计量经济学 简单线性回归 实验报告

合集下载

EViews计量经济学实验报告-简单线性回归模型分析

EViews计量经济学实验报告-简单线性回归模型分析

时间地点实验题目简单线性回归模型分析一、实验目的与要求:目的:影响财政收入的因素可能有很多,比如国内生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国内生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国内生产总值变动与财政收入关系,需要做具体分析。

二、实验内容根据1978-1997年中国国内生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用,得出回归结果。

三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国内生产总值对财政收入是否有影响,根据1978-1997年中国国内生产总值X 和财政收入Y,如图1:1978-1997年中国国内生产总值和财政收入(单位:亿元)根据以上数据,作财政收入Y 和国内生产总值X 的散点图,如图2:从散点图可以看出,财政收入Y 和国内生产总值X 大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:01i i i Y X u ββ=++(二)估计参数1、双击“Eviews ”,进入主页。

输入数据:点击主菜单中的File/Open /EV Workfile —Excel —GDP.xls;2、在EV 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation Specification ”对话框,选择OLS 估计,输入“y c x ”,点击“OK ”。

即出现回归结果图3:图3. 回归结果Dependent Variable: Y Method: Least Squares Date: 10/10/10 Time: 02:02 Sample: 1978 1997 Included observations: 20Variable Coefficient Std. Error t-Statistic Prob. C 857.8375 67.12578 12.77955 0.0000 X0.1000360.00217246.049100.0000R-squared 0.991583 Mean dependent var 3081.158 Adjusted R-squared 0.991115 S.D. dependent var 2212.591 S.E. of regression 208.5553 Akaike info criterion 13.61293 Sum squared resid 782915.7 Schwarz criterion 13.71250 Log likelihood -134.1293 F-statistic 2120.520 Durbin-Watson stat0.864032 Prob(F-statistic)0.000000参数估计结果为:i Y = 857.8375 + 0.100036i X(67.12578) (0.002172)t =(12.77955) (46.04910)2r =0.991583 F=2120.520 S.E.=208.5553 DW=0.8640323、在“Equation ”框中,点击“Resids ”,出现回归结果的图形(图4):剩余值(Residual )、实际值(Actual )、拟合值(Fitted ).(三)模型检验1、 经济意义检验回归模型为:Y = 857.8375 + 0.100036*X (其中Y 为财政收入,i X 为国内生产总值;)所估计的参数2ˆ =0.100036,说明国内生产总值每增加1亿元,财政收入平均增加0.100036亿元。

《计量经济学》eviews实验报告一元线性回归模型详解

《计量经济学》eviews实验报告一元线性回归模型详解

计量经济学》实验报告一元线性回归模型-、实验内容(一)eviews基本操作(二)1、利用EViews软件进行如下操作:(1)EViews软件的启动(2)数据的输入、编辑(3)图形分析与描述统计分析(4)数据文件的存贮、调用2、查找2000-2014年涉及主要数据建立中国消费函数模型中国国民收入与居民消费水平:表1年份X(GDP)Y(社会消费品总量)200099776.339105.72001110270.443055.42002121002.048135.92003136564.652516.32004160714.459501.02005185895.868352.62006217656.679145.22007268019.493571.62008316751.7114830.12009345629.2132678.42010408903.0156998.42011484123.5183918.62012534123.0210307.02013588018.8242842.82014635910.0271896.1数据来源:二、实验目的1.掌握eviews的基本操作。

2.掌握一元线性回归模型的基本理论,一元线性回归模型的建立、估计、检验及预测的方法,以及相应的EViews软件操作方法。

三、实验步骤(简要写明实验步骤)1、数据的输入、编辑2、图形分析与描述统计分析3、数据文件的存贮、调用4、一元线性回归的过程点击view中的Graph-scatter-中的第三个获得在上方输入Isycx回车得到下图DependsntVariable:Y Method:LeastSquares□ate:03;27/16Time:20:18 Sample:20002014 Includedobservations:15VariableCoefficientStd.Errort-StatisticProb.C-3J73.7023i820.535-2.1917610.0472X0416716 0.0107S838.73S44 a.ooao R-squared0.991410 Meandependentwar119790.2 AdjustedR.-squared 0.990750 S.D.dependentrar 7692177 S.E.ofregression 7J98.292 Akaike infocriterion20.77945 Sumsquaredresid 7;12E^-08 Scliwarz 匚「爬伽20.37386 Loglikelihood -1&3.3459Hannan-Quinncriter. 20.77845 F-statistic 1I3&0-435 Durbin-Watsonstat0.477498Prob(F-statistic)a.oooooo在上图中view 处点击view-中的actual ,Fitted ,Residual 中的第一 个得到回归残差打开Resid 中的view-descriptivestatistics 得到残差直方图/icw Proc Qtjject PrintN^me FreezeEstimateForecastStatsResids凹Group:UNIIILtD Worktile:UN III LtLJ::Unti1DependentVariablesMethod;LeastSquares□ate:03?27/16Time:20:27Sample(adjusted):20002014Includedobservations:15afteradjustmentsVariable Coefficient Std.Errort-Statistic ProtJ.C-3373.7023^20.535-2.191761 0.0472X0.4167160.01075S38.735440.0000R-squared0.991410 Meandependeniwar1-19790.3 AdjustedR-squa.red0990750S.D.dependentvar 76921.77 SE.ofregre.ssion 7J98.292 Akaike infacriterion20.77945 Sumsquaredresid 7.12&-0S Schwarzcriterion 20.S73S6 Laglikelihood -153.84&9Hannan-Quinncrite匚20.77545 F-statistic1I3&0.435Durbin-Watsonstat 0.477498 ProbCF-statistic) a.ooaooo在回归方程中有Forecast,残差立为yfse,点击ok后自动得到下图roreestYFM J訓YForea空巾取且:20002015 AdjustedSErmpfe:2000231i mskJddd obaerratire:15Roof kter squa red Error理l%2Mean/^oLteError畐惯啟iJean Afe.PereersErro r5.451SSQThenhe鼻BI附GKWCE口.他腐4Prop&niwi□ooooooVactaree Propor^tori0.001^24G M『倚■底Props^lori09®475在上方空白处输入lsycs…之后点击proc中的forcase根据公式Y。

线性回归分析实验报告

线性回归分析实验报告

线性回归分析实验报告线性回归分析实验报告引言线性回归分析是一种常用的统计方法,用于研究因变量与一个或多个自变量之间的关系。

本实验旨在通过线性回归分析方法,探究自变量与因变量之间的线性关系,并通过实验数据进行验证。

实验设计本实验采用了一组实验数据,其中自变量为X,因变量为Y。

通过对这组数据进行线性回归分析,我们将得到回归方程,从而可以预测因变量Y在给定自变量X的情况下的取值。

数据收集与处理首先,我们收集了一组与自变量X和因变量Y相关的数据。

这些数据可以是实际观测得到的,也可以是通过实验或调查获得的。

然后,我们对这组数据进行了处理,包括数据清洗、异常值处理等,以确保数据的准确性和可靠性。

线性回归模型在进行线性回归分析之前,我们需要确定一个线性回归模型。

线性回归模型的一般形式为Y = β0 + β1X + ε,其中Y是因变量,X是自变量,β0和β1是回归系数,ε是误差项。

回归系数β0和β1可以通过最小二乘法进行估计,最小化实际观测值与模型预测值之间的误差平方和。

模型拟合与评估通过最小二乘法估计回归系数后,我们将得到一个拟合的线性回归模型。

为了评估模型的拟合程度,我们可以计算回归方程的决定系数R²。

决定系数反映了自变量对因变量的解释程度,取值范围为0到1,越接近1表示模型的拟合程度越好。

实验结果与讨论根据我们的实验数据,进行线性回归分析后得到的回归方程为Y = 2.5 + 0.8X。

通过计算决定系数R²,我们得到了0.85的值,说明该模型能够解释因变量85%的变异程度。

这表明自变量X对因变量Y的影响较大,且呈现出较强的线性关系。

进一步分析除了计算决定系数R²之外,我们还可以对回归模型进行其他分析,例如残差分析、假设检验等。

残差分析可以用来检验模型的假设是否成立,以及检测是否存在模型中未考虑的其他因素。

假设检验可以用来验证回归系数是否显著不为零,从而判断自变量对因变量的影响是否存在。

计量经济学回归模型实验报告(大全)

计量经济学回归模型实验报告(大全)

计量经济学回归模型实验报告(大全)第一篇:计量经济学回归模型实验报告(大全)回归模型分析报告背景意义:教育是立国之本,强国之基。

随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。

一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。

本报告将从这两个方面进行分析。

我国1991 年~2013 年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。

试建立教育经费收入Y 关于人均国内生产总值指数 X 1 和年末城镇人口数 X 2的回归模型,并进行回归分析。

年份教育经费收入Y(亿元)人均国内生产总值指数X 1(1978 年=100)年末城镇人口数X 2(万人)1991 731.50282 256.67 31203 1992 867.04905 289.72 32175 1993 1059.93744 326.32 33173 1994 1488.78126 364.91 34169 1995 1877.95011 400.6 35174 1996 2262.33935 435.76 37304 1997 2531.73257 471.13 39449 1998 2949.05918 503.25 41608 1999 3349.04164 536.94 437482000 3849.08058 577.64 45906 2001 4637.66262 621.09 48064 2002 5480.02776 672.99 50212 2003 6208.2653 735.84 52376 2004 7242.59892 805.2 54283 2005 8418.83905 891.31 56212 2006 9815.30865 998.79 58288 2007 12148.0663 1134.67 60633 2008 14500.73742 1237.48 62403 2009 16502.7065 1345.07 64512 2010 19561.84707 1480.87 66978 201123869.29356 1613.61 69079 2012 28655.30519 1730.18 71182 2013 30364.71815 1853.97 73111 资料来源:中经网统计数据库。

【完整word版计量经济学实验报告多元线性回归分析 资料】计量经济学回归分析

【完整word版计量经济学实验报告多元线性回归分析  资料】计量经济学回归分析
第1页共1页
5.79 224 23 530 6.5 142 50 8640 7.17 104 62 350 6.6 287 31 230
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
7 41 66 1620 3.91 312 11 190 6.7 77 88 2090 4.2 142 22 900
他变量保持不变的条件下,人均 GNP1%0.005647%②统计检验
结果:
、拟合优度检验:.
图5
2R=0.707665,说明所做模型对样本数据大体上拟合不是很好,可能还
?306786864.TFP?168.1.768029FLR0.005511PGNP?12CM 回来方程式:
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
完整 word 版计量经济学实验报告多元线性回归分析 资料】计量经济学回归分析
1、问题提出 婴儿死亡率(CM)是指婴儿出生后不满周岁死亡人数同出生人数的比率。 一般以年度为计算单位,以千分比表示。婴儿死亡率是反映一个 GJ 和民
试验 2:多元线性回来分析试验目的:学习利用 Eviews 建立多元线性 回来模型,讨论 64GJ 婴儿死亡率与妇女文盲率之间的关系。
2.指标选择 本次试验讨论婴儿死亡率与妇女文盲率之间的关系,故应接受婴儿死 亡率〔CM〕和女性识字率〔FLR〕作为指标。但影响婴儿死亡率的因素较 冗杂,尤其是经济进展状况、总生育率等也会对其产生重要影响,考虑到 试验的精确性,故引入人均 GNP〔PGNP〕和总生育率〔TFR〕相关数据。 3.数据来源 数据来源:教师提供
第1页共1页
1340 7.17 61 88 670 3.52 168 28 410 6.09 28 95 4370 2.86 121 41

计量经济学实验报告

计量经济学实验报告

计量经济学实验报告:马艺菡学号:4班级:9141070302任课教师:静文实验题目简单线性回归模型分析一实验目的与要求目的:影响财政收入的因素可能有很多,比如国生产总值,经济增长,零售物价指数,居民收入,消费等。

为研究国生产总值对财政收入是否有影响,二者有何关系。

要求:为研究国生产总值变动与财政收入关系,需要做具体分析。

二实验容根据1978-1997年中国国生产总值X和财政收入Y数据,运用EV软件,做简单线性回归分析,包括模型设定,模型检验,模型检验,得出回归结果。

三实验过程:(实践过程,实践所有参数与指标,理论依据说明等)简单线性回归分析,包括模型设定,估计参数,模型检验,模型应用。

(一)模型设定为研究中国国生产总值对财政收入是否有影响,根据1978-1997年中国国生产总值X和财政收入Y,如图11978-1997年中国国生产总值和财政收入(单位:亿元)1996 66850.5 7407.991997 73452.5 8651.14根据以上数据作财政收入Y 和国生产总值X的散点图,如图2从散点图可以看出,财政收入Y和国生产总值X大体呈现为线性关系,所以建立的计量经济模型为以下线性模型:(二)估计参数1、双击“Eviews”,进入主页。

输入数据:点击主菜单中的File/Open/EV Workfile—Excel—GDP.xls;2、在EV主页界面点击“Quick”菜单,点击“Estimate Equation”,出现“Equation Specification”对话框,选择OLS估计,输入““y c x”,点击“OK”。

即出现回归结果图3;参数估计结果为:Y=857.8375+0.100036iX(67.12578)(0.002172)t=(12.77955)(46.04910)2r=0.991583F=2120.520S.E.=208.5553DW=0.864 0323、在“Equation”框中,点击“Resids”,出现回归结果的图形(图4):剩余值(Residual)、实际值(actual),拟合值(fitted)4、.(三)模型检验1.经济意义检验回归模型为:Y=857.8375+0.100036*X(其中Y为财政收入,iX为国生产总值;)所估计的参数=0.100036,说明国生产总值每增加1亿元,财政收入平均增加0.100036亿元。

计量经济学实验报告一元线性回归模型实验

计量经济学实验报告一元线性回归模型实验

2013-2014第1学期计量经济学实验报告实验(一):一元线性回归模型实验学号姓名:专业:国际经济与贸易选课班级:实验日期:2013年12月2日实验地点:K306实验名称:一元线性回归模型实验【教学目标】《计量经济学》是实践性很强的学科,各种模型的估计通过借助计算机能很方便地实现,上机实习操作是《计量经济学》教学过程重要环节。

目的是使学生们能够很好地将书本中的理论应用到实践中,提高学生动手能力,掌握专业计量经济学软件EViews的基本操作与应用。

利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

【实验目的】使学生掌握1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换。

2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测【实验内容】1.Eviews基本操作:(1)数据的输入、编辑与序列生成;(2)散点图分析与描述统计分析;(3)数据文件的存贮、调用与转换;2. 利用Eviews做一元线性回归模型参数的OLS估计、统计检验、点预测和区间预测。

实验内容以下面1、2题为例进行操作。

1、为了研究深圳地方预算中财政收入与国内生产总值关系,运用以下数据:(1)建立深圳的预算内财政收入对GDP的回归;(2)估计模型的参数,解释斜率系数的意义;(3)对回归结果进行检验;(4)若2002年的国内生产总值为3600亿元,试确定2002年财政收入的预测值和预α=)。

测区间(0.052、在《华尔街日报1999年年鉴》(The Wall Street Journal Almanac 1999)上,公布有美国各航空公司业绩的统计数据。

航班正点准时到达的正点率和此公司每10万名乘客中投诉1(1)做出上表数据的散点图(2)依据散点图,说明二变量之间存在什么关系?(3)描述投诉率是如何根据航班正点率变化,并求回归方程。

计量经济学 简单线性回归 实验报告

计量经济学 简单线性回归 实验报告

实验报告1. 实验目的随着中国经济的发展,居民的常住收入水平不断提高,粮食销售量也不断增长。

研究粮食年销售量与人均收入之间的关系,对于探讨粮食年销售量的增长的规律性有重要的意义。

2. 模型设定为了分析粮食年销售量与人均收入之间的关系,选择“粮食年销售量”为被解释变量(用Y表示),选择“人均收入”为解释变量(用X 表示)。

本次实验报告数据取自某市从1974年到1987年的数据(教材书上101页表3.11),数据如下图所示:为分析粮食年销售量与人均收入的关系,做下图所谓的散点图:粮食年销售量与人均收入的散点图从散点图可以看出粮食年销售量与人均收入大体呈现为线性关系,可以建立如下简单现行回归模型:3.估计参数假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS 法估计其参数。

通过利用EViews对以上数据作简单线性回归分析,得出回归结果如下表所示:可用规范的形式将参数估计和检验的结果写为:99.61349+0.08147(6.431242)(0.10738)t= (15.48900) (7.587119)=0.827498 F=57.56437 n=144.模型检验(1).经济意义检验所估计的参数=99.61349,=0.08147,说明人均收入每增加1元,平均说来可导致粮食年销售量提高0.08147元。

这与经济学中边际消费倾向的意义相符。

(2).拟合优度和统计检验拟合优度的度量:由回归结果表可以看出,本实验中可决系数为0.827498,说明所建模型整体上对样本数据拟合一般偏好。

对回归系数的t检验:针对:=0 和:=0,由回归结果表中还可以看出,估计的回归系数的标准误差和t值分别为:SE()=6.431242,t()=15.48900;的标准误差和t值分别为:SE()=0.10738,t()=7.587119.取a=0.05,查t分布表自由度为n-2=14-2=12的临界值(12)=2.179.因为t()=15.48900>(12)=2.179, 所以应拒绝:=0;因为t()=7.587119>(12)=2.179.所以应拒绝:=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
1. 实验目的
随着中国经济的发展,居民的常住收入水平不断提高,粮食销售量也不断增长。

研究粮食年销售量与人均收入之间的关系,对于探讨粮食年销售量的增长的规律性有重要的意义。

2. 模型设定
为了分析粮食年销售量与人均收入之间的关系,选择“粮食年销售量”为被解释变量(用Y表示),选择“人均收入”为解释变量(用X 表示)。

本次实验报告数据取自某市从1974年到1987年的数据(教材书上101页表3.11),数据如下图所示:
为分析粮食年销售量与人均收入的关系,做下图所谓的散点图:
粮食年销售量与人均收入的散点图
从散点图可以看出粮食年销售量与人均收入大体呈现为线性关系,可以建立如下简单现行回归模型:
3.估计参数
假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS 法估计其参数。

通过利用EViews对以上数据作简单线性回归分析,得出回归结果如下表所示:
可用规范的形式将参数估计和检验的结果写为:
99.61349+0.08147
(6.431242)(0.10738)
t= (15.48900) (7.587119)
=0.827498 F=57.56437 n=14
4.模型检验
(1).经济意义检验
所估计的参数=99.61349,=0.08147,说明人均收入每增加1元,平均说来可导致粮食年销售量提高0.08147元。

这与经济学中边际消费倾向的意义相符。

(2).拟合优度和统计检验
拟合优度的度量:由回归结果表可以看出,本实验中可决系数为0.827498,说明所建模型整体上对样本数据拟合一般偏好。

对回归系数的t检验:针对:=0 和:=0,由回归结果表中还可以看出,估计的回归系数的标准误差和t值分别为:SE()=6.431242,t()=15.48900;的标准误差和t值分别为:SE()=0.10738,t()=7.587119.取a=0.05,查t分布表自由度为n-2=14-2=12的临界值(12)=2.179.因为t()=15.48900>(12)=2.179, 所以应拒绝:=0;因为t()=7.587119>(12)=2.179.所以应拒绝:=0。

这表明,人均收入对粮食年销售量确有显著影响。

实验报告(多元线性回归)
1. 实验目的
随着经济的发展,人民的生活水平不断得到提高,粮食年销售量也随着增加,以某市为例,该市1974年的粮食年销售98.45万吨,而到了1987年,粮食年销售量已增加到了178.69万吨,为1974年的
1.815倍。

因此研究粮食年销售量增长的主要原因,对于分析粮食年
销售量未来的增长趋势,有很重要的经济意义,从而需要建立计量经济模型。

2. 模型设定
为了全面反映该市粮食年销售量增长的全貌,选择“粮食年销售量”为被解释变量(用Y表示),选择“常住人口”、“人均收入”、“肉销售量”、“蛋销售量”、“鱼虾销售量”作为解释变量,分别用X2、X3、X4、X5、X6表示。

本次实验数据取自某市从1974年到1987年的数据(教材书101页表3.11),数据如下图所示:
为分析被解释变量与各个解释变量之间的关系,作相关线性图形如下图所示:
从上图可以看出被解释变量和各个解释变量之间大体呈现线性关系,因此可以建立线性回归模型如下:
3. 参数估计
假定所建模型及其中的随机扰动项满足各项古典假定,可以用OLS 法估计其参数。

通过利用EViews对以上数据作多元线性回归分析,得出回归结果如下表所示:
根据以上表中数据,模型估计的结果为:
(30.00475) (0.059135) (0.037876) (1.257299) (2.450799) (2.214785)
t=(-0.116375) (2.119221) (1.945119) (2.129640) (1.409220) (-2.027920)
=0.970442 =0.951968 F=52.53043 df=14-6=8
4. 模型检验
(1)经济意义检验
模型估计结果说明,在假定其他变量不变的情况下,当常住人口每增加1万人,平均说来粮食年销售量会增加0.12532万吨;在假定其他变量不变的情况下,当人均收入每增加1元,平均说来粮食年销售量会增加0.073672万吨;在假定其他变量不变的情况下,当肉销售量每增加1万吨,平均说来粮食年销售量会增加2.677595万吨;在假定其他变量不变的情况下,当蛋销售量每增加1万吨,平均说来粮食年销售量会增加3.453715万吨;在假定其他变量不变的情况下,当鱼虾销售量每增加1万吨,平均说来粮食年销售量会减少4.491407万吨。

这与理论分析和经验判断相一致。

(2)统计检验
A.拟合优度:由回归结果表可知=0.970442 ,修正的可决系数为=0.951968。

这说明模型对样本的拟合很好。

B.F检验:针对:=====0,给定显著性水平a=0.05,在F分布中查出自由度为k-1=5和n-k=14-6=8的临界值=3.69.由回归结果表可
知F=52.53043,由于F=52.53043>=3.69,应拒绝原假设:=====0,
说明回归方程显著,即“常住人口”、“人均收入”、“肉销售
量”、“蛋销售量”、“鱼虾销售量”等变量联合起来确实对“粮食年销售量”有显著影响。

C.t检验:分别针对:=0(j=1,2,3,4,5,6),给定显著性水平a=0.05,查t分布表的自由度为n-k=8的临界值=2.306.由回归结果表中数据可知,与、、、、、对应的t统计量分别
为-0.116375、2.119221、1.945119、2.129640、1.409220、-2.027920,其绝对值均小于=2.306,说明显著性水平a=0.05的条件下,分别都应当拒绝:=0(j=1,2,3,4,5,6)也就是说在其他解释变量不变的情况下,“常住人口”、“人均收入”、“肉销售
量”、“蛋销售量”、“鱼虾销售量”分别对被解释变量都没有显著影响。

相关文档
最新文档