab 边方向经a 点流入一电阻均匀分布的正方形框,再由c 点沿dc 方向流出,经长直导线2返回电源.设载流导线1,2和正方形框在框中心O 点产生的磁感应强度分别用B 1,B 2和B 3表示,则O 点的磁感应强度大小( )(A)B =0,因为B 1=B 2=B 3=0.(B)B =0,因为虽然B 1≠0,B 2≠0;但B 1+B 2=0,B 3=0.(C)B ≠0,因为虽然B 1+B 2=0,但B 3≠0.(D)B ≠0,因为虽然B 3=0,但B 1+B 2≠0题8-1-3图5. 如题8-1-3图所示,有两根载有相同电流的无限长直导线,分别通过*1=1,*2=3点,且平行于y 轴,则磁感应强度B 等于零的地方是( )(A)在*=2的直线上. (B)在*>2的区域.(C)在*<1的区域. (D)不在O*y 平面上.6. 如题8-1-4图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc的长度为l 当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势ε和a ,c 两点间的电势差U a -U c 为( )(A)ε=0,U a -U c =12B ωl 2 (B)ε=0,U a -U c =-12B ωl 2 (C)ε=B ωl 2,U a -U c =12B ωl 2 (D)ε=B ωl 2,U a -U c =-12B ωl 2 题8-1-4图 题8-1-5图7. 真空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如题8-1-5图.已知导线中的电流强度为I ,则在两导线正中间*点P 处的磁能密度为( )(A)1μ0(μ0I 2πa )2 (B) 12μ0(μ0I 2πa )2 (C)12μ0(μ0I πa)2 (D)0. 8. *段时间内,圆形极板的平板电容器两板电势差随时间变化的规律是:U ab =U a -U b =Kt (K 是正常量,t 是时间).设两板间电场是均匀的,此时在极板间1,2两点(2比1更靠近极板边缘)处产生的磁感应强度B 1和B 2的大小有如下关系:( )(A)B 1>B 2. (B)B 1<B 2.(C)B 1=B 2=0. (D)B 1=B 2≠0.二、填空题:(共38分)1. 如题8-2-1图示BCD是以O点为圆心,以R为半径的半圆弧,在A点有一电量为+q的点电荷,O点有一电量为-q的点电荷.线段.现将一单位正电荷从B点沿半圆弧轨道BCD 移到D点,则电场力所作的功为_____.题8-2-1图题8-2-2图2. 如题8-2-2图所示,一半径为R的均匀带电细圆环,带电量为Q,水平放置.在圆环轴线的上方离圆心R处,有一质量为m,带电量为q的小球.当小球从静止下落到圆心位置时,它的速度为v=_____.4. 均匀磁场的磁感应强度B垂直于半径为r的圆面.今以该圆周为边线,作一半球面S,则通过S面的磁通量的大小为_____.5. 一长直载流导线,沿空间直角坐标的Oy轴放置,电流沿y正向.在原点O处取一电流元Id l,则该电流元在(a,0,0)点处的磁感应强度的大小为_____,方向为_____.6. 一质点带有电荷q=8. 0×10-19C,以速度v=3. 0×105 m·s-1在半径为R=6. 00×10-8m的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感应强度B=_____,该带电质点轨道运动的磁矩p m=_____.(μ0=4π×10-7H·m-1)7. 一电子以速率V=2. 20×106 m·s-1垂直磁力线射入磁感应强度为B=2. 36 T的均匀磁场,则该电子的轨道磁矩为_____.(电子质量为9. 11×10-31kg),其方向与磁场方向_____.8. 如题8-2-3图,等边三角形的金属框,边长为l,放在均匀磁场中,ab边平行于磁感应强度B,当金属框绕ab边以角速度ω转动时,则bc边的电动势为_____,ca边的电动势为_____,金属框内的总电动势为_____.(规定电动势沿abca绕为正值)题8-2-3图题8-2-4图9. 如题8-2-4图,有一根无限长直导线绝缘地紧贴在矩形线圈的中心轴OO′上,则直导线与矩形线圈间的互感系数为_____.10. 一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉长一些,则它的自感系数将_____.三、计算题:(共40分)1. 两个相距甚远可看作孤立的导体球,半径均为10 cm,分别充电至200 V和400 V,然后用一根细导线连接两球,使之达到等电势.计算变为等势体的过程中,静电力所作的功.(ε0=8. 85×10-12C2·N-1·m-2)题8-3-1图2. 如6-3-1图,半径为a,带正电荷且线密度是λ(常数)的半圆.以角速度ω绕轴O′O″匀速旋转.求:(1)O点的B;(2)旋转的带电半圆的磁矩P m(积分公式∫π0sin2θdθ= 12π)3. 空间*一区域有均匀电场E和均匀磁场B,E和B同方向.一电子(质量m,电量-e)以初速v在场中开始运动,v与E夹角α,求电子的加速度的大小并指出电子的运动轨迹.题8-3-2图4. 如题8-3-2图,无限长直导线,通以电流I有一与之共面的直角三角形线圈ABC已知AC边长为b,且与长直导线平行,BC边长为a.若线圈以垂直于导线方向的速率v向右平移,当B点与长直导线的距离为d时,求线圈ABC内的感应电动势的大小和感应电动势的方向.5. 在一无限长载有电流I的直导线产生的磁场中,有一长度为b的平行于导线的短铁棒,它们相距为a .若铁棒以速度v 垂直于导线与铁棒初始位置组成的平面匀速运动,求t时刻铁棒两端的感应电动势ε的大小.自测题九一、选择题(共33分)1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿*路径传播到B ,若A ,B 两点位相差为3π,则此路径AB 的光程为( )(A)1.5λ. (B)1.5n λ.(C)3λ. (D)1.5λ/n .2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如题9-1-1图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为( )(A)2n 2e . (B)2n 2e -λ1/(2n 1).(C)2n 2e -12 n 1λ1. (D)2n 2e -12n 2λ1. 题9-1-1图 题9-1-2图3. 如题9-1-2图所示,在双缝干涉实验中,若单色光源S 到两缝S 1,S 2距离相等,而观察屏上中央明条纹位于图中O 处.现将光源S 向下移动到示意图中的S ′位置,则( )(A)中央明条纹也向下移动,且条纹间距离不变.(B)中央明条纹向上移动,且条纹间距不变.(C)中央明条纹向下移动,且条纹间距增大.(D)中央明条纹向上移动,且条纹间距增大.4. 用白光光源进行双缝实验,若用一个纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则( )(A)干涉条纹的宽度将发生改变.(B)产生红光和蓝光的两套彩色干涉条纹.(C)干涉条纹的亮度将发生改变.(D)不产生干涉条纹.题9-1-3图5. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1,S 2连线的垂直平分面处放一反射镜M ,如题9-1-3图所示,则此时( )(A)P 点处仍为明条纹.(B)P 点处为暗条纹.(C)不能确定P 点处是明条纹还是暗条纹.(D)无干涉条纹.6. 两块平玻璃构成空气劈尖,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的( )(A)间隔变小,并向棱边方向平移.(B)间隔变大,并向远离棱边方向平移.(C)间隔不变,向棱边方向平移.(D)间隔变小,并向远离棱边方向平移.题9-1-4图7. 如题9-1-4图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹( )(A)向右平移.(B)向中心收缩.(C)向外扩张.(D)静止不动.(E)向左平移.8. 一束波长为λ的单色光由空气垂直入射到折射率为n的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为( )(A)λ/4.(B)λ/4n.(C)λ/2.(D)λ/2n.9. 在玻璃(折射率n3=1.60)表面镀一层MgF2(折射率n2=1.38)薄膜作为增透膜.为了使波长为5000 Å的光从空气(n1=1.00)正入射时尽可能少反射,MgF2薄膜的最小厚度应是( )(A)1250 Å.(B)1810 Å.(C)2500 Å.(D)781 Å.(E)906 Å.10. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题9-1-5图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分( )(A)凸起,且高度为λ/4.(B)凸起,且高度为λ/2.(C)凹陷,且深度为λ/2.(D)凹陷,且深度为λ/4.题9-1-5图11. 在迈克尔逊干涉仪的一条光路中,放入一折射率为n,厚度为d的透明薄片,放入后,这条光路的光程改变了( )(A)2(n-1)d.(B)2nd.(C)2(n-1)d+12λ.(D)nd.(E)(n-1)d.二、填空题(共23分)1. 波长为λ的平行单色光垂直照射到如题9-2-1图所示的透明薄膜上,膜厚为e,折射率为n,透明薄膜放在折射率为n1的媒质中,n1<n,则上下两表面反射的两束反射光在相遇处的位相差Δφ=______.题9-2-1图题9-2-2图2. 如题9-2-2图所示,假设有两个同相的相干点光源S1和S2,发出波长为λ的光.A是它们连线的中垂线上的一点.若在S1与A之间插入厚度为e、折射率为n的薄玻璃片,则两光源发出的光在A点的位相差Δφ=______.若已知λ=5000Å,n=1. 5,A点恰为第四级明纹中心,则e=______ Å.3. 一双缝干涉装置,在空气中观察时干涉条纹间距为 1. 00 mm.若整个装置放在水中,干涉条纹的间距将为______mm.(设水的折射率为4/3)4. 在空气中有一劈尖形透明物,其劈尖角θ=1. 0×10-4 rad,在波长λ=7000的单色光垂直照射下,测得两相邻干涉明条纹间距l=0.25 cm,此透明材料的折射率n=______.5. 一个平凸透镜的顶点和一平板玻璃接触,用单色光垂直照射,观察反射光形成的牛顿环,测得第k级暗环半径为r1.现将透镜和玻璃板之间的空气换成*种液体(其折射率小于玻璃的折射率),第k级暗环的半径变为r2,由此可知该液体的折射率为______.6. 若在迈克尔逊干涉仪的可动反射镜M移动0.620 mm的过程中,观察到干涉条纹移动了2300条,则所用光波的波长为_____Å.7. 光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是______.三、计算题(共40分)1. 在杨氏双缝实验中,设两缝之间的距离为0.2 mm .在距双缝1 m 远的屏上观察干涉条纹,若入射光是波长为400 nm 至760 nm 的白光,问屏上离零级明纹20 mm 处,哪些波长的光最大限度地加强"(1 nm=10-9 m)2. 薄钢片上有两条紧靠的平行细缝,用波长λ=5461Å的平面光波正入射到钢片上.屏幕距双缝的距离为D =2.00 m ,测得中央明条纹两侧的第五级明条纹间的距离为Δ*=12.0mm .(1)求两缝间的距离.(2)从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离"(3)如果使光波斜入射到钢片上,条纹间距将如何改变"3. 在折射率n =1.50的玻璃上,镀上n ′=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=6000Å的光波干涉相消,对λ2=7000Å的光波干涉相长.且在6000Å到7000Å之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.4. 用波长λ=500nm(1nm=10-9m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈尖上.劈尖角θ=2×10-4rad .如果劈尖内充满折射率为n =1.40的液体.求从劈棱数起第五个明条纹在充入液体前后移动的距离.题9-3-1图5. 在如题9-3-1图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率n 1=1.50)之间的空气(n 2=1.00)改换成水(n 2′=1.33),求第k 个暗环半径的相对改变量(r k -r ′k )/r k .四、证明题(4分)如题9-4-1图所示的双缝干涉,假定两列光波在屏上P 点处的光场随时间t 而变化的表达式各为E 1=E 0sin ωtE 2=E 0sin(ωt +Φ)Φ表示这两列光波之间的位相差.试证P 点处的合振幅为E p =E m cos(πd λsin θ)式中λ是光波波长,E m 是E p 的最大值.题9-4-1图 自测题十一、选择题(共30分)1. 在单缝夫琅禾费衍射实验中波长为λ的单色光垂直入射到单缝上.对应于衍射角为30°的方向上,若单缝处波面可分成3个半波带,则缝宽度a 等于( )(A)λ. (B)1.5λ.(C)2λ. (D)3λ.题10-1-1图2.在如题10-1-1图所示的单缝夫琅禾费衍射装置中,设中央明纹的衍射角范围很小.若使单缝宽度a变为原来的32,同时使入射的单色光的波长λ变为原来的3/4,则屏幕C 上单缝衍射条纹中央明纹的宽度Δ*将为原来的( )(A)3/4倍.(B)2/3倍.(C)9/8倍.(D)1/2倍.(E)2倍.题10-1-2图3. 在如题10-1-2图所示的单缝夫琅禾费衍射装置中,将单缝宽度a稍稍变宽,同时使单缝沿y轴正方向作微小位移,则屏幕C上的中央衍射条纹将( )(A)变窄,同时向上移.(B)变窄,同时向下移.(C)变窄,不移动.(D)变宽,同时向上移.(E)变宽,不移动.4. 一衍射光栅对*一定波长的垂直入射光,在屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该( )(A)换一个光栅常数较小的光栅.(B)换一个光栅常数较大的光栅.(C)将光栅向靠近屏幕的方向移动.(D)将光栅向远离屏幕的方向移动.5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,则此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为( )(A)a=b.(B)a=2b.(C)a=3b. (D)b=2a.6. 光强为I0的自然光依次通过两个偏振片P1和P2.若P1和P2的偏振化方向的夹角α=30°,则透射偏振光的强度I是( )(A)I0/4. (B)3I0/4(C)3I0/2 (D)I0/8.(E)3I0/8.7.一束光强为I0的自然光,相继通过三个偏振片P1,P2,P3后,出射光的光强为I=I0/8.已知P1和P3的偏振化方向相互垂直,若以入射光线为轴,旋转P2,要使出射光的光强为零,P2最少要转过的角度是( )(A)30°.(B)45°.(C)60°. (D)90°.8. 一束光是自然光和线偏振光的混合光,让它垂直通过一偏振片.若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,则入射光束中自然光与线偏振光的光强比值为( )(A)1/2.(B)1/5.(C)1/3. (D)2/3.9.自然光以60°的入射角照射到不知其折射率的*一透明介质表面时,反射光为线偏振光.则知( )(A)折射光为线偏振光,折射角为30°.(B)折射光为部分偏振光,折射角为30°.(C)折射光为线偏振光,折射角不能确定.(D)折射光为部分偏振光,折射角不能确定.10. 自然光以布儒斯特角由空气入射到一玻璃表面上,反射光是( )(A)在入射面内振动的完全偏振光.(B)平行于入射面的振动占优势的部分偏振光.(C)垂直于入射面振动的完全偏振光.(D)垂直于入射面的振动占优势的部分偏振光.二、填空题(共30分)1. 惠更斯引入的概念提出了惠更斯原理,菲涅耳再用的思想补充了惠更斯原理,发展成为惠更斯—菲涅耳原理.2.平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P点处为第二级暗纹,则单缝处波面相应地可划分为个半波带.若将单缝宽度缩小一半,P点将是级纹.3. 可见光的波长范围是400~760 nm.用平行的白光垂直入射在平面透射光栅上时,它产生的不与另一级光谱重叠的完整的可见光光谱是第级光谱.4. 用波长为λ的单色平行光垂直入射在一块多缝光栅上,其光栅常数d=3 μm,缝宽a=1 μm,则在单缝衍射的中央明条纹中共有条谱线(主极大).5. 要使一束线偏振光通过偏振片之后振动方向转过90°,至少需要让这束光通过块理想偏振片.在此情况下,透射光强最大是原来光强的倍.题10-2-1图6. 如果从一池静水(n=1.33)的表面反射出来的太阳光是完全偏振的,则太阳的仰角(见题10-2-1图)大致等于,在这反射光中的E矢量的方向应.7. 在题10-2-2图中,前四个图表示线偏振光入射于两种介质分界面上,最后一图表示入射光是自然光.n1,n2为两种介质的折射率,图中入射角i0=arctan(n2/n1),i≠i0.试在图上画出实际存在的折射光线和反射光线,并用点或短线把振动方向表示出来.题10-2-2图8. 在光学各向异性晶体内部有一确定的方向,沿这一方向寻常光和非常光的相等,这一方向称为晶体的光轴.只具有一个光轴方向的晶体称为晶体.三、计算题(共40分)1. (1)在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=4000Å,λ2=7600Å.已知单缝宽度a=1.0×10-2cm,透镜焦距f=50cm.求两种光第一级衍射明纹中心之间的距离.(2)若用光栅常数d=1.0×10-3cm的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.2. 波长为λ=6000Å的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级.(1)光栅常数(a+b)等于多少"(2)透光缝可能的最小宽度a等于多少"(3)在选定了上述(a+b)和a之后,求在衍射角-12π<φ<12π范围内可能观察到的全部主极大的级次.3. 两个偏振片P1,P2叠在一起,由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上,进行了两次测量.第一次和第二次P1和P2偏振化方向的夹角分别为30°和未知的θ,且入射光中线偏振光的光矢量振动方向与P1的偏振化方向夹角分别为45°和30°.不考虑偏振片对可透射分量的反射和吸收.已知第一次透射光强为第二次的3/4,求(1)θ角的数值;(2)每次穿过P1,P2的透射光强与入射光强之比;(3)每次连续穿过P1,P2的透射光强与入射光强之比.题10-3-1图4.如题10-3-1图安排的三种透光媒质Ⅰ,Ⅱ,Ⅲ,其折射率分别为n1=1.33,n2=1.50,n3=1.两个交界面相互平行.一束自然光自媒质Ⅰ中入射到Ⅱ与Ⅲ的交界面上,若反射光为线偏振光,(1)求入射角i.(2)媒质Ⅱ,Ⅲ界面上的反射光是不是线偏振光"为什么"自测题十一一、选择题(共30分)1. 已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV,而钠的红限波长是5400Å,则入射光的波长是 ( D )(A)5350 Å. (B)5000 Å.(C)4350 Å.(D)3550 Å.2. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将 ( )(A)减小0. 56 V. (B)增大0. 165 V.(C)减小0. 34 V. (D)增大1. 035 V.(普朗克常量h=6. 63×10-34J·s,基本电荷e=1. 602×10-19C)3. 保持光电管上电势差不变,若入射的单色光光强增大,则从阴极逸出的光电子的最大初动能E0和飞到阳极的电子的最大动能EK的变化分别是 ( )(A) E0增大,E K增大. (B) E0不变,E K变小.(C) E0增大,E K不变.(D) E0不变,E K不变.4. 在康普顿散射中,如果设反冲电子的速度为光速的60%,则因散射使电子获得的能量是其静止能量的 ( )(A)2倍.(B)1. 5倍.(C)0. 5倍.(D)0. 25倍.5. 用*射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中 ( )(A)只包含有入射光波长相同的成分.(B)既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关.(C)既有与入射光相同的成分,也有波长变长的成分和波长变短的成分,波长的变化既与散射方向有关,也与散射物质有关.(D)只包含着波长变长的成分,其波长的变化只与散射物质有关,与散射方向无关.6. 已知氢原子从基态激发到*一定态所需的能量为10. 19 eV,若氢原子从能量为-0. 85 eV的状态跃迁到上述定态时,所发射的光子的能量 ( )(A)2. 56 eV.(B)3. 41 eV.(C)4. 25 eV. (D)9. 95 eV.7. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 ( )(A)动量相同. (B)能量相同.(C)速度相同. (D)动能相同.8. 设粒子运动的波函数图线分别如图(A),(B),(C),(D)所示,则其中确定粒子动量的精确度最高的波函数是哪个图" ( A )9. 下列各组量子数中,哪一组可以描述原子中电子的状态" ( B )(A)n =2,l =2,m l =0, ms =12. (B) n =3, l =1, m l =-1, ms =-12. (C) n =1, l =2, m l =1, ms =12. (B) n =1, l =0, m l =1, ms =-12. 10. 氩(Z =18)原子基态的电子组态是 ( C )(A)1s 22 s 83p 8.(B)1 s 22 s 22o 63d 8.(C)1 s 22 s 22p 63 s 23p 6.(D)1 s 22 s 22p 63 s 23p 43d 2.二、填空题(共20分)1. 设描述微观粒子运动的波函数为Ψ(r ,t ),则ΨΨ*表示;Ψ(r ,t )须满足的条件是;其归一化条件是.2. 根据量子论,氢原子核外电子的状态可由四个量子数来确定,其中主量子数n 可取的值为,它可决定.3.玻尔氢原子理论中,电子轨道角动量最小值为;而量子力学理论中,电子轨道角动量最小值为,实验证明理论的结果是正确的.4. 在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子中电子的状态:(1)n =2,l =,m l =-1,m s =-12. (2)n =2,l =0,m l =,m s =12. (3)n =2,l =1,m l =0,m s =.5. 根据量子力学理论,氢原子中电子的角动量在外磁场方向上的投影为L z =m l ħ,当角量子数l =2时,L z 的可能取值为.6. 多电子原子中,电子的分布遵循原理和原理. 三、计算题(共50分)1. 波长为3500 Å的光子照射*种材料的表面,实验发现,从该表面发出的能量最大的光电子在B =1.5×10-5T 的磁场中偏转而成的圆轨道半径R =18cm ,求该材料的逸出功是多少电子伏特"(电子电量-e =1.60×10-19C ,电子质量m =9.1×10-31kg ,普朗克常量h =6.63×10-34J ·s ,1eV=1.60×10-19J)2.处于基态的氢原子被外来单色光激发后发出的光仅有三条谱线,问此外来光的频率为多少"(里德伯恒量R =1.097×107 m -1)3. 氢原子光谱的巴耳末线系中,有一光谱线的波长为4340 Å,试求:(1)与这一谱线相应的光子能量为多少电子伏特"(2)该谱线是氢原子由能级E n 跃迁到能级E k 产生的,n 和k 各为多少"(3)最高能级为E 5的大量氢原子,最多可以发射几个线系,共几条谱线"请在氢原子能级图中表示出来,并说明波长最短的是哪一条谱线.4. 假如电子运动速度与光速可以比拟,则当电子的动能等于它静止能量的2倍时,其德布罗意波长为多少"(普朗克常量h =6.63×10-34J ·s ,电子静止质量m 0=9.11×10-31kg)5. 已知粒子在无限深势阱中运动,其波函数为:ψ(*)=2/asin(π*/a )(0<*<a ).求:发现粒子概率最大的位置.6. 同时测量能量为1 keV 的作一维运动的电子的位置与动量时,若位置的不确定值在0.1nm(1 nm=10-9m),则动量的不确定值的百分比ΔP /P 至少为何值"(电子质量m e =9.11×10-31kg,1 eV=1.60×10-19J ,普朗克常量h =6.63×10-34J ·s)7. 粒子在一维矩形无限深势阱中运动,其波函数为:ψ0(*)=2/a sin(n π*/a )(0<*<a ).若粒子处于n =1的状态,在0~(1/4)a 区间发现该粒子的概率是多少" [提示:]2sin 4121sin 2C x x xdx +-=⎰ 8. 设电子绕氢核旋转的玻尔轨道的圆周长刚好为电子物质波波长的整数倍,试从此点出发推证玻尔的角动量量子化条件.。

大物第一章习题及答案

大物第一章习题及答案
(A) 只有机械能守恒. (B) 只有动量守恒
(C)只有对转轴O的角动量守恒.(D) 机械能、动量和角动量均守恒.
3、刚体角动量守恒的充分而必要的条件是(B)
(A)刚体不受外力矩的作用.(B) 刚体所受合外力矩为零.
(C)刚体所受的合外力和合外力矩均为零.(D) 刚体的转动惯量和角速度均保持不变.
4、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(B)
答:(1)由于所受的外力矩可以忽略,因而角动量守恒,他们总是先把两臂张开,以一定的角速度绕通关脚尖的竖直轴旋转,然后再迅速地将两臂收拢, 这时,转动惯量变小了,于是就得到很高的角速度。(2)根据角动量守恒,直体的空翻的转动惯量大,角速度难以提高。
二、填空题(每空2分,共计20分)
1.一辆作匀加速直线运动的汽车,在6 s内通过相隔60 m远的两点,已知汽车经过第二点时的速率为15m/s,则汽车通过第一点时的速率v1=__5.00m/s_。
2.质点沿半径为R的圆周运动,运动学方程为 ,则t时刻质点的法向加速度大小为an=16Rt2。
3.一质点沿x方向运动,其加速度随时间变化关系为:a= 3+2t,如果初始时刻质点的速度v0为5 m/s,则当t为3s时,质点的速度v=23m/s。
答:不对,因为一个物体能否看成质点,应根据具体问题而定,当我们研究原子结构问题时,就不能把原子当作质点。
2、质点运动过程中,其加速度为负值,则说明质点是减速运动的,你认为这种说法对吗?说明原因?
答:不对,质点作加速还是减速运动,应看速度和加速度的方向夹角如何,锐角则为加速,钝角则为减速,与加速度正负无关。加速度为负值,若速度也为负值,则质点作加速运动。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题BDCC ,BDBD1. 根据热力学第二定律可知( )。

A. 功可以全部转换为热,但热不能全部转换为功B. 可逆热力学过程一定是准静态过程C. 不可逆过程就是不能向相反方向进行的过程D. 准静态热力学过程一定是可逆过程2.气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,则气体分子的平均速率变为原来的几倍?( )A. 22/5B. 22/7C. 21/5D. 21/73.在恒定压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为( ) 。

A. Z 与T 无关 B. Z 与T 成正比 C. Z 与T 成反比 D. Z 与T 成正比4.当一弹簧振子于水平放置时,可作简谐振动,若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的( )。

A.只竖直放置时作简谐振动B.只放在光滑斜面上作简谐振动C.两种情况都可作简谐振动D.两种情况都不能作简谐振动5.两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1= A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为( )。

A. )π/2cos(2++=αωt A x .B. )π/2cos(2-+=αωt A x .C. )π/23cos(2-+=αωt A x .D.)cos(2π++=αωt A x .6. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中( D )。

A. 它的动能转换成势能.B. 它的势能转换成动能.C. 它的机械能逐渐增大.D. 它的机械能逐渐减小.7. 在双缝干涉实验中,屏幕上的P 点处是明条纹。

若把S 2盖住,并在S 1S 2连线的垂直平分面上放一反射镜(如图),则此时( B )。

A. P 点处仍为明条纹B. P 点处为暗条纹C.不能确定P 处是明条纹还是暗条纹D. P 处无干涉条纹8. 人的眼睛对波长为550nm 的黄绿光较敏感,瞳孔的直径约为5mm ;一射电望远镜接受波长为1.1m 的射电波;如果要求二者分辨本领相同,射电望远镜的直径应约为( D )。

A. 10 mB. 102 m C . 103 m; D. 104 m二、填空题1.有一卡诺热机,用290g 空气为工作物质,工作在27C o的高温热源与-73C o的低温热源之间,此热机的效率=η ,若在等温膨胀的过程中气缸体积增大到原来的2.718倍,则此热机每一次循环所做的选择题(7) 图功为 。

(空气的摩尔质量为mol kg /109.22-⨯)2. 在容积为2.0⨯10-3 m 3的容器中,装有内能为6.75⨯102 J 的刚性双原子分子理想气体,则此双原子分子气体的压强为 ;设分子总数为5.4⨯1022个,则此双原子分子的平均平动动能为 。

3. 两个同方向同频率的简谐振动,其合振动的振幅为20 cm ,且合振动与第一个简谐振动的相位差为φ –φ1 = π/6.若第一个简谐振动的振幅为310 cm ,则第二个简谐振动的振幅为 cm ,第一、二两个简谐振动的相位差φ1 - φ2为 .4. 一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为 和 。

(设空气中声速为340 m/s )。

5. 照相机的镜头表面上镀有折射率为n 的MgF 2增透膜,若波长为λ的单色光自空气垂直照射到镀膜上,若要使透射光线加强,则MgF 2薄膜的最小厚度应为e= ;若要使反射光加强,则MgF 2薄膜的最小厚度应为e= 。

(已知n 玻璃>n>n 空气)6. 有一束自然光入射到折射率分别为n 1和n 2的两种介质的交界面上,发生反射和折射,反射光刚好是完全偏振光且光强为I ,则折射角r 的值为__ __;已知此发射光入射到一个偏振片后出射光强为零,然后以反射光线为轴,旋转偏振片30o ,可得经过偏振片的出射光强为 。

三、计算题1. 如图所示,图中1→3为等温线,1→4为绝热线,1→2和4→3均为等压线,2→3为等体线。

1mol 的氢气在1点的状态参量为V 1=20L ,T 1=300K ,在3点的状态参量为V 3=40L ,T 3=300K 。

试分别用如下三条路径计算S 3-S 1:(1)1→2→3;(2)1→3;(3)1→4→3。

2. 本题图表示一平面余弦波在t =0时刻与t =2s 时刻的波形图,求:(1).坐标原点处介质质点的振动方程;(2).该波的波方程。

(3).距离坐标原点90m 和100m 处两点的相位差。

3. 波长λ=600nm 的单色光垂直入射到某光栅上,测得第二级主极大的衍射角为30°,且第三级是缺级。

求:(1).光栅常数d ; (2).透光缝可能的最小缝宽a ; (3).在选定了上述d 和a 以后,试问在光屏上可能观察到的全部级数是多少?4. 用单色光观察处于空气环境的牛顿环,测得第k 级明环的直径为3.00mm ,第k+5级明环的直径为4.60mm 。

(1)若平凸透镜的半径为1.03m ,求此单色光的波长;(2). 当牛顿环装置中的透镜与平面玻璃之间充以某种液体时,第k+5级明环的直径由4.60mm 变成4.00mm 时,试求该液体的折射率。

A一、答:BDCC ,BDBD二、答:1、答: %3.33 ;J 31031.8⨯;2、答:Pa 51035.1⨯;J 211049.7-⨯;3、答:10;π/2;4、答:Hz 5.637;Hz 7.566。

5、答:n 4/λ;n 2/λ。

6、答:)/(2/12n n arctg -π; I/4。

三.1解:(1)“21-”为等压过程,K 600)/(1122=⋅=T V V T 。

而“32-”为等体过程。

注意到2H 为双原子分子,2/7m ,R C p =,2/5m ,R C V =。

所以在“321--”过程中的熵变为T Q T QS S d d )3()2()2()1(13⎰⎰+=- TQ C T T C V p d d 300600m ,600300m ,⎰⎰+=2ln ⋅=R (2)“31-”为等温过程。

其熵变2ln )/ln(/d 23)3()1(13⋅===-⎰R V V R T Q S S(3)“341--”过程是由“41-”的绝热过程,144111--=γγV T V T (1)和“34-”的等压过程3434//V V T T = (2)所组成的。

联立(1)式、(2)式,考虑到K 3001=T ,得到“4”点的温度K 30025/24⨯=-T其熵变)()(431413S S S S S S -+-=-⎰⎰⋅⨯-=+=30023005/234d 25d 0T TR T Q T T2ln 2ln 255/2⋅=⋅=R R三.2 解:由图可知: 原点处质点的振动初相30πϕ=; 波长 m 160=λ,波速 s m u /10220==;习题5-22图A因而圆频率 82πλπω==u,(1) 原点处质点的振动方程)38cos(0ππ+=t A y(2) 波方程 ⎥⎦⎤⎢⎣⎡+-=2)10(8cos ππx t A y(3) .距离坐标原点90m 和100m 处两点的相位差,8)10100(8)1090(8πππϕ=---=∆t t三.3 解:(1) 由λϕϕk b a d k k =+=sin )(sin 可得:)(104.230sin 106002sin 609m k d k --⨯=⨯⨯==ϕλ (2) 因为缺级数为:k adk a b a k '='+=)3,2,1( ±±±='k 缺k k d a '=依题意,第三级缺级,3k d a '=当K /=1时,)(10837m da -⨯==当K /=2时,)(106.1326m da -⨯== 所以透光缝的最小缝宽为:)(1087min m a -⨯= (3) 由λϕk d k =sin令2πϕ=k 可得:42sinmax ==λπd k 只能取3max=k令2πϕ-=k 可得:42sinmax -=-=λπd k 只能取3max-=k而缺级数为: ,6,33±±='='=k k adk 所以在屏上共可看到5条谱线:2,1,0,1,2--=k三.4 解:(1) r333102590()4.60102nm λ--⎧⨯⎪⎪=⎨⨯⎪=⎪⎩(2)解:222222nd r n R r λλ⎫∆=+⎪∆=⋅+⎬⎪=⎭∵是等厚干涉,∴对于同一级条纹有:12∆=∆221212222222r r n n R R λλ∴⋅+=⋅+其中11n =32.1/22212==∴r r n。

相关文档
最新文档