椭圆的几何性质2课时

合集下载

2.1.2椭圆的几何性质2

2.1.2椭圆的几何性质2

c e a
a2=b2+c2
思考 1:求适合下列条件的椭圆的标准方程: ⑴经过直线 3 x 4 y 12 0 和两坐标轴的交点;
6 ⑵经过(3,0)点且离心率等于 ; 3
14 ). ⑶经过两点 (2, 2 ) 与 (1, 2
25 例 2 : 点M( x, y )与定点F(4,0)的距离和它到直线l : x = 4 4 的距离的比是常数 , 求点M的轨迹. 5
(1)用坐标法如何求出其轨迹方程,并说出轨迹
(2)给椭圆下一个新的定义
平面内与一个定点的距离和它到一条定直线的距离的 比是常数 e c (0 e 1) 的点的轨迹.
a
定点是椭圆的焦点,定直线叫做椭圆的准线。
x 2 y 1 上的点的 思考: 焦点 F(1,0)到椭圆 2 1 . 2 最大距离是 2 2
x y 2 1 上的任一点, 则 解:设 P ( x0 , y0 ) 椭圆 2 2 2 2 x ∵ PF ( x0 1) y0 ( x0 1)2 1 0 2 x0 2 x02 4 x0 4 x0 2 = = 2 x0 2 = 2 2 2
∵ 2 ≤ x0 ≤ 2 ∴当 x0 2 时, PF 取得最大值为 1 2
(4)求经过点A(3 , 3 ),B(2,3)的椭圆的 标准方程。
椭圆的几何性质 (二)
复习:
1.椭圆的定义:
到两定点F1、F2的距离之和为常数(大于|F1F2 |)的 动点的轨迹叫做椭圆。
| PF1 | | PF2 | 2a(2a | F1F2 |)
----坐标法求轨迹方程 2.椭圆的标准方程是: 2 2
当焦点在X轴上时
当焦点在Y轴上时
3.椭圆中a,b,c的关系是:

椭圆的简单性质(第2课时)课件(北师大选修1-1)

椭圆的简单性质(第2课时)课件(北师大选修1-1)
(1)若 M 与 A 重合,求曲线 C 的焦点坐标; (2)若 m=3,求|PA|的最大值与最小值; (3)若|PA|的最小值为|MA|,求实数 m 的取值范围.
工具
第二章 圆锥曲线与方程
解析: (1)由题意知 m=2,椭圆方程为x42+y2=1,c=
4-1= 3,
∴左、右焦点坐标分别为(- 3,0),( 3,0).
工具
第二章 圆锥曲线与方程
1.求适合下列条件的椭圆的标准方程. (1)长轴长是短轴长的 2 倍,且过点(2,-6); (2)短轴的一个端点与两焦点组成一个正三角形,且焦点 到同侧顶点的距离为 3; (3)与椭圆x42+y32=1 有相同离心率且经过点(2,- 3).
工具
第二章 圆锥曲线与方程
解析: (1)∵2a=2×2b, ∴a=2b,当焦点在 x 轴时,方程为4xb22+by22=1,
b2=a2-c2=(a+c)(a-c)=44 163 691.
第2课时 椭圆方程及性质的应用
工具
第二章 圆锥曲线与方程
1.会应用椭圆的简单几何性质解决与椭圆相关的问题. 2.会应用椭圆的简单几何性质解决相关的实际问题. 3.会判断直线与椭圆的位置关系.
工具
第二章 圆锥曲线与方程
1.椭圆中与焦点相关的三角形问题.(重点) 2.与航天器运行轨道相关的应用问题.(难点) 3.直线与椭圆的交点问题.(易混点)
工具
第二章 圆锥曲线与方程
(1)求飞船飞行的椭圆轨道的方程; (2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推 进舱分离,结束巡天飞行,飞船共巡天飞行了约6×105 km,问 飞船巡天飞行的平均速度是多少?(结果精确到1 km/s)
本题主要考查椭圆的基础知识及应用,明确近地点、远地 点是解题的关键.

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)

3.2.2 椭圆的简单几何性质

3.2.2 椭圆的简单几何性质
度吗?

椭圆的离心率 e= .

范围: 0<e<1
e越接近1,c越接近a, = 2 − 2 越小,因
此椭圆越扁平;
e越接近0,c越接近0, = 2 − 2 越大,因
此椭圆越接近于圆;
当且仅当a=b时,c=0,这时两个焦点重合,
图形变为圆,方程为 2 + 2 = 2 .
典型例题
典型例题
例2 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=
4
比是常数 ,求动点M的轨迹.
5
25
的距离的
4
轨迹方程
轨迹上任意的点 M 的坐标(x , y)所满足的条件
点M所满足的条件
点M与定点F(4,0)的距离和M到定
25
4
直线l:x= 的距离的比是常数
4
转化
5
两点间距离和点到直线的距离
6 − 91 = 0内切,求动圆圆心的轨迹方程,并说明它是什么曲线?
圆 2 + 2 + 6 + 5 = 0
圆心1 (− 3,0),半径r1=2
椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,
经过旋转椭圆面反射后集中到另一个焦点F2.已知 ⊥ 1 2 , 1 = 2.8cm,
1 2 = 4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程.
椭圆的方程
求a,b
建立关于a,b的方程
典型例题
2
4.12
+
2
3⋅4 2
= 1.




典型例题
例1 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲

2.2.2 椭圆的简单几何性质 2

2.2.2  椭圆的简单几何性质  2
2 a 20 e b
2
20 ,离心率是
3 5

a 10 3 5 c
2
c a

2
c 6 10
2
a
6
2
8
2
2 2
b 8
当焦点在 x 轴时,椭圆的标准方程是
x

y
1
当焦点在 y 轴时,椭圆的标准方程是
100 2 y

64 2 x
1
100
64
焦点坐标
半轴长 离心率
a, b, c 的关系
( c , 0 )、( c , 0 )
长半轴长为 短半轴长为
e c a
( 0 , c )、( 0 , c )
同左 同左 同左
a, b, (a b 0)
( 0 e 1)
a2=b2+c2
练习6.已知椭圆方程为 6 x y 6 则

y b
2 2
1( a b 0 )
从图形上看,椭圆关于x轴、y轴、原点对称。 如何从方程来分析这些对称性呢? (1)把y换成-y方程不变,椭圆关于x轴对称; (2)把x换成-x方程不变,椭圆关于y轴对称;
(3)把x换成-x,同时把y换成-y方程不变, 椭圆 关于原点成中心对称。
P 2 ( x, y)
*顶点:椭圆与它的对称轴的 四个交点,叫做椭圆的顶点。 这四个顶点的坐标是什么?
A1 ( a , 0 )、A B 1 ( 0 , b )、B
2 2
y
B2
A1
b
a
A2
( a ,0 ) (0, b )
o
B1
c
x
*长轴、短轴:线段A1A2、

3_1_2 椭圆的简单几何性质2 课件——高二上学期数学人教A版(2019)选择性必修第一册

3_1_2 椭圆的简单几何性质2 课件——高二上学期数学人教A版(2019)选择性必修第一册

所以直线的方程为 = 2 + 1或 = − 2 + 1.
=−
1
.
2 +2
6 中点弦问题
2
例8.已知椭圆
4
+
2
2
= 1的弦的中点P坐标为(1,1),求直线的方程.
法 1(方程组法):易知此弦所在直线的斜率存在,所以设其方程为 y-1=k(x-1),
弦的两端点为 A(x1,y1 )、B(x2,y2 ),
y-1=kx-1,
由 x2 y2
消去 y 得:(2k2 +1)x2-4k(k-1)x+2(k 2-2k-1)=0,
+ =1,
4 2
4kk-1
∴x1+x2 =

2
2k +1
4kk-1
1
又∵x1+x2 =2,∴
=2,得 k=- .
2
2k2+1
1
故弦所在直线方程为 y-1=- (x-1),即 x+2y-3=0.
2
+ 2 = 1.
故设直线的方程为 = + 1,联立椭圆方程,化简,
得( 2 + 2) 2 + 2 − 1 = 0.
= 1( > > 0) ,
5 弦长问题
练2.已知椭圆有两个顶点(−1,0),(1,0),过其焦点(0,1)的直线与椭圆交于,
两点,若|| =
4 2
②-①可得
1 −��2

1 −2
=
x1 +x2x 1-x2 y1+y2y1-y2

=0,
4
2
1 +2

2(1 +2 )
=
1
− ,即

2.2.2椭圆的几何性质(2)学案

教学过程:一、自学导引(自学P47-48)1、说出椭圆的标准方程和一般方程2、说出椭圆的简单的几何性质(范围、对称性、顶点、离心率)二、合作探究:探究1、设M(x,y)与定点F(4,0)的距离和它到直线l :x=425的距离的比是常数 54,求点M 的轨迹。

知识拓展:1、椭圆的第二定义:点M 与一个定点距离和它到一条定直线距离的比是一个小于1的正常数,这个点的轨迹是椭圆。

定点是椭圆的焦点。

定直线叫椭圆的准线,常数e 是椭圆的离心率。

注意:1、定点必须在直线外。

2、比值必须小于1。

3、符合椭圆第二定义的动点轨迹肯定是椭圆,但它不一定具有标准方程形式。

4、椭圆离心率的两种表示方法:; 。

准线方程为: 椭圆焦点在x 轴 椭圆焦点在y 轴2、焦半径:是指圆锥曲线上任一点与焦点之间的距离。

若P(x o ,y o )为圆锥曲线上任一点。

(1)椭圆:①焦点在x 轴上时: │PF 1│=a+ex o ,│PF 2│=a-ex o ;②焦点在y 轴上时:│PF 1│=a+ey o ,│PF 2│=a-ey oc P F e a P F ==椭圆上任意一点至焦点的距离至与对应的准线的距离2x c a =±2y c a=±探究2、设中心在原点,焦点在x 轴上的椭圆的长轴长是短轴长的4倍,且椭圆过点P (2,23) ,求P 点到左焦点和右准线的距离之比探究3、椭圆 141622=+y x 的焦点为F 1、F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 的横坐标的取值范围是多少?探究4、已知椭圆 1162522=+y x ,两焦点为F 1、F 2,P 为椭圆上一点,且∠F 1PF 2=60°,求△F 1PF 2的面积。

三、学后反思。

椭圆标准方程及性质的应用(解析版)

2.2.2椭圆的简单几何性质第2课时 椭圆的标准方程及性质的应用(1)【教学目标】知识目标:进一步掌握椭圆的方程及其性质的应用,会判断直线与椭圆的位置关系; 能力目标:能运用直线与椭圆的位置关系解决相关的弦长、中点弦问题;思想目标:通过弦长、中点弦问题及椭圆综合问题的学习,提升学生的逻辑推理、直观想象及数学运算的核心素养. 【教学过程】一、自主学习知识检测1.点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系;点P 在椭圆上⇔x 20a 2+y 20b2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1;点P 在椭圆外部⇔x 20a 2+y 20b 2>1.2.直线与椭圆的位置关系(1)直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消去y 得一个关于x 的一元二次方程.(2)直线与椭圆相交1+k 2·(x 1+x 2)2-4x 1x 2=1+1k 2·(y 1+y 2)2-4y 1y 2,其中x 1,x 2(y 1,y 2)是上述一元二次方程的两根. (3)弦的中点P 0(x 0,y 0)与弦所在直线的斜率k 的关系.(点差法)设弦AB 的端点A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b2=1x 22a 2+y22b 2=1⇒x 21-x 22a 2+y 21-y 22b2=0,即(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0,即2x 0(x 1-x 2)a 2+2y 0k (x 1-x 2)b 2=0,即x 0a 2+y 0k b 2=0.3.自主检测1.已知点(3,2)在椭圆x 2a 2+y 2b 2=1上,则A .点(-3,-2)不在椭圆上B .点(3,-2)不在椭圆上C .点(-3,2)在椭圆上D .无法判断点(-3,-2)、(3,-2)、(-3,2)是否在椭圆上 答案:C2.直线y =x +1与椭圆x 2+y 22=1的位置关系是( ) A .相离 B .相切 C .相交 D .无法确定答案:C3.直线y =x +1被椭圆x 24+y 22=1所截得的弦的中点坐标是( )A.⎝⎛⎭⎫23,53B.⎝⎛⎭⎫43,73C.⎝⎛⎭⎫-23,13D.⎝⎛⎭⎫-132,-172 答案:C 二、名师引路已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不同的公共点; (2)有且只有一个公共点.【解】 直线l 的方程与椭圆C 的方程联立, ⎩⎪⎨⎪⎧y =2x +m ,x 24+y 22=1,消去y , 得9x 2+8mx +2m 2-4=0.①方程①的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144. (1)当Δ>0,即-32<m <32时,方程①有两个不同的实数解,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不同的公共点. (2)当Δ=0,即m =±32时,方程①有两个相同的实数解,可知原方程组有两组相同的实数解. 这时直线l 与椭圆C 有且只有一个公共点. 变式1:直线l :y =66x +2与椭圆2x 2+3y 2=6的位置关系为________(填相交、相切或相离). 解析:由⎩⎪⎨⎪⎧y =66x +2,2x 2+3y 2=6,得2x 2+3⎝⎛⎭⎫66x +22=6, 即52x 2+26x +6=0. Δ=(26)2-4×52×6=24-60=-36<0.因此直线与椭圆没有公共点. 答案:相离已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 【解】 (1)由已知可得直线l 的方程为 y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=0,x 1x 2=-18.于是|AB |=(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52×62=310. 所以线段AB 的长度为310.(2)法一:易知直线l 的斜率存在,不妨设为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=32k 2-16k 1+4k 2,由于AB 的中点恰好为P (4,2), 所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即y =-12x +4.法二:设A (x 1,y 1),B (x 2,y 2), 则有⎩⎨⎧x 2136+y 219=1,x 2236+y 229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1), 由于P (4,2)是AB 的中点, 所以x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即y =-12x +4.变式2: 已知斜率为2的直线l 经过椭圆x 25+y 24=1的右焦点F 1,与椭圆交于A ,B 两点,则|AB |=____________.解析:因为直线l 经过椭圆的右焦点F 1(1,0),且斜率为2,则直线l 的方程为y =2(x -1),即2x -y -2=0.由⎩⎪⎨⎪⎧2x -y -2=0x 25+y 24=1,得3x 2-5x =0.解得⎩⎪⎨⎪⎧x 1=0y 1=-2,⎩⎨⎧x 2=53y 2=43.|AB |=259+⎝⎛⎭⎫43+22=553. 答案:553已知椭圆4x 2+y 2=1,直线y =x +m ,设直线与椭圆相交于A (x 1,y 1),B (x 2,y 2)两点,求△AOB 面积的最大值及△AOB 面积最大时的直线方程.【解】 可求得O 到AB 的距离d =|m |2,将y =x +m 代入4x 2+y 2=1, 消y 得5x 2+2mx +m 2-1=0. 又|AB |=2510-8m 2,Δ=20-16m 2>0,-52<m <52, 所以S △AOB =12|AB |·d=12×25 10-8m 2·|m |2=25⎝⎛⎭⎫54-m 2m 2 ≤25·⎝⎛⎭⎫54-m 2+m 22=14. 当且仅当“54-m 2=m 2”时,上式取“=”.此时m =±104∈⎝⎛⎭⎫-52,52. 所以△AOB 面积的最大值为14,面积最大时直线方程为x -y ±104=0. 变式3:如图所示,点A 、B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.解:(1)由已知可得点A (-6,0),F (4,0),B (6,0), 设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ). 由已知得⎩⎪⎨⎪⎧x 236+y 220=1,(x +6)(x -4)+y 2=0.则2x 2+9x -18=0, 解得x =32或x =-6.由于y >0,只能x =32,于是y =523.所以点P 的坐标是⎝⎛⎭⎫32,523. (2)直线AP 的方程是x -3y +6=0. 设点M 的坐标是(m ,0), 则M 到直线AP 的距离是|m +6|2,于是|m +6|2=|m -6|,又-6≤m ≤6,解得m =2, 所以点M (2,0).设椭圆上的点(x ,y )到点M 的距离为d ,有 d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49(x -92)2+15, 由于-6≤x ≤6.所以当x =92时,d 取最小值15.三、课后练习1.直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( )A .相切B .相交C .相离D .不确定解析:选B .直线y =kx -k +1恒过定点(1,1). 又因为129+124<1,所以点(1,1)在椭圆x 29+y 24=1的内部,所以直线y =kx -k +1与椭圆相交.故选B .2.过椭圆x 225+y 29=1的右焦点且倾斜角为45°的弦AB 的长为( )A .5B .6C .9017D .7 解析:选C .椭圆的右焦点为(4,0),直线的斜率为k =1, 所以直线AB 的方程为y =x -4, 由⎩⎪⎨⎪⎧y =x -4,x 225+y 29=1,得9x 2+25(x -4)2=225,由弦长公式易求|AB |=9017. 3.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析:设弦两端点A (x 1,y 1),B (x 2,y 2),则x 2116+y 214=1,x 2216+y 224=1, 两式相减并把x 1+x 2=4,y 1+y 2=2代入得,y 1-y 2x 1-x 2=-12,所以所求直线方程为y -1=-12(x -2),即x +2y -4=0. 答案:x +2y -4=04.已知直线l :y =x -12,椭圆C :x 2+4y 2=4.(1)求证:直线l 与椭圆C 有两个交点; (2)求连接这两个公共点所成线段的长. 解:(1)证明:由⎩⎪⎨⎪⎧y =x -12,x 2+4y 2=4消去y 得5x 2-4x -3=0.所以Δ=(-4)2-4×5×(-3)=76>0, 所以直线l 与椭圆C 有两个交点. (2)设两交点为A (x 1,y 1),B (x 2,y 2), 由(1)知x 1+x 2=45,x 1·x 2=-35.所以|AB |=(y 2-y 1)2+(x 2-x 1)2 =2·(x 2-x 1)2=2·(x 1+x 2)2-4x 1x 2 =2·⎝⎛⎭⎫452-4×⎝⎛⎭⎫-35=2538. 2.已知椭圆x 216+y 24=1,求过点Q (8,2)的直线被椭圆截得的弦的中点的轨迹方程.解:设椭圆中弦的两端点分别为A (x 1,y 1)、B (x 2,y 2)(x 1≠x 2),弦AB 的中点为R (x ,y ),则2x =x 1+x 2,2y =y 1+y 2.因为A 、B 两点均在椭圆上,故有x 21+4y 21=16,x 22+4y 22=16.两式相减得(x 1+x 2)(x 1-x 2)=-4(y 1+y 2)(y 1-y 2). 因为x 1≠x 2,所以k AB =y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-x 4y .由k AB =k RQ 得,-x 4y =y -2x -8,得所求轨迹方程为(x -4)2+4(y -1)2=20⎝⎛⎭⎫0<x ≤165.四、课堂小结知识结构深化拓展1.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b>0)的位置关系的判断方法:联立得⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1,消y 得一个一元二次方程.位置关系 解的个数 Δ的取值 相交 两解 Δ>0 相切 一解 Δ=0 相离无解Δ<02.设而不求思想解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为 (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2);(2)联立直线与椭圆的方程; (3)消元得到关于x 或y 的一元二次方程;(4)利用根与系数的关系设而不求; (5)把题干中的条件转化为x 1+x 2,x 1x 2或y 1+y 2,y 1y 2,进而求解.。

椭圆的基本性质(基础教学)

课题:12.4椭圆的基本性质(二课时)教学目标:1、掌握椭圆的对称性,顶点,范围等几何性质.2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形.3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等.4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆(1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习1) 圆的定义: 到一定点的距离等于______的图形的轨迹。

椭圆的定义: _______________________________的图形的轨迹。

2) 椭圆的标准方程: 1。

焦点在x 轴上____________( )2。

焦点在y 轴上____________( )若1251622=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________二.教学过程设计 一、引入课题“曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性?x -代x 后方程不变,说明椭圆关于y 轴对称;y -代y 后方程不变,说明椭圆曲线关于x 轴对称;x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称;问题2:从对称性的本质上入手,如何探究曲线的对称性?以把x 换成-x 为例,如图在曲线的方程中,把x 换成-x 方程不变,相当于点P (x ,y )在曲线上,点P 点关于y 轴的对称点Q (-x ,y )也在曲线上,所以曲线关于y 轴对称.其它同理.相关概念:在标准方程下,坐标轴是对称轴,原点是对称中心,椭圆的对称中心叫做椭圆的中心. (二) 顶点问题1:观察椭圆标准方程的特点,利用方程求出椭圆曲线与对称轴的交点坐标?在椭圆的标准方程中,令0=x ,得b y ±=,0=y ,得a x ±= 顶点概念:椭圆与对称轴的交点叫做椭圆的顶点.顶点坐标;)0,(),0,(21a A a A -,),0(),,0(21b B b B -.相关概念:线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别等于b a 2,2,a 和b 分别叫做椭圆的长半轴长和短半轴长.在椭圆的定义中,c 2表示焦距,这样,椭圆方程中的c b a ,,就有了明显的几何意义. 问题2:在椭圆标准方程的推导过程中令222b c a =-能使方程简单整齐,其几何意义是什么?c 表示半焦距,b 表示短半轴长,因此,联结顶点2B 和焦点2F ,可以构造一个直角三角形,在直角三角形内,2222222OB F B OF -=,即222b c a =-.(三) 范围问题1:结合椭圆标准方程的特点,利用方程研究椭圆曲线的范围?即确定两个变量的允许值范围.12222=+b y a x 变形为:a x a a x a x ax b y ≤≤-⇒≤⇒≤≥-=22222201, 这就得到了椭圆在标准方程下x 的范围:a x a ≤≤-同理,我们也可以得到y 的范围:b y b ≤≤- 问题2:思考是否还有其他方法? 方法一:可以把12222=+b y a x 看成1cos sin 22=+αα,利用三角函数的有界性来考虑b ya x ,的范围;方法二:椭圆的标准方程表示两个非负数的和为1,那么这两个数都不大于1,所以122≤ax ,同理可以得到y 的范围由椭圆方程中y x ,的范围得到椭圆位于直线a x ±=和b y ±=所围成的矩形里. 三、例题解析例1 已知椭圆的方程为364922=+y x .(1) 求它的长轴长、短轴长、焦点坐标和顶点坐标;(2) 写出与椭圆364922=+y x 有相同焦点的至少两个不同的椭圆方程. 解:解答见书本P48[说明] 这是本节课重点安排的基础性例题,是椭圆的几何性质的简单应用.例2(1)求以原点为中心,一个焦点为),1,0(-且长轴长是短轴长的2倍的椭圆方程; (2)过点(2,0),且长轴长是短轴长的2倍的椭圆方程.解:(1)由题意可知:b a c 2,1==,由222c b a =-,有1222=-b b ,1=b ,2=a ; ∴椭圆的标准方程为:1222=+y x . (2)1422=+y x 或141622=+x y . [说明] 此题利用椭圆标准方程中c b a ,,的关系来解题,要注意焦点在x 轴上或y 轴上的椭圆标准方程.例3已知直线03=+-y kx 与椭圆141622=+y x ,当k 在何范围取值时, (1) 直线与椭圆有两个公共点; (2) 直线与椭圆有一个公共点; (3) 直线与椭圆无公共点.解:由⎪⎩⎪⎨⎧=++=1416322y x kx y 可得02024)14(22=+++kx x k )516(162-=∆∴k ; (1)当45450)516(162-<>>-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有两个公共点; (2)当45450)516(162-===-=∆k k k 或即时,直线03=+-y kx 与椭圆141622=+y x 有一个公共点;(3)当45450)516(162<<-<-=∆k k 即时,直线03=+-y kx 与椭圆141622=+y x 无公共点. [说明] 由直线方程与椭圆方程联立的方程组解的情况直接说明两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交0>∆⇔(2)直线与椭圆相切0=∆⇔(3)直线与椭圆相离0<∆⇔,所以判定直线与椭圆的位置关系,运用方程及其判别式是最基本的方法.例4若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围. 解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m 51≠≥∴m m 且.解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m综述:51≠≥m m 且 解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m 即1≥m 51≠≥∴m m 且[说明]法一转化为k 的恒成立问题;法二是根据两曲线的特征观察所至;法三则紧抓定点在椭圆内部这一特征:点),(o o y x M 在椭圆内部或在椭圆上则12222≤+bya x o o .例5 椭圆中心在原点,长轴长为103,一个焦点1F 的坐标)5,0(,求经过此椭圆内的一点)21,21(-M ,且被点M 平分的弦所在的直线方程.解:由已知,5,35==c a ,且焦点在y 轴上,50222=-=c a b ,椭圆方程为1507522=+x y .设过点M 的直线交椭圆于点),(21y x A 、),(22y x B . M 是弦AB 的中点,则1,12121-=+=+y y x x ,将B A ,两点的坐标代入椭圆方程,⎪⎪⎩⎪⎪⎨⎧=+=+150751507522222121x y x y ,两式相减整理得:232321212121=++⋅-=--y y x x x x y y ,即23=k .所求的直线方程为)21(2321-=+x y ,即0546=--y x . [说明]此题因为涉及椭圆的弦中点问题,除通法外,可以优先考虑“点差法”.但需注意两点:1)斜率是否存在?2)应检验直线和椭圆是否相交?即联立直线和椭圆方程,得到关于x 或y 的一元二次方程,检验其根的判别式是否大于0?例6求椭圆1422=+y x 中斜率为1的平行弦的中点的轨迹. 解:见书本P50[说明] 此题因为涉及椭圆的弦中点问题,本题也可使用“点差法”.例7 已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,若过点P (0,-2)及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积解法一:由题可知:直线AB l 方程为022=++y x由⎪⎩⎪⎨⎧=+--=1122222y x x y ,可得04492=-+y y , 91044)(2122121=-+=-y y y y y y ,121214102S F F y y ∆∴=-= 解法二:2F 到直线AB 的距离554=h , 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,又92101212=-+=x x k AB , 910421==∴∆h AB S . [说明] 在利用弦长公式212212111y y k x x k AB -+=-+=(k 为直线斜率)应结合韦达定理解决问题.例8 已知直线1+=x y 交椭圆12222=+by a x 于Q P ,两点,210=PQ ,OQ OP ⊥,求椭圆方程.解:为简便运算,设椭圆为122=+ny mx ,),0,0(n m n m ≠>>⎩⎨⎧+==+1122x y ny mx ,1)12(22=+++∴x x n mx ,整理得: 012)(2=-+++n nx x n m (1)n m nx x +-=+221,nm n x x +-=⋅121,设),(11y x P 、),(22y x Q , OQ OP ⊥ ,02121=+∴y y x x ,即0)1)(1(2121=+++x x x x ,有2=+n m .方程(1)变形为:01222=-++n nx x .21,2121-=⋅-=+n x x n x x . 210=PQ ,2521=-∴x x ,有03842=+-n n ,得:⎪⎪⎩⎪⎪⎨⎧==2123m n ,⎪⎪⎩⎪⎪⎨⎧==2321m n ∴椭圆的方程为123222=+y x 或123222=+x y . [说明] 应注意Q P ,两点设而不求,善于使用韦达定理.四、巩固练习练习12.4(1);练习12.4(2) 五、课堂小结 标准方程12222=+by a x (a >b >0) 12222=+bx a y (a >b >0) 图形性质 范围-a ≤x ≤a ,-b ≤y ≤b -b ≤x ≤b ,-a ≤y ≤a对称性 关于x 轴、y 轴和原点对称 顶点(a ,0)、(-a ,0)、(0,b )、(0,-b ) (0,a )、(0,-a )、(b ,0)、(-b ,0)焦点F 1(-c ,0)、F 2(c ,0)F 1(0,-c )、F 2(0,c )两轴 长轴长2a ,短轴长2b 焦距|F 1F 2|=2c ,c 2=a 2-b 23.弦长问题和弦中点问题 4.有关弦中点问题,“点差法”的应用 六、课后作业练习册、补充作业:1.椭圆221ax by +=与直线1y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜率为32,求 ab 值.2.椭圆B A O F F y x 、作直线交椭圆于,过、的焦点为212212045=+两点,若2ABF ∆的面积为20,求直线AB 方程.3.已知椭圆()012222>>=+b a by a x 上一点()8,6P ,21F F 、为椭圆的焦点,且21PF PF ⊥,求椭圆的方程.4.中心在原点,焦点坐标为(0, ±52)的椭圆被直线3x-y-2=0截得的弦的中点的横坐标为F 1 F 2MyxOy xO F 2F 1MO xyF BAMN21,求椭圆方程. 5.已知椭圆1222=+y x .(1) 过椭圆的左焦点F 引椭圆的割线,求截得的弦的中点P 的轨迹方程; (2) 求斜率为2的平行弦中点Q 的轨迹方程.6.P 为直线09=+-y x 上的点,过P 且以椭圆131222=+y x 的焦点为焦点作椭圆,问P 在何处时所作椭圆的长轴最短?并求出相应椭圆的方程.7.已知椭圆C :)0(235222>=+m m y x ,经过其右焦点F 且以()1,1=a 为方向向量的直线l 交椭圆C 于A 、B 两点,M 为线段AB 的中点,设O 为椭圆的中心,射线OM 交椭圆C 于N 点.(1)证明:=+(2)求OB OA ⋅的值.8.已知A (-2,0)、B (2,0),点C 、点D 满足).(21,2||AC AB +== (1)求点D 的轨迹方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆于M 、N 两点,线段MN 的中点到y 轴的距离为54,且直线l 与点D 的轨迹相切,求该椭圆的方程. 9.设A ,B 分别是直线25y x =和25y x =20=AB ,动点P 满足+=.记动点P 的轨迹为C .(1) 求轨迹C 的方程;(2)若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DN DM λ=,求实数λ的取值范围.10.如图所示,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的一个端点,BC 过椭圆中心O ,且0=⋅AC BC 2=.(1)建立适当的坐标系,求椭圆方程;(2)如果椭圆上有两点P 、Q ,使∠PCQ 的平分线垂直于AO ,证明:存在实数λ,使AB PQ λ=.OBC。

椭圆的几何性质2


三、简单最值问题
1.P是椭圆
x
2

y
2
4
3
1 上点,F1、F2是两焦点,则
|PF1|· 2|的最大值与最小值的差是_______ |PF 2.已知 O 和 F 是椭圆
x
2
P y 1 的中心和左焦点,
2
2 为椭圆上任一点,求 O P
2
PF
2
的最小值
四、直线与椭圆 弦长公式 | P P | 1 2
1 k 1 k
2
2
| x1 x 2 |

1
| y1 y 2 |
已 知 椭 圆 m x n y 1, 直 线 y x 1与 该 椭 圆 交 与 P , Q 两 点
2 2
且 OP OQ , PQ =
10 2
,求椭圆方程
一、基本量的计算
2 2 1、若椭圆的焦距长等于它的短轴长,则其离心率为_____
2、若椭圆的两个焦点及一个短轴端点构成正三角形,则其离心
1
率为_____ 2
1
3 3、若椭圆的 的两个焦点把长轴分成三等分,则其离心率为__ 4、若某个椭圆的长轴、短轴、焦距依次成等差数列,则其离心 率e=___ 3
5
2

顶点坐标
c
c
a , 0 , 0, b
e c a ( 0 e 1)
b, 0 , 0, a
e c a (0 e 1)

离 心 率 焦 半 径
P F1 a ex 0
P F 2 a ex 0
PF1 a ey0
PF2 a ey0
二、求椭圆方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档