多元线性回归模型实验报告

合集下载

多元线性回归SPSS实验报告

多元线性回归SPSS实验报告
在多重共线性。 第4-10列:各特征根解释各解释变量的方差比。 从方差比看,第5个特征根解释投入普通高校人数96%;发表科技论文数
49%;可以认为:这些变量存在多重共线性。需要建立回归方程。
2.重建回归方程
模型
输入/移去的变量b
输入的变量
移去的变量
方法
1
教职工总数(万
人), 专利申请授
权数(件), 研究
b. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 普通高校数(所), 发表 科技论文数量(篇)。 c. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 发表科技论文数量(篇)。 d. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 发表科技论文数量(篇)。 e. 预测变量: (常量), 教职工总数(万人), 发表科技论文数量(篇)。 f. 因变量: 毕业生数(万人)
. 输入
a. 已输入所有请求的变量。
模型汇总
模型
R
R 方 调整 R 方 标准 估计的误差
1
.999a
.998
.997
a. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构数(个), 普通高校数(所), 发表科技论文数 量(篇), 在校学生数(万人)。
注解:模型的拟合优度检验:
第五列:回归方程的估计标准误差=
Anovab
模型
平方和
df
均方
F
Sig.
1
回归
6
.000a
残差
7
总计
13
a. 预测变量: (常量), 教职工总数(万人), 专利申请授权数(件), 研究与试验发展机构 数(个), 普通高校数(所), 发表科技论文数量(篇), 在校学生数(万人)。 b. 因变量: 毕业生数(万人)

计量经济实验报告多元(3篇)

计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。

二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。

在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。

本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。

三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。

四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。

2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。

3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。

4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。

5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。

五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。

实验二 多元线性回归模型 瑜

实验二 多元线性回归模型  瑜

《计量经济学》实验报告多元线性回归模型四、实验结果及分析(附上必要的回归分析报告,并作以分析)1、设定问题国家税收总收入与工商税收、农业税收之间的关系2、查找数据日期国家税收总收入(亿元)工商税收(亿元)X1 农业税收(亿元)X2 1990 2821.86 1858.99 87.861991 2990.17 1981.11 90.651992 3296.91 2244.21 119.171993 4255.30 3194.49 125.741994 5126.88 3914.22 231.491995 6038.04 4589.68 278.091996 6909.82 5270.04 369.461997 8234.04 6553.89 397.481998 9262.80 7625.42 398.803.阐述理论由经济理论知,工商税收和农业税收是影响或决定国家税收总收入的主要因素。

一般而言,当工商税收和农业税收增加时,国家税收总收入随着增加,它们之间具有正向的变动趋势,反之,国家税收总收入减少。

在这里,将国家税收总收入作为被解释变量(Y),工商税收作为解释变量(X1t ) 农业税收作为解释变量(X2t),其他变量及随机因素的影响均归并到随机变量u t中,建立工商税收X1t 、农业税收X2t和国家税收总收入Y之间的多元线性回归模型。

4、画散点图X1与Y的散点图X2与Y的散点图根据上图散点分布情况可以看出,在2000~2008年期间,国家税收总收入和工商税收和农业税收之间存在较为明显的线性关系。

5、建立模型设多元线性回归模型:Yt = β+ β1X1t+β2X2t+ ut其中,Yt——表示国家税收总收入(亿元)β0、β 1 、β2——待定系数X1t——表示工商税收(亿元)注:实验报告在下次上机时间交(打印版、电子版),任缺其一本次试验无效。

电子版由各班长学委汇总以打包形式一并交齐。

多元线性回归模型实验报告

多元线性回归模型实验报告

多元线性回归模型一、实验目的通过上机实验,使学生能够使用Eviews 软件估计可化为线性回归模型的非线性模型,并对线性回归模型的参数线性约束条件进行检验。

二、实验内容(一)根据中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L进行回归分析。

(二)掌握可化为线性多元非线性回归模型的估计和多元线性回归模型的线性约束条件的检验方法(三)根据实验结果判断中国该年制造业总体的规模报酬状态如何?三、实验步骤(一)收集数据下表列示出来中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L。

序号工业总产值Y(亿元)资产合计K(亿元)职工人数L(万人)序号工业总产值Y(亿元)资产合计K(亿元)职工人数L(万人)1 3722.7 3078.22 113 17 812.7 1118.81 432 1442.52 1684.43 67 18 1899.7 2052.16 613 1752.37 2742.77 84 19 3692.85 6113.11 2404 1451.29 1973.82 27 20 4732.9 9228.25 2225 5149.3 5917.01 327 21 2180.23 2866.65 806 2291.16 1758.77 120 22 2539.76 2545.63 967 1345.17 939.1 58 23 3046.95 4787.9 2228 656.77 694.94 31 24 2192.63 3255.29 1639 370.18 363.48 16 25 5364.83 8129.68 24410 1590.36 2511.99 66 26 4834.68 5260.2 14511 616.71 973.73 58 27 7549.58 7518.79 13812 617.94 516.01 28 28 867.91 984.52 4613 4429.19 3785.91 61 29 4611.39 18626.94 21814 5749.02 8688.03 254 30 170.3 610.91 1915 1781.37 2798.9 83 31 325.53 1523.19 4516 1243.07 1808.44 33表1(二)创建工作文件(Workfile)。

计量经济学实验报告---多元回归模型实验

计量经济学实验报告---多元回归模型实验

2011-2012学年第1学期计量经济学实验报告实验(二):多元回归模型实验(1)估计参数利用EViews6估计模型的参数,方法是:1、建立工作文件:首先,双击EViews6图标,进入EViews6主页。

在菜单一次点击File\New\Workfile,出现对话框“Workfile Create”。

在“Workfile structure type ”中选择数据频率:Datad-regular frequency.在“Data specification”中Start data输入“1980”,在End data中输入“2002”点击“ok”出现“Workfile UNTITLED”工作框。

其中已有变量:“c”—截距项“resid”—剩余项。

2、Eviews命令:data y x p1 p2 p3 回车,输入数据,得到如图:图2-1 数据的输入3.对数据进行回归分析,eviews命令:LS Y C X P1 P2 P3图2-2根据上图,模型的估计的结果为:lnY=3.616+0.001lnX-0.506lnP1+0.119lnP2+0.048lnP3(0.450) (0) (0.162) (0.086) 0.051)t=(0.805) (4.652) (-3.115) (1.388) (0.942)R2=0.940 2 r=0.926 F=70.105(2)作对家庭人均鸡肉年消费量Y与猪肉价格P2、牛肉价格P3的散点图,图2-3和图2-4图2-3 图2-4图2-3 家庭人均鸡肉年消费量Y与猪肉价格P2的散点图图2-4 家庭人均鸡肉年消费量Y与牛肉价格P3的散点图由上面两张图可知都呈现线性关系,建立线性回归方程:i i i u X X Y +++=22110i βββi=1,2, .....,23 输入LS Y C P2 P3,用eviews6进行估计的输出结果如图:模型的估计结果为: Y=2.111+0.168P2+0.031P3(0.371)(0.060)(0.077) t=(5.689) (2.813) (0.402)R 2=0.834 2-r =0.817 F=50.150模型检验:①经济意义检验该地区家庭人均鸡肉消费量与鸡肉价格和牛肉价格成正相关,当牛肉价格不变时,猪肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.168单位;当猪肉价格不变时,牛肉价格上涨1单位,该地区家庭人均鸡肉消费量增加0.031单位,与猪肉价格成更大正相关关系符合一般情况。

实习报告三(多元线性回归分析)

实习报告三(多元线性回归分析)

实习报告三(多元线性回归分析)一、问题:为研究糖尿病人血糖的与血清总胆固醇、甘油三脂、空腹胰岛素、糖化血红蛋白的关系,随机抽选27名糖尿病人的血清总胆固醇、甘油三脂、空腹胰岛素、糖化血红蛋白、空腹血糖的测量值如下表,试根据结果考察糖尿病人血糖的与血清总胆固醇、甘油三脂、空腹胰岛素、糖化血红蛋白有无相关关系?试建立血糖与其它几项指标关系的多元线性回归方程。

?二、数据:编号总胆固醇甘油三酯空腹胰岛素糖化血红蛋白血糖2 3.79 1.64 7.32 6.9 8.83 6.02 3.56 6.95 10.8 12.34 4.85 1.07 5.88 8.3 11.65 4.6 2.32 4.05 7.5 13.46 6.05 0.64 1.42 13.6 18.37 4.9 8.5 12.6 8.5 11.18 7.08 3 6.75 11.5 12.19 3.85 2.11 16.28 7.9 9.610 4.65 0.63 6.59 7.1 8.411 4.59 1.97 3.61 8.7 9.312 4.29 1.97 6.61 7.8 10.613 7.97 1.93 7.57 9.9 8.414 6.19 1.18 1.42 6.9 9.615 6.13 2.06 10.35 10.5 10.916 5.71 1.78 8.53 8 10.117 6.4 2.4 4.53 10.3 14.818 6.06 3.67 12.79 7.1 9.119 5.09 1.03 2.53 8.9 10.820 6.13 1.71 5.28 9.9 10.221 5.78 3.36 2.96 8 13.622 5.43 1.13 4.31 11.3 14.923 6.5 6.21 3.47 12.3 1624 7.98 7.92 3.37 9.8 13.225 11.54 10.89 1.2 10.5 2026 5.84 0.92 8.61 6.4 13.3三、统计处理:该实际问题涉及五个连续型随机变量:血清总胆固醇()、甘油三脂()、空腹胰岛素()、糖化血红蛋白()、血糖(Y)。

多元线性回归模型实验报告

多元线性回归模型实验报告

多元线性回归模型实验报告实验报告:多元线性回归模型1.实验目的多元线性回归模型是统计学中一种常用的分析方法,通过建立多个自变量和一个因变量之间的模型,来预测和解释因变量的变化。

本实验的目的是利用多元线性回归模型,分析多个自变量对于因变量的影响,并评估模型的准确性和可靠性。

2.实验原理多元线性回归模型的基本假设是自变量与因变量之间存在线性关系,误差项为服从正态分布的随机变量。

多元线性回归模型的表达形式为:Y=b0+b1X1+b2X2+...+bnXn+ε,其中Y表示因变量,X1、X2、..、Xn表示自变量,b0、b1、b2、..、bn表示回归系数,ε表示误差项。

3.实验步骤(1)数据收集:选择一组与研究对象相关的自变量和一个因变量,并收集相应的数据。

(2)数据预处理:对数据进行清洗和转换,排除异常值、缺失值和重复值等。

(3)模型建立:根据收集到的数据,建立多元线性回归模型,选择适当的自变量和回归系数。

(4)模型评估:通过计算回归方程的拟合优度、残差分析和回归系数的显著性等指标,评估模型的准确性和可靠性。

4.实验结果通过实验,我们建立了一个包含多个自变量的多元线性回归模型,并对该模型进行了评估。

通过计算回归方程的拟合优度,我们得到了一个较高的R方值,说明模型能够很好地拟合观测数据。

同时,通过残差分析,我们检查了模型的合理性,验证了模型中误差项的正态分布假设。

此外,我们还对回归系数进行了显著性检验,确保它们是对因变量有显著影响的。

5.实验结论多元线性回归模型可以通过引入多个自变量,来更全面地解释因变量的变化。

在实验中,我们建立了一个多元线性回归模型,并评估了模型的准确性和可靠性。

通过实验结果,我们得出结论:多元线性回归模型能够很好地解释因变量的变化,并且模型的拟合优度较高,可以用于预测和解释因变量的变异情况。

同时,我们还需注意到,多元线性回归模型的准确性和可靠性受到多个因素的影响,如样本大小、自变量的选择等,需要在实际应用中进行进一步的验证和调整。

多元线性回归模型之数学建模实验报告

多元线性回归模型之数学建模实验报告
b,bint,s
%y= 45.3636+0.3604*x1+3.0906*x2+11.8246*x3
rcoplot(r,rint)
x1=x(a,:)
y1=y(a)
[b1,bint1,r1,rint1,s1]=regress(y1',x1)
b1,bint1,s1
%y= 58.5101+0.4303*x1+2.3449*x2+10.3065*x3
30.0184 59.4982
-19.6030 32.7499
-28.9960 22.3987
-24.1742 26.8599
-23.8105 28.7839
-27.9825 22.9747
-22.6411 27.8754
-32.8481 18.0569
9.3635 48.2532
-30.5838 21.0099
-20.9189 30.3583
-35.7261 13.7317
x3=[0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 01 0 0 1 1 0 1 0 1];
plot(x1,y,’>’)
plot(x2,y,’*’)
x=[ones(30,1), x1',x2',x3']
[b,bint,r,rint,s]=regress(y',x)
1.0000 53.0000 28.6000 1.0000
1.0000 63.0000 28.3000 0
1.0000 29.0000 22.0000 1.0000
1.0000 25.0000 25.3000 0
1.0000 69.0000 27.4000 1.0000
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多元线性回归模型实验报告
13级财务管理 101012013101 蔡珊珊
【摘要】首先做出多元回归模型,对于解释变量作出logx等变换,选择拟合程度最高的模型,然后判断出解释变量之间存在相关性,然后从检验多重线性性入手,由于解释变量之间有的存在严重的线性性,因此采用逐步回归法,将解释变量进行筛选,保留对模型解释能力较强的解释变量,进而得出一个初步的回归模型,最后对模型进行异方差和自相关检验。

【操作步骤】1.输入解释变量与被解释变量的数据
2.作出回归模型
R^2=0.966951 DW=0.626584 F-statictis=241.3763
②我们令y1=log(consumption),x4=log(people),x5=log(price),x6=log(retained),x7= log(gdp),
作出回归模型

发现拟合程度很高,也通过了F检验与T检验。

但是我们首先检查模型的共线性
发现x4与x6,x4与x7,x6与x7存在很强的共线性,对模型会造成严重影响。

目前暂用模型y1=10.55028-3.038439x4-0.236518x5+2.647396x6-0.557805x7,我们将陆续进行调整。

3.分别作出各解释变量与被解释变量之间的线性模型
①作出汽车消费量与汽车保有量之间的线性回归模型
R^2=0.956231 DW=0.147867 F-statistic=786.4967
因为prob小于α置信度,则可说明β1不明显为零。

经济意义存在
Y1^=4.142917 + 0.761197x6
(8.283960) (28.04455)
②作出消费量与价格之间的回归模型
R^2=0.644367 DW=0.118214 F-statistic=65.22782 根据经济分析,随着价格的升高,消费量降低,
Y^=18.51057 + 0.455884x5
(353.8845)(8.076374)
不符合经济意义,需要做出调整,且拟合程度不高
③作出消费量与人口之间的回归模型
R^2=0.945427 DW=0.150428 F-statistic=623.6709 Y^=-8.076059 + 2.151258x4
(-7.685368)(24.97340)
符合经济意义,随着人口的增加,对于汽车的需求量也会相应的增加。

④作出消费量与国民生产总值之间的回归模型
R^2=0.935692 DW=0.138340 F-stastistic=523.8036
Y^=12.16450 + 0.783946x7
(46.34009)(22.88678)
符合经济意义,国民生产与消费量同方向变动。

3.排序后发现R1^2>R3^2>R4^2>R2^2
4.对Y关于x6与x4做最小二乘
①加入x4后,R^2=0.956753 adjusted R^2=0.956613均有所增加,但相差不大,
且降低了汽车保有量的效果,x4的prob>0.05的显著性水平,认为显著为零,说明存在多重线性性,因此保留对模型解释能力更强的x6,略去x4。

5.做Y关于x6,x7的最小二乘法
R^2=0.961734 DW=0.286766 F-statistic=439.8306
拟合优度R^2增加不明显,adjusted R^2也增加不显著,由二者的相关系数来看存在严重的共线性,因此舍去
6.做Y关于x6,x5的最小二乘
R^2=0.976233有所增加,且二者之间的相关系数<R^2,可以认为二者之间的多重线性性不存在重大影响,因此保留x5.
7.即目前模型认定为y=0.973261x6-0.174324x5且符合经济意义
8.对模型进行异方差检验
我们采用怀特检验
自由度为g=(1+1)(1+2)/2-1=2
因为x^2(2)=5.991 obs*R-squared=12.969,则obs*R-squared>x^2(2)存在异方差。

10.对模型进行异方差修正
令e=abs(resid),在窗口输入命令ls (y1)/e c (x6)/e (x5)/e
若在置信水平0.05的情况下,可以认为模型不存在异方差。

关键取决于权重的选取。

11.自相关检验
DW=0.4048说明模型存在严重的自相关,我们认为模型存在一阶自相关
LM检验中显示模型存在二阶自相关
检验三阶时又发现模型不存在二阶自相关,因此我们做出自相关图与偏相关图,可以得出模型存在一阶自相关,由于是时间序列,可能存在不稳定性,对结果造成影响。

12.自相关消除
在输入窗输入ls (y1)/e c (x5)/e (x6)/e ar(1)
可以得出ut=0.796179(ut-1)+vt 即p=0.796179 【预测】
得出置信带,通过假设的解释变量的值,我们预测出
【经济意义说明】
模型y/e=-0.178806x5/e+0.978917x6/e+0.796179(ut-1)+vt
,其中y=log(consumption),x6=log(retained),x5=log(price),e=abs(resid)从理论上来说是可行的,意味着汽车消费量随着人口的增加而增加,因此x6的系数为正,但随着价格的增加而减少,因此x5的系数为负。

【模型检验】
JB检验:
JB<X^2 O.O5(2),我们认为误差项是服从正态分布的。

【问题】在检验异方差的时候,若选择的权重都不能很好的消除异方差时候
如何解决?为什么输入ls e c x6与在option中输入权重得出的结果不一致?
没法消除自相关与异方差是什么原因引起的?。

相关文档
最新文档