SPSS多元线性回归分析教程

合集下载

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤在数据分析领域,多元线性回归分析是一种强大且常用的工具,它能够帮助我们理解多个自变量与一个因变量之间的线性关系。

接下来,我将为您详细介绍使用 SPSS 进行多元线性回归分析的具体操作步骤。

首先,准备好您的数据。

数据应该以特定的格式整理,通常包括自变量和因变量的列。

确保数据的准确性和完整性,因为这将直接影响分析结果的可靠性。

打开 SPSS 软件,在菜单栏中选择“文件”,然后点击“打开”,找到您存放数据的文件并导入。

在导入数据后,点击“分析”菜单,选择“回归”,再点击“线性”。

这将打开多元线性回归的对话框。

在“线性回归”对话框中,将您的因变量拖放到“因变量”框中,将自变量拖放到“自变量”框中。

接下来,点击“统计”按钮。

在“统计”对话框中,您可以选择一些常用的统计量。

例如,勾选“估计”可以得到回归系数的估计值;勾选“置信区间”可以得到回归系数的置信区间;勾选“模型拟合度”可以评估模型的拟合效果等。

根据您的具体需求选择合适的统计量,然后点击“继续”。

再点击“图”按钮。

在这里,您可以选择生成一些有助于直观理解回归结果的图形。

比如,勾选“正态概率图”可以检查残差的正态性;勾选“残差图”可以观察残差的分布情况等。

选择完毕后点击“继续”。

然后点击“保存”按钮。

您可以选择保存预测值、残差等变量,以便后续进一步分析。

完成上述设置后,点击“确定”按钮,SPSS 将开始进行多元线性回归分析,并输出结果。

结果通常包括多个部分。

首先是模型摘要,它提供了一些关于模型拟合度的指标,如 R 方、调整 R 方等。

R 方表示自变量能够解释因变量变异的比例,越接近 1 说明模型拟合效果越好。

其次是方差分析表,用于检验整个回归模型是否显著。

如果对应的p 值小于给定的显著性水平(通常为 005),则说明模型是显著的。

最重要的是系数表,它给出了每个自变量的回归系数、标准误差、t 值和 p 值。

回归系数表示自变量对因变量的影响程度,p 值用于判断该系数是否显著不为 0。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

SPSS数据分析—多元线性模型

SPSS数据分析—多元线性模型

SPSS数据分析—多元线性模型多元线性模型是一种广泛应用于数据分析领域的统计方法,可以帮助研究者研究多个自变量对一个因变量的影响。

本文档将介绍使用SPSS软件进行多元线性模型分析的基本步骤。

步骤一:准备数据在进行多元线性模型分析之前,首先需要准备好所需的数据。

确保数据集中包含了自变量和因变量,并且数据是完整和准确的。

可以使用SPSS软件打开数据文件。

步骤二:选择分析方法在SPSS软件中,选择“Analyze”菜单,然后选择“Regression”子菜单。

在弹出的窗口中,选择“Linear”选项,然后将所需的自变量和因变量添加到相应的列表中。

步骤三:设置模型选项在设置模型选项时,可以选择是否需要常数项、是否需要标准化因子等。

根据研究的需求和背景,进行相应的设置。

步骤四:运行分析设置好模型选项后,点击“OK”按钮,SPSS软件会开始进行多元线性模型分析。

请耐心等待分析结果的生成。

步骤五:解读结果分析完成后,SPSS软件会生成分析结果的汇总表和详细报告。

通过查看汇总表,可以了解自变量和因变量之间的相关性以及回归系数的显著性。

详细报告将提供更深入的分析结果和解读。

步骤六:结果验证在解读结果之前,需要验证多元线性模型是否符合分析的假设。

可以通过检查残差的正态分布、方差齐性和线性关系来验证模型的适应度。

结论通过SPSS软件进行多元线性模型分析可以帮助研究者了解自变量对因变量的影响,并且提供了统计上的支持。

然而,在进行分析和解读结果时,需要注意模型的假设和验证步骤,以确保分析结果的有效性。

以上是关于SPSS数据分析中多元线性模型的简要介绍和步骤。

希望本文档对您的研究能有所帮助。

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered Variables Removed Method1 城市人口密度(人/平方公里) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).2 城市居民人均可支配收入(元) . Stepwise (Criteria:Probability-of-F-to-enter<= .050,Probability-of-F-to-remove >=.100).a. Dependent Variable: 商品房平均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

多元线性回归分析spss

多元线性回归分析spss

多元线性回归分析spss
多元线性回归分析是一种常用的统计分析技术,用于对各因素之间的相互关系进行研究。

使用多元线性回归分析,可以检验一个或多个自变量对因变量具有统计学显著性的影响,从而推断出实际世界存在的不同因素可能带来的影响。

在spss中,我们使用下拉菜单选择“分析”>“回归”>“多元”来开始多元线性回归分析。

在多元线性回归窗口中,我们可以在右边的“可用变量”列中选择变量,拖拽到“因变量”和“自变量”栏中。

接下来,我们可以选择要使用的模型类型,其中包括多元线性回归,截距,变量中心以及相关的其他预测结果。

在进行模型拟合之前,我们可以在“多重共线性”复选框中对共线性进行调整,进行预测和显著性检验,并调整“参数估计”和“残差”复选框,自由地绘制结果。

在运行了多元线性回归分析之后,在spss中,我们可以在输出窗口中查看多元回归方程的系数和检验的结果,以及它们对回归系数的影响,残差分布情况,多重共线性分析和其他一些输出参数。

总而言之,spss中多元线性回归分析是一种有效的统计分析方法,可以用来检验多个自变量对回归方程的影响。

它具有许多内置功能,可以容易地针对回归系数和其他参数进行各种分析,提供了可信的结果,帮助人们深入了解各类因素对研究结果的影响。

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤

SPSS多元线性回归分析实例操作步骤多元线性回归是一种常用的统计分析方法,用于探究多个自变量对因变量的影响程度。

SPSS(Statistical Package for the Social Sciences)是一款常用的统计软件,可以进行多元线性回归分析,并提供了简便易用的操作界面。

本文将介绍SPSS中进行多元线性回归分析的实例操作步骤,帮助您快速掌握该分析方法的使用。

步骤一:准备数据在进行多元线性回归分析之前,首先需要准备好相关的数据。

数据应包含一个或多个自变量和一个因变量,以便进行回归分析。

数据可以来自实验、调查或其他来源,但应确保数据的质量和可靠性。

步骤二:导入数据在SPSS软件中,打开或创建一个新的数据集,然后将准备好的数据导入到数据集中。

可以通过导入Excel、CSV等格式的文件或手动输入数据的方式进行数据导入。

确保数据被正确地导入到SPSS中,并正确地显示在数据集的各个变量列中。

步骤三:进行多元线性回归分析在SPSS软件中,通过依次点击"分析"-"回归"-"线性",打开线性回归分析对话框。

在对话框中,将因变量和自变量移入相应的输入框中。

可以使用鼠标拖拽或双击变量名称来快速进行变量的移动。

步骤四:设置分析选项在线性回归分析对话框中,可以设置一些分析选项,以满足具体的分析需求。

例如,可以选择是否计算标准化回归权重、残差和预测值,并选择是否进行方差分析和共线性统计检验等。

根据需要,适当调整这些选项。

步骤五:获取多元线性回归分析结果点击对话框中的"确定"按钮后,SPSS将自动进行多元线性回归分析,并生成相应的分析结果。

结果包括回归系数、显著性检验、残差统计和模型拟合度等信息,这些信息可以帮助我们理解自变量对因变量的贡献情况和模型的拟合程度。

步骤六:解读多元线性回归分析结果在获取多元线性回归分析结果之后,需要对结果进行解读,以得出准确的结论。

SPSS 统计分析多元线性回归分析方法操作与及分析

SPSS 统计分析多元线性回归分析方法操作与及分析

SPSS 统计分析多元线性回归分析方法操作与及分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals (残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除变量表Variables Entered/Removed aModel Variables Entered VariablesRemoved Method1 城市人口密度(人/平方公里) . Stepwise (Criteria: Probability-of-F-t o-enter <= .050, Probability-of-F-t o-remove >= .100 ).2 城市居民人均可支配收入(元) . Stepwise (Criteria: Probability-of-F-t o-enter <= .050, Probability-of-F-t o-remove >= .100 ).该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

SPSS多元线性回归分析报告实例操作步骤

SPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。

实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。

实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件1.open data document——open data——open;2. Opening excel data source——OK.第二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.4.点击右侧Save,勾选Predicted Vaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析: 1.引入/剔除变量表该表显示模型最先引入变量城市人口密度 (人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性回归分析的SPSS操作本节容主要介绍如何确定并建立线性回归方程。

包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。

为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。

也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。

另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。

一、一元线性回归分析1数据以本章第三节例3的数据为例,简单介绍利用SPSS如何进行一元线性回归分析。

数据编辑窗口显示数据输入格式如下图7-8 (文件7-6-1.sav):图7-8 :回归分析数据输入2•用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1) 操作①单击主菜单An alyze / Regression / Li near ,•进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Depe ndent)框中,把自变量x选入到自变量 (I ndepe ndent)框中。

在方法即Method —项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立回归方程时把所选中的全部自变量都保留在方程中。

所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。

具体如下图所示:②请单击Statistics 按钮,可以选择需要输出的一些统计量。

女口Regression Coefficients (回归系数)中的Estimates ,可以输出回归系数及相关统计量,包括回归系数 B 、标准误、标准化回归系数BETA 、T 值及显著性水平等。

Model fit 项可输出相关系数 R ,测定系数R 2,调整系数、成后点击Continue 返回主对话框。

回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反 回归分析的假定,为此需进行多项残差分析。

由于此部分容较复杂而且理论性较强,所以不在此 详细介绍,读者如有兴趣,可参阅有关资料。

③用户在进行回归分析时,还可以选择是否输出方程常数。

单击 Options ••按钮,打开它的对话框,可以看到中间有一项Include constant in equation 可选项。

选中该项可输出对常数的检验。

在Options 对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程 的准则,这里我们采用系统的默认设置,如图 7-11所示。

设置完成后点击 Continue 返回主对话框。

估计标准误及方差分析表。

上述两项为默认选项,请注意保持选中。

设置如图7-10所示。

设置完图7-9线性回归分析主对话框图7-10: 线性回归分析的 Statistics 选项 图7-11 :线性回归分析的 Options 选项④在主对话框点击OK得到程序运行结果。

(2) 结果及解释上面定义的程序运行结果如下所示:①方程中包含的自变量列表同时显示进入方法。

如本例中方程中的自变量为x,方法为En ter。

a All requested variables en tered.b Depe ndent Variable: Y②模型拟合概述列出了模型的R、R2、调整R2及估计标准误。

R2值越大所反映的两变量的共变量比率越高,模型与数据的拟合程度越好。

本例所用数据拟合结果显示:所考察的自变量和因变量之间的相关系数为0.859,拟合线性回归的确定性系数为0.738,经调整后的确定性系数为0.723,标准误的估计为6.2814。

③方差分析表列出了变异源、自由度、均方、F值及对F的显著性检验。

ANOVAModel Sum of Squares df Mean Square F Sig.1 Regression 1995.791 1 1995.791 50.583 .000Residual 710.209 18 39.456Total 2706.000 19a Predictors: (Con sta nt), Xb Depe ndent Variable: Y本例中回归方程显著性检验结果表明:回归平方和为1995.791,残差平方和为710.209,总平方和为2706.000,对应的F统计量的值为50.583,显著性水平小于0.05,可以认为所建立的回归方程有效。

④回归系数表列出了常数及非标准化回归系数的值及标准化的回归系数, 著性检验。

Coefficie ntsUn sta ndardized Stan dardizedCoefficie nts t Sig.Coefficie ntsModel B Std. Error Beta1 (Co nsta nt)-7.08011.068-.640.530X.730.103.8597.112.000a Depe ndent Variable: Y本例中非标准化的回归系数B的估计值为0.730,标准误为0.103 ,标准化的回归系数为0.859 , 回归系数显著性检验t统计量的值为7.112,对应显著性水平Sig.=0.000<0.05 ,可以认为方程显著。

因此,本例回归分析得到的回归方程为:Y=-7.08+0.73X对方程的方差分析及对回归系数的显著性检验均发现,所建立的回归方程显著。

2 . 2•回归方程的预测(1) 通过因变量的观测值和回归预测值的比较,可以了解许多关于模型和各种假定对数据的适合程度,上面回归方程的检验结果表明,所得到的回归直线是有效的。

在回归方程有效的前提下,研究者往往希望对于给定的预测变量X的一个具体数值(如X0 ),预测因变量Y的平均值或者预测某一个观测的y0的值。

如对于上面的例子,我们可以用回归方程来预测智商x0=120的被试,这次的平均成绩;也可以用来预测假如一名工作人员的智商是120,那么他参加这次考试,将会得多少分。

上面两种情况下,点预测值是相同的,不同的是标准误。

Y0=A+BX0=-7.08+0.73 X 120=86.52在X0点,Y的预测均值的估计标准误为公式(7-24);在X0点,Y的个体预测值的估计标准误为公式(7-25)。

(2) SPSS可以提供上述两类预测值,具体操作如下:在如图7-9的线性回归模型定义的主对话框中,单击save,出现如下对话框(图7-12):同时对其进行显图7-12 :预测值的定义选择窗口在上面的窗口,可以选择输出变量的点预测值和平均值及其个体值预测的区间估计,如上图, 我们在Predicted Values选择区选择复选项Unstandardized,以输出非标准化的点预测值;在下面的Prediction In tervals选择区选择复选项Mea ns和In dividual,下面的置信水平采用系统默认的95%,然后点击Continue返回主对话框,在主对话框中点击Ok,得到的输出结果。

(3)结果及解释除了上面介绍的回归方程建立和检验的结果外,在数据编辑结果,因为选择了需要保存的预测变量的信息,数据编辑窗口数据显示如下:图7-13 :保存预测之后的数据窗口从上面的结果可以看出,在以前的数据的基础上,新生成了五列数据,第一列命名为pre_1的变量对应的数据表示预测变量对应的因变量非标准化的预测值, 例如,智商为120的被试,用回归方程预测的这次考试的点预测值为80.49;均值预测的区间估计的上下限分别用变量 lmci_1和umci_1表示,个体预测值的区间估计的上下限分别用变量 lici_1和uici_1表示,例如,智商为120的被试,均值95%的预测区间为:(76.42, 84.56);个体预测95%的预测区间为:(66.68,94.30 )。

二、多元线性回归1 •数据以本章第四节例4为例,简单说明多元线性回归方程的建立与检验。

数据输入如图 7-14 (文 件 7-6-2.sav ):-QIFile Edit ur TiiarEtorni Ard>ze GrapibE Utiltass; Window Help2. SPSS操作(1) 多元线性回归所用命令语句与一元线性回归相同,同样可以通过单击主菜单Analyze / Regression / Li near ,进入设置对话框如图7-9所示。

从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x1和x2选入到自变量(Independent)框中。

(2)点击Method后面的下拉框,在Method框中选择一种回归分析的方法。

SPSS提供下列几种变量进入回归方程的方法:•E nter选项,强行进入法,即所选择的自变量全部进入回归模型,该选项是默认方式。

•R emove选项,消去法,建立回归方程时,根据设定的条件剔除部分自变量。

•Forward选项,向前选择法,根据在Option对话框中所设定的判据,从无自变量开始,在拟合过程中,对被选择的自变量进行方差分析,每次加入一个F值最大的变量,直到所有符合判据的变量都进入模型为止。

第一个引入回归模型的变量应该与因变量相关程度最大。

•B ackward选项,向后剔除法,根据在Option对话框中所设定的判据,先建立全模型,然后根据设置的判据,每次剔除一个使方差分析中的F值最小的自变量,直到回归方程中不再含有不符合判据的自变量为止。

•Stepwise选项,逐步进入法,是向前选择法和向后剔除法的结合。

根据在Option对话框中所设定的判据,首先根据方差分析结果选择符合判据的自变量且对因变量贡献最大的进入回归方程。

根据向前选择法则进入自变量;然后根据向后剔除法,将模型中F值最小的且符合剔除判据的变量剔除模型,重复进行直到回归方程中的自变量均符合进入模型的判据,模型外的自变量都不符合进入模型的判据为止。

这里我们采用系统默认的强行进入法,其他选项均采用系统默认的设置。

(3) 点击OK,得到上面定义模型的输出结果为:3 •结果及解释(1)方程中包含的自变量列表同时显示进入方法。

如本例中方程中的自变量为x1和x2,选择变量进入方程的方法为En ter。

Variables En tered/RemovedModel Variables En tered Variables Removed Method1 X2, X1 . En tera All requested variables en tered.b Depe ndent Variable: Y(2) 模型概述列出了模型的R、R2、调整R2及估计标准误。

R2值越大所反映的自变量与因变量的共变量比率越高,模型与数据的拟合程度越好。

Model Summary上面所定义模型确定系数的平方根为0.996,确定系数为0.991,调整后的确定系数为0.988,标准误为0.82。

相关文档
最新文档