第10章-简单线性回归分析思考与练习参考答案

合集下载

统计学课后思考练习汇编

统计学课后思考练习汇编

医学统计学思考练习第1章绪论思考与练习参考答案一、最佳选择题1. 研究中的基本单位是指 ( D )。

A.样本 B. 全部对象C.影响因素 D. 个体 E. 总体2. 从总体中抽取样本的目的是(B )。

A.研究样本统计量 B. 由样本统计量推断总体参数C.研究典型案例 D. 研究总体统计量E. 计算统计指标3. 参数是指(B )。

A.参与个体数 B. 描述总体特征的统计指标C.描述样本特征的统计指标 D. 样本的总和 E. 参与变量数4. 下列资料属名义变量的是(E)。

A.白细胞计数 B.住院天数C.门急诊就诊人数 D.患者的病情分级 E. ABO血型5.关于随机误差下列不正确的是(C)。

A.受测量精密度限制 B.无方向性 C. 也称为偏倚D.不可避免 E. 增加样本含量可降低其大小第2章统计描述思考与练习参考答案一、最佳选择题1. 编制频数表时错误的作法是(E )。

A. 用最大值减去最小值求全距B. 组距常取等组距,一般分为10~15组C. 第一个组段须包括最小值D. 最后一个组段须包括最大值E. 写组段,如“1.5~3,3~5, 5~6.5,…”2. 描述一组负偏峰分布资料的平均水平时,适宜的统计量是(A)。

A. 中位数B. 几何均数C. 调和均数D. 算术均数E. 众数3. 比较5年级小学生瞳距和他们坐高的变异程度,宜采用(A)。

A. 变异系数B. 全距C. 标准差D. 四分位数间距E. 百分位数P2.5与P97.5的间距4. 均数和标准差S的关系是(A)。

A. S越小,对样本中其他个体的代表性越好B. S越大,对样本中其他个体的代表性越好C.越小,S越大D.越大,S越小E.必小于5. 计算乙肝疫苗接种后血清抗-HBs的阳转率,分母为(B)。

A. 阳转人数B. 疫苗接种人数C. 乙肝患者数D. 乙肝病毒携带者数E. 易感人数6. 某医院的院内感染率为5.2人/千人日,则这个相对数指标属于(C)。

回归分析

回归分析

回归分析的模型
按是否线性分:线性回归模型和非线性回归模型 按自变量个数分:简单的一元回归,多元回归 基本的步骤:利用SPSS得到模型关系式,是否 是我们所要的,要看回归方程的显著性检验(F 检验)和回归系数b的显著性检验(T检验),还要 看拟合程度R2 (相关系数的平方,一元回归用R Square,多元回归用Adjusted R Square)
(Prob(event) <0.5 预测事件将不会发生, > 0.5 预测事件将会发生)
补充:回归分析
以下的讲义是吴喜之教授有 关回归分析的讲义,很简单, 但很实用
定量变量的线性回归分析
对例1(highschoo.sav)的两个变量的数据进行线性回归, 就是要找到一条直线来最好地代表散点图中的那些点。
b0为常数项 b1、b2、…、称为y对应于x1、x2、…、xn的偏回归系数 用Adjusted R2调整判定系数判定一个多元线性回归方程的拟合程度:
用来说明用自变量解释因变量变异的程度(所占比例)
一元线性回归模型的确定:一般先做散点图(Graphs ->Scatter>Simple),以便进行简单地观测(如:Salary与Salbegin的关系) 若散点图的趋势大概呈线性关系,可以建立线性方程,若不呈线 性分布,可建立其它方程模型,并比较R2 (-->1)来确定一种最佳 方程式(曲线估计)
关系是否有线性特点
Graphs ->Scatter->Simple X Axis: Salbegin Y Axis: Salary
2. 若散点图的趋势大概呈线性关系,可以建立线性回归模型
Analyze->Regression->Linear Dependent: Salary Independents: Salbegin,prevexp,jobtime,jobcat,edcu等变量 Method: Stepwise

第十章-回归分析

第十章-回归分析

x
2
i1
)b1
n
(
i 1
xi1 xip )bp
n i 1
xi1 yi
n
( i1
xip )b0
n
(
i 1
xip xi1 )b1
n
(
i 1
x
2
ip
)bp
n i 1
xip yi
正规方程
上一页 下一页 返回
引入矩阵
1
X
1
x11 x21
x12 x22
x1p x2p
,Y
y1
x,y的相关关系可表示为 yab x ,~N (0 ,2)
或y~N (ab, x2)
其中a, b, 2为不依赖于x的未知参数,上式称为一元
线性回归模型,简称一元线性模型。当y与x间满足这 种关系时,y与x间有线性相关关系。 上一页 下一页 返回
用最小二乘法确定未知参数a及b。考虑试验点关于回
归直线的偏差平方和
上一页 下一页 返回
一元回归分析与最小二乘法
取定x时随机变量y的数学期望E(y|x)作为x时随机变量 y的估计值,即
yE(yx)
显然,当x变化时E(Y|X=x)是x的函数,记作
(x)E(yx)
可以用一个确定的函数关系式
y (x)
大致地描述y与x之间的相关关系。
函数 (x)称为y关于x的回归函数,简称回归;
第十章 回归分析
爱情 的诗词 是美好 的文字 ,那是 墨香的 爱意。 关于美 好的爱 情诗词 有哪些 呢? 下 面 是 美 文 网小编 为你整 理了爱 情古代 诗词美 好作品 篇,欢 迎大家 阅读! 爱
情 古 代 诗 词 美好作 品篇1: 绮怀 朝 代 : 清代 作 者 : 黄 景仁 原 文 :

高考数学一轮复习第10章算法初步与统计第4课时线性回

高考数学一轮复习第10章算法初步与统计第4课时线性回

(4)某同学研究卖出的热饮杯数y与气温 x(℃)之间的关系,得 回归方程 y =-2.352x+147.767,则气温为2 ℃时,一定可卖出 143杯热饮. (5)事件X,Y关系越密切,则由观测数据计算得到的K2的观 测值越大. (6)由独立性检验可知,在犯错误的概率不超过1%的前提下 认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他 有99%的可能物理优秀.

直线方程: y =0.254x+0.321.由回归直线方程可知,家庭年收入 每增加1万元,年饮食支出平均增加________万元.
2 n ( ad - bc ) 构造一个随机变量 K 2 = , ( a+ b)( c+d )(a + c)( b +d )
其中 n=a+b+ c+d 为样本容量.
(3)独立性检验. 利用随机变量 K2 来确定是否能有一定把握认为“两个分类 变量有关系”的方法称为两个分类变量的独立性检验.
1.判断下面结论是否正确(打“√”或“×”). (1)相关关系与函数关系都是一种确定性的关系,也是一种 因果关系. (2)“名师出高徒”可以解释为教师的教学水平与学生的水 平成正相关关系. (3)只有两个变量有相关关系,所得的回归模型才有预测价 值.
答案
C
解析 由已知,变量 x,y 成负相关,排除 A,B. ∵回归直线 - 必过点(x,y),经验算可知,选项 C 满足.
4.(2018· 河南开封一模)下列说法错误的是(
)
A.自变量取值一定时,因变量的取值带有一定随机性的两 个变量之间的关系叫做相关关系 B.在线性回归分析中,相关系数 r 的值越大,变量间的相 关性越强 C.在残差图中,残差点分布的带状区域的宽度越狭窄,其 模型拟合的精度越高 D.在回归分析中,R2 为 0.98 的模型比 R2 为 0.80 的模型拟 合的效果好

线性回归分析与应用例题和知识点总结

线性回归分析与应用例题和知识点总结

线性回归分析与应用例题和知识点总结在统计学和数据分析的领域中,线性回归分析是一种非常重要和常用的方法。

它可以帮助我们理解变量之间的线性关系,并进行预测和推断。

接下来,让我们一起深入探讨线性回归分析的知识点,并通过一些具体的例题来加深理解。

一、线性回归的基本概念线性回归是一种用于建立两个或多个变量之间线性关系的统计方法。

简单线性回归涉及两个变量,一个是自变量(通常用 x 表示),另一个是因变量(通常用 y 表示)。

其基本形式可以表示为:y = b₀+b₁x,其中 b₀是截距,b₁是斜率。

二、线性回归的假设条件在进行线性回归分析时,有几个重要的假设条件需要满足:1、线性关系:自变量和因变量之间存在线性关系。

2、独立性:观测值之间相互独立。

3、正态性:残差(实际值与预测值之间的差异)服从正态分布。

4、同方差性:残差的方差在不同的自变量取值上是相同的。

三、最小二乘法为了确定线性回归方程中的参数 b₀和 b₁,我们通常使用最小二乘法。

其基本思想是使残差平方和最小,即找到一组 b₀和 b₁的值,使得观测值与预测值之间的差异最小化。

四、决定系数(R²)决定系数用于衡量回归模型对数据的拟合程度。

R²的取值范围在 0 到 1 之间,越接近 1 表示模型拟合得越好。

五、例题分析假设我们想研究一个城市中房屋面积(自变量 x)与房屋价格(因变量 y)之间的关系。

我们收集了以下 10 组数据:|房屋面积(平方米)|房屋价格(万元)|||||80|120||90|135||100|150||110|165||120|180||130|195||140|210||150|225||160|240||170|255|首先,计算这组数据的均值:x 的均值=(80 + 90 + 100 + 110 + 120 + 130 + 140 + 150 +160 + 170)/ 10 = 125 平方米y 的均值=(120 + 135 + 150 + 165 + 180 + 195 + 210 + 225 + 240 + 255)/ 10 = 180 万元然后,计算斜率 b₁:\\begin{align}b_1&=\frac{\sum_{i=1}^{n}(x_i \bar{x})(y_i \bar{y})}{\sum_{i=1}^{n}(x_i \bar{x})^2}\\&=\frac{(80 125)(120 180) +(90 125)(135 180) +\cdots +(170 125)(255 180)}{(80 125)^2 +(90 125)^2 +\cdots +(170 125)^2}\\&=15\end{align}\截距 b₀= y 的均值 b₁ x 的均值= 180 15 125 =-75所以,线性回归方程为 y =-75 + 15x接下来,我们可以用这个方程进行预测。

第10章 简单线性回归分析案例辨析及参考答案

第10章 简单线性回归分析案例辨析及参考答案
正确做法 两样本合并后,总例数为=20。进行直线回归分析,结 果如下:
,=0.698。经检验,贫血患者治疗后的血红蛋白增加量与治疗有 关。
正常人均数:=20.21+7.78×0=20.21 患 者均数:=20.21+7.78×1=27.99 截距与两样本均数的差值相等。分别进行回归方程的方差分析与回 归系数的t检验,得F=17.112,t=4.137。回归系数的t检验结果与两样 本均数的t检验结果完全一致。以上结果说明,t检验的结果可以转化为
Quadratic .9941206.902 2 14.000 60.78810.805-.292
Cubic
.9982575.942 3 13.000 81.857 3.490 .447-.023
Growth .924 182.200 1 15.000 4.539 .034
The independent variable is 年龄。
上述曲线类型依次为线性、二次、三次多项式曲线和生长曲线,由 拟合结果可知,曲线拟合效果较好,进一步得到曲线图(案例图101):
(3)选择合理的模型,列出回归方程。以女孩身高二次曲线为
例,方程如下: 多项式曲线: (4)统计预测:预测19岁女孩身高为60.788+10.805×18-
0.292×182=160.7,与实际趋势相符。其他预测方法相同。
案例10-2 贫血患者的血清转铁蛋白研究。第6章例6-1中,为研究 某种新药治疗贫血患者的效果,将20名贫血患者随机分成两组,一组用 新药,另一组用常规药物治疗,测得血红蛋白增加量(g/L)见表6-1。 问新药与常规药治疗贫血患者后的血红蛋白增加量有无差别?
张医生用检验比较新药与常规药治疗贫血患者后的血红蛋白增加 量,计算得:

线性回归习题答案

线性回归习题答案

线性回归习题答案线性回归是统计学中一种常见的数据分析方法,用于建立自变量与因变量之间的线性关系模型。

在实际应用中,线性回归模型常用于预测、趋势分析和关联度分析等领域。

下面将通过一些典型的线性回归习题来探讨其应用。

习题一:某公司根据过去几年的销售数据,建立了一个线性回归模型来预测未来的销售额。

已知公司的广告费用与销售额之间存在着一定的线性关系。

根据模型,当广告费用为1000元时,预测的销售额为15000元。

求该模型的回归方程。

解答:假设回归方程为y = a + bx,其中y表示销售额,x表示广告费用。

根据已知条件,可以得到一个方程:15000 = a + 1000b。

进一步,如果再给出另外一个广告费用与销售额的数据点,就可以求解出回归方程的具体参数a和b。

习题二:某城市的房价与房屋面积之间存在一定的线性关系。

已知一套房子的面积为120平方米,根据线性回归模型预测其价格为80万元。

求该模型的回归方程。

解答:假设回归方程为y = a + bx,其中y表示房价,x表示房屋面积。

根据已知条件,可以得到一个方程:80 = a + 120b。

同样地,如果再给出另外一个房屋面积与价格的数据点,就可以求解出回归方程的具体参数a和b。

习题三:某公司根据市场调研数据,建立了一个线性回归模型来分析产品销售量与价格之间的关系。

已知当产品价格为10元时,预测的销售量为1000个。

根据该模型,求当产品价格为15元时的预测销售量。

解答:假设回归方程为y = a + bx,其中y表示销售量,x表示产品价格。

根据已知条件,可以得到一个方程:1000 = a + 10b。

根据该方程,可以求解出参数a和b的具体值。

然后,将x取15,代入回归方程中,即可得到当产品价格为15元时的预测销售量。

通过以上习题的解答,我们可以看到线性回归模型在实际问题中的应用。

通过建立合适的回归方程,我们可以通过已知的自变量值来预测因变量的取值。

这对于企业决策、市场分析以及经济预测等方面都具有重要意义。

生物统计学:第10章 多元线性回归分析及一元非线性回归分析

生物统计学:第10章 多元线性回归分析及一元非线性回归分析
的检验。在多元线性回归模拟中,随机误差是服从正 态分布的随即变量。因此,Y亦为独立正态随机变量。 在多元线性回归中,关于回归显著性检验的假设是:
H0 : 1 2 k 0 H A : 至少有一个i 0
拒绝H0意味着至少有一个自变量对因变量是有影 响的。
检验的程序与一元的情况基本相同,即用方差
胸围X2 186.0 186.0 193.0 193.0 172.0 188.0 187.0 175.0 175.0 185.0
体重Y 462.0 496.0 458.0 463.0 388.0 485.0 455.0 392.0 398.0 437.0
序号 体长X1 胸围X2 体重Y 11 138.0 172.0 378.0 12 142.5 192.0 446.0 13 141.5 180.0 396.0 14 149.0 183.0 426.0 15 154.2 193.0 506.0 16 152.0 187.0 457.0 17 158.0 190.0 506.0 18 146.8 189.0 455.0 19 147.3 183.0 478.0 20 151.3 191.0 454.0
R r Y•1,2,,k
yp yˆ p
,
p 1,2,, n
对复相关系数的显著性检验,相当于对整个回 归的方差分析。在做过方差分析之后,就不必再检 验复相关系数的显著性,也可以不做方差分析。
例10.1的RY·1,2为:
RY •1,2
24327 .8 0.9088 29457 .2
从附表(相关系数检验表)中查出,当独立
表示。同样在多元回归问题中,可以用复相关系数表 示。对于一个多元回归问题,Y与X1,X2,… ,Xk 的线性关系密切程度,可以用多元回归平方和与总平 方和的比来表示。因此复相关系数由下式给出,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10章 简单线性回归分析
思考与练习参考答案
一、最佳选择题
1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。

A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错
2.如果相关系数r =1,则一定有( C )。

A .总SS =残差SS
B .残差SS =回归
SS
C .总SS =回归SS
D .总SS >回归SS E.
回归MS =残差MS
3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。

A .ρ=0时,r =0
B .|r |>0时,b >0
C .r >0时,b <0
D .r <0时,b <0 E. |r |=1时,b =1
4.如果相关系数r =0,则一定有( D )。

A .简单线性回归的截距等于0
B .简单线性回归的截距等于Y 或X
C .简单线性回归的残差SS 等于0
D .简单线性回归的残差SS 等于SS 总
E .简单线性回归的总SS 等于0
5.用最小二乘法确定直线回归方程的含义是( B )。

A .各观测点距直线的纵向距离相等
B .各观测点距直线的纵向距离平方和最小
C .各观测点距直线的垂直距离相等
D .各观测点距直线的垂直距离平方和最小
E .各观测点距直线的纵向距离等于零
二、思考题
1.简述简单线性回归分析的基本步骤。

答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。

2.简述线性回归分析与线性相关的区别与联系。

答:区别:
(1)资料要求上,进行直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。

直线相关分析只适用于双变量正态分布资料。

(2)应用上,说明两变量线性依存的数量关系用回归(定量分析),说明两变量的相关关系用相关(定性分析)。

(3)两个系数的意义不同。

r 说明具有直线关系的两变量间相互关系的方向与密切程度,b 表示X 每变化一个单位所导致Y 的平均变化量。

(4)两个系数的取值范围不同:-1≤r ≤1,∞<<∞-b 。

(5)两个系数的单位不同:r 没有单位,b 有单位。

联系:
(1)对同一双变量资料,回归系数b 与相关系数r 的正负号一致。

b >0时,r >0,均表示两变量X 、Y 同向变化;b <0时,r <0,均表示两变量X 、Y 反向变化。

(2)回归系数b 与相关系数r 的假设检验等价,即对同一双变量资料,r b t t =。

由于相关系数r 的假设检验较回归系数b 的假设检验简单,故在实际应用中常以r 的假设检验代替b 的假设检验。

(3)用回归解释相关:由于决定系数2
R =SS 回 /SS 总 ,当总平方和固定时,回归平方
和的大小决定了相关的密切程度。

回归平方和越接近总平方和,则2
R 越接近1,说明引入相关的效果越好。

例如当r =0.20,n =100时,可按检验水准0.05拒绝H 0,接受H 1,认为两变量有相关关系。

但2
R =(0.20)2=0.04,表示回归平方和在总平方和中仅占4%,说明
两变量间的相关关系实际意义不大。

3. 决定系数与相关系数的意义相同吗?如果不一样,两者关系如何?
答:现将相关系数、决定系数与Y 的总变异的关系阐释如下:假如在一回归分析中,回归系数的变异数回归SS =9,而Y 的总变异数总SS =13,则
决定系数2R =回归SS / 总SS =9/14=0.642 9/1,相关系数R =0.801 8
即将决定系数表示为一比值关系,当总SS = l 时,则回归SS = 0.642 9,我们可以采用直角三角形的“勾股定理”图示决定系数与相关系数的关系,如练习图10-1所示。

练习图10-1 相关系数、决定系数与总变异的关系
三、计算题
1. 以例10-1中空气一氧化氮(NO )为因变量,风速(X 4)为自变量,采用统计软件完成如下分析:
(1)试用简单线性回归方程来描述空气中NO 浓度与风速之间的关系。

(2)对回归方程和回归系数分别进行假设检验。

(3)绘制回归直线图。

(4)根据以上的计算结果,进一步求其总体回归系数的95%置信区间。

(5)风速为1.50 m/s时,分别计算个体Y值的95%容许区间和Y的总体均数的95%置信区间,并说明两者的意义。

解:运用SPSS进行处理,主要分析结果如下:
(1)简单线性回归方程、假设检验结果及总体回归系数的95%置信区间如下:Coefficients(a)
(2)方差分析结果:
ANOVA(b)
(3)回归直线如练习图10-2。

练习图10-2 回归直线图
2. 教材表10-8为本章例10-1回归分析的部分结果,依次为X、Y、Y的估计值(Yˆ)与残差(e),请以相关分析考察四者之间的关系,以回归分析考察Yˆ与X、Y与Yˆ、Y与-与X之间的关系,并予以解释。


-、Y
Y

教材表10-8 案例分析中回归分析的部分结果
X Y YˆY
-X Y YˆY

-


-X Y YˆY
1.300.070.070 7-0.004 7 1.200.100.054 80.045 2 1.120.040.041 5-0.002 5 1.440.080.093 5-0.017 5 1.480.130.098 60.030 4 1.660.060.127 1-0.068 1
0.790.00-0.010 80.011 8 1.820.140.153 1-0.018 1 1.540.090.108 1-0.021 1
1.650.170.126 50.043 5 1.440.100.092 20.006 80.960.040.016 80.022 2 1.760.160.142 90.013 10.950.010.014 9-0.009 9 1.780.220.147 40.074 6 1.750.120.142 6-0.022 6 1.440.010.092 9-0.081 9 1.500.150.101 70.043 3 1.200.040.054 8-0.014 8 1.080.000.036 5-0.033 5 1.060.030.032 7-0.003 7 1.500.120.102 40.017 6 1.840.140.156 9-0.016 9 1.440.100.092 20.006 8
解:主要分析结果:
(1)四者之间的相关系数
Correlations
X
Y
Y hat
Y Y -hat
X 1 0.809
1.000 0.000 Y
0.809 1 0.809
0.586 Y hat
1.000
0.809
1
0.000
Y Y -ha
t
0.000
0.586
0.000
1
** Correlation is significant at the 0.01 level (2-tailed).
(2)四个变量间的回归系数 因变量
自变量
截距 回归系数 t
P
Y
ˆ X
-0.136 0.159 456.016 0.000 Y Y
ˆ 1.005 0.001 6.457 0.000 Y
Y
Y ˆ- 0.088
0.999
3.394 0.003 Y
Y ˆ- X
0.000 014 7 0.000 010 5
0.000
1.000
Y
ˆ与X 呈完全正相关关系,回归系数t 检验结果P =0.000,表明Y ˆ的变异可由X 完全解释。

Y 与Y
ˆ的相关系数与Y 与X 的相关系数相同,表明正是由于X 的影响引起Y 的变异,Y 与Y
ˆ关系即体现了Y 与X 的变化关系。

Y 与Y
Y ˆ-体现了扣除X 的影响后,Y 与残差仍呈正相关关系。

Y
Y ˆ-与X 呈零相关关系,表明扣除了X 的影响,回归方程的残差与X 不再有相关或回归关系。

(张岩波 郝元涛)。

相关文档
最新文档