(完整版)多元线性回归模型公式
多元线性回归的计算模型

多元线性回归的计算模型多元线性回归模型的数学表示可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y表示因变量,Xi表示第i个自变量,βi表示第i个自变量的回归系数(即自变量对因变量的影响),ε表示误差项。
1.每个自变量与因变量之间是线性关系。
2.自变量之间相互独立,即不存在多重共线性。
3.误差项ε服从正态分布。
4.误差项ε具有同方差性,即方差相等。
5.误差项ε之间相互独立。
为了估计多元线性回归模型的回归系数,常常使用最小二乘法。
最小二乘法的目标是使得由回归方程预测的值与实际值之间的残差平方和最小化。
具体步骤如下:1.收集数据。
需要收集因变量和多个自变量的数据,并确保数据之间的正确对应关系。
2.建立模型。
根据实际问题和理论知识,确定多元线性回归模型的形式。
3.估计回归系数。
利用最小二乘法估计回归系数,使得预测值与实际值之间的残差平方和最小化。
4.假设检验。
对模型的回归系数进行假设检验,判断自变量对因变量是否显著。
5. 模型评价。
使用统计指标如决定系数(R2)、调整决定系数(adjusted R2)、标准误差(standard error)等对模型进行评价。
6.模型应用与预测。
通过多元线性回归模型,可以对新的自变量值进行预测,并进行决策和提出建议。
多元线性回归模型的计算可以利用统计软件进行,例如R、Python中的statsmodels库、scikit-learn库等。
这些软件包提供了多元线性回归模型的函数和方法,可以方便地进行模型的估计和评价。
在计算过程中,需要注意检验模型的假设前提是否满足,如果不满足可能会影响到模型的可靠性和解释性。
总而言之,多元线性回归模型是一种常用的预测模型,可以分析多个自变量对因变量的影响。
通过最小二乘法估计回归系数,并进行假设检验和模型评价,可以得到一个可靠的模型,并进行预测和决策。
多元线性回归方程公式

多元线性回归方程公式
多元线性回归是一种数理统计方法,它将一个或多个自变量与多个因变量的关系进行描述和建模的一种方法。
它能够识别自变量与因变量之间的相关关系并用于预测,通常会以一个函数的形式来进行建模。
多元线性回归的一般形式是一个拟合的函数:
y=b0 + b1*x1 + b2*x2 +…… +bn*xn
其中,y是因变量,X1,X2,…,xn是自变量,b0,b1,b2,…,bn是参数。
多元线性回归可以用来应用于多种场合,比如分析市场营销数据,探索客户满意度,研究葡萄酒品质等。
通过多元线性回归,我们可以更深入地分析数据,找出自变量与因变量之间的关系。
此外,多元线性回归还可以有效地用于预测目标变量。
只要设计合理的模型,便可以用多元线性回归方程来预测一个变量如何受另一变量的影响。
总之,多元线性回归是一种有效的统计分析手段,可以进行有效的数据分析和预测,有助于更好地理解数据之间的关系,并帮助企业更有效地利用这些数据。
多元回归模型的公式

多元回归模型的公式多元回归模型是统计学中一种非常重要的工具,它能够帮助我们理解多个自变量与一个因变量之间的复杂关系。
那咱们先来说说多元回归模型的公式到底是啥样的。
多元回归模型的一般公式可以表示为:Y = b0 + b1X1 + b2X2+ …… + bnXn + ε 。
在这个公式里,Y 就是咱们要研究的因变量啦,比如说学生的考试成绩;X1、X2 一直到 Xn 呢,就是那些影响 Y 的自变量,就好比学生每天的学习时间、做练习题的数量等等;b0 是截距,b1 到 bn 是回归系数,它们反映了每个自变量对因变量的影响程度;而那个ε 呢,就是随机误差项,代表了一些咱们没法控制或者还没考虑到的因素的影响。
就拿我之前观察到的一个班级的情况来说吧。
我想研究学生的数学成绩和他们平时的作业完成情况、课堂参与度以及课外辅导时间之间的关系。
把数学成绩当作 Y ,作业完成情况用 X1 表示(比如完成作业的正确率),课堂参与度是 X2 (可以用主动回答问题的次数来衡量),课外辅导时间是 X3 (以每周小时数计算)。
通过收集数据和进行分析,我发现b1 (作业完成情况的回归系数)比较大,这就说明作业完成得好对数学成绩的提高作用很明显。
而 b3 (课外辅导时间的回归系数)相对较小,可能意味着单纯增加课外辅导时间并不能大幅提高成绩,还得注重学习的效率和方法。
在实际应用中,计算多元回归模型的公式可不是一件轻松的事儿。
得先收集大量准确的数据,还得保证这些数据的质量可靠。
然后要运用各种统计软件来进行复杂的计算和分析。
这过程中,一个不小心,数据出错或者分析方法不对,那得出的结果可就不靠谱啦。
比如说,有一次我在分析数据的时候,就因为把一个同学的课外辅导时间记错了,结果整个模型的结果都变得怪怪的。
后来经过仔细检查,才发现了这个小错误,重新计算后才得到了比较合理的结果。
再来说说怎么解读多元回归模型的结果。
如果回归系数是正的,那就说明对应的自变量和因变量是正相关,自变量增加,因变量也跟着增加;要是回归系数是负的,那就是负相关,自变量增加,因变量反而减少。
多元线性回归的计算方法

多元线性回归的计算方法 摘要在实际经济问题中,一个变量往往受到多个变量的影响。
例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。
这样的模型被称为多元线性回归模型。
多元线性回归的基本原理和基本计算过程与一元线性回归相同,但由于自变量个数多,计算相当麻烦,一般在实际中应用时都要借助统计软件。
这里只介绍多元线性回归的一些基本问题。
但由于各个自变量的单位可能不一样,比如说一个消费水平的关系式中,工资水平、受教育程度、职业、地区、家庭负担等等因素都会影响到消费水平,而这些影响因素(自变量)的单位显然是不同的,因此自变量前系数的大小并不能说明该因素的重要程度,更简单地来说,同样工资收入,如果用元为单位就比用百元为单位所得的回归系数要小,但是工资水平对消费的影响程度并没有变,所以得想办法将各个自变量化到统一的单位上来。
前面学到的标准分就有这个功能,具体到这里来说,就是将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。
这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下:Zy=β1Zx1+β2Zx2+…+βkZxk注意,由于都化成了标准分,所以就不再有常数项a 了,因为各自变量都取平均水平时,因变量也应该取平均水平,而平均水平正好对应标准分0,当等式两端的变量都取0时,常数项也就为0了。
多元线性回归模型的建立多元线性回归模型的一般形式为Yi=β0+β1X1i+β2X2i+…+i i i i h x υβ+ =1,2,…,n其中 k 为解释变量的数目,j β=(j=1,2,…,k)称为回归系数(regression coefficient)。
上式也被称为总体回归函数的随机表达式。
它的非随机表达式为E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXkiβj 也被称为偏回归系数(partial regression coefficient) 多元线性回归的计算模型一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归。
计量经济学第3章 多元线性回归模型(1)

BB ( X X ) 1 0
这意味着 BB ( X X ) 1为半正定矩阵。这样的协方差 矩阵之差 ˆ ) BB 2 ( X X ) 1 2 [ BB ( X X ) 1 ] 2 0 Var (b) Var ( 也是半正定矩阵。因此多元线性回归参数的最小二 乘估计是最小方差的线性无偏估计。
i
21
•
但是需注意:多元线性回归模型解释变量的 数目有多有少,而上述可决系数R2又可以证明是 解释变量数目的增函数。这意味着不管增加的解 释变量是否对改善模型、拟合程度有意义,解释 变量个数越多,可决系数一定会越大。因此,以 这种可决系数衡量多元回归模型的拟合优度是有 问题的,而且会导致片面追求解释变量数量的错 误倾向。正是由于存在这种缺陷,可决系数R2在 多元线性回归分析拟合优度评价方面的作用受到 很大的限制。
10
Q ˆ X Y ˆ X X ˆ ) 2 X Y 2 X X ˆ 0 (Y Y 2 ˆ ˆ
• 其中矩阵求导:
f ( B) A f ( B) BA B f ( B ) f ( B) BAB 2 AB B
11
Q ˆ ˆ X ˆ X ˆ X ) (1) 0 2 ( Y i 0 1 1 i 2 2 i k ki ˆ 0 Q ˆ ˆ X ˆ X ˆ X ) ( X ) 0 2 (Yi 0 1 1i 2 2i k ki 1i ˆ 1 Q ˆ ˆ X ˆ X ˆ X ) ( X ) 0 2 (Yi 0 1 1i 2 2i k ki ki ˆ k
• 整理该向量方程,得到下列形式的正规方程组
ˆ X Y X X
• 当X X 可逆,也就是X是满秩矩阵(满足假设5)时,在 上述向量方程两端左乘的 X X 逆矩阵,得到
第十章:多元线性回归

胰岛素 (μU/ml) X3
4.53 7.32 6.95 5.88 4.05 1.42 12.60 6.75 16.28 6.59 3.61 6.61 7.57 1.42 10.35 8.53 4.53 12.79 2.53 5.28 2.96 4.31 3.47 3.37 1.20 8.61 6.45
ˆ ) 2 [Y (b b X b X b X )]2 Q (Y Y 0 1 1 2 2 m m
求偏导数
原
理
最小二乘法
l11b1 l12b2 l1m bm l1Y l b l b l b l 21 1 22 2 2m m 2Y l m1b1 l m 2 b2 l mm bm l mY b0 Y (b1 X 1b2 X 2 bm X m )
2. 决定系数R 2: SS回 SS残 2 R 1 SS总 SS总
0 R 2 1 ,说明自变量 X 1 , X 2 ,, X m 能够
解释Y 变化的百分比,其值愈接近于 1,说明 模型对数据的拟合程度愈好。本例
133.7107 R 0.6008 222.5519
2
表明血糖含量变异的 60%可由总胆固醇、 甘油 三脂、胰岛素和糖化血红蛋白的变化来解释。
其中;SSR是由x和y的直线回归关系引起的,可以由回归
直线做出解释;SSE是除了x对y的线性影响之外的随机因素所 引起的Y的变动,是回归直线所不能解释的。
可决系数(判定系数、决定系数)
回归平方和在总离差平方和中所占的比例可以作为一个统 计指标,用来衡量X与Y 的关系密切程度以及回归直线的代表
性好坏,称为可决系数。
结果
0.1424 t1 0.390 0.3656 0.2706 t3 2.229 0.1214 0.3515 t2 1.721 0.2042 0.6382 t4 2.623 0.2433
多元线性回归

多元线性回归模型一、多元线性回归模型的一般形式设随机变量y 与一般变量p x x x ,,,21 的线性回归模型为:εββββ+++++=p p x x x y 22110 写成矩阵形式为:εβ+=X y其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n y y y y 21 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p x x x x x x x x x X 212222********* ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p ββββ 10 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n εεεε 21 二、多元线性回归模型的基本假定1、解释变量p x x x ,,,21 是确定性变量,不是随机变量,且要求n p X r a n k <+=1)(。
这里的n p X rank <+=1)(表明设计矩阵X 中自变量列之间不相关,样本容量的个数应大于解释变量的个数,X 是一满秩矩阵。
2、随机误差项具有0均值和等方差,即:⎪⎩⎪⎨⎧⎩⎨⎧=≠====),,2,1,(,,0,),cov(,,2,1,0)(2n j i j i j i n i E j i i σεεε 0)(=i E ε,即假设观测值没有系统误差,随机误差i ε的平均值为0,随机误差i ε的协方差为0表明随机误差项在不同的样本点之间是不相关的(在正态假定下即为独立),不存在序列相关,并且具有相同的精度。
3、正态分布的假定条件为:⎩⎨⎧=相互独立n i n i N εεεσε ,,,,2,1),,0(~212,矩阵表示:),0(~2n I N σε,由该假定和多元正态分布的性质可知,随机变量y 服从n 维正态分布,回归模型的期望向量为:βX y E =)(;n I y 2)var(σ= 因此有),(~2n I X N y σβ 三、多元线性回归方程的解释对于一般情况含有p 个自变量的回归方程p p x x x y E ββββ++++= 22110)(的解释,每个回归系数i β表示在回归方程中其他自变量保持不变的情况下,自变量i x 每增加一个单位时因变量y 的平均增加程度。
§3.1 多元线性回归模型

Y = Xβ+ μ β
1 X 11 1 X 12 X= M M 1 X 1n X 21 L X k1 X 22 L X k 2 M M X 2 n L X kn n×( k +1)
β0 β 1 β= β 2 M β k ( k +1)×1
1 2 μ= M n n×1
i ~ N (0, σ 2 )
上述假设的矩阵符号表示 上述假设的矩阵符号表示 式: 假设1 +1)矩阵 是非随机的, +1, 假设1,n×(k+1)矩阵 是非随机的,且X的秩ρ=k+1, × +1)矩阵X是非随机的 的秩 +1 满秩。 即X满秩。 满秩 假设2 假设2,
1 E ( 1 ) E (μ = E M = M = 0 ) E ( ) n n
样本回归函数: 样本回归函数:用来估计总体回归函数
Yi = β 0 + β 1 X 1i + β 2 X 2i + L + β ki X ki
其随机表示式: 随机表示式:
Yi = β0 + β1 X1i + β2 X2i +L+ βki Xki + ei
样本回归函数的矩阵表达: 样本回归函数的矩阵表达:
第三章 经典单方程计量经济学模 型:多元回归
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定
一、多元线性回归模型
Yi =β0 +β1X1i +β2X2i ++βk Xki +i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、多元线性回归模型
在多要素的地理环境系统中,多个(多于两个)要素之间也存在着相互影响、相互关联的情况。
因此,多元地理回归模型更带有普遍性的意义。
(一)多元线性回归模型的建立
假设某一因变量y 受k 个自变量k x x x ,...,,21的影响,其n 组观测值为(ka a a a x x x y ,...,,,21),
n a ,...,2,1=。
那么,多元线性回归模型的结构形式为:
a ka k a a a x x x y εββββ+++++=...22110(3.2.11)
式中:
k βββ,...,1,0为待定参数; a ε为随机变量。
如果k b b b ,...,,10分别为k ββββ...,,,210的拟合值,则回归方程为
ŷ=k k x b x b x b b ++++...22110(3.2.12)
式中:
0b 为常数;
k b b b ,...,,21称为偏回归系数。
偏回归系数i b (k i ,...,2,1=)的意义是,当其他自变量j x (i j ≠)都固定时,自变量i x 每变化一个单位而使因变量y 平均改变的数值。
根据最小二乘法原理,i β(k i ,...,2,1,0=)的估计值i b (k i ,...,2,1,0=)应该使
()[]min (2)
1
2211012
→++++-=⎪⎭⎫
⎝⎛-=∑∑==∧
n a ka k a a a n
a a a x
b x b x b b y y y Q (3.2.13)
有求极值的必要条件得
⎪⎪⎩⎪⎪⎨⎧==⎪⎭⎫ ⎝⎛--=∂∂=⎪⎭⎫
⎝⎛--=∂∂∑∑=∧=∧n a ja a a j
n a a a k j x y y b Q y y b Q 110)
,...,2,1(0202(3.2.14) 将方程组(3.2.14)式展开整理后得:
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪
⎨⎧
=++++=++++=++++=++++∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===================n
a a ka k n a ka n a ka a n a ka a n a ka n a a
a k n a ka a n a a n a a a n
a a n
a a
a k n a ka a n a a a n a a n a a n
a a
k n a ka n a a n a a y x b x b x x b x x b x y x b x x b x b x x b x y x b x x b x x b x b x y b x b x b x nb 11221211101
1
212212
2112101
21111212111210111
12121110)(...)()()(...)(...)()()()(...)()()()(...)()( (3.2.15)
方程组(3.2.15)式,被称为正规方程组。
如果引入一下向量和矩阵:
⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪
⎪⎪⎪
⎪⎭
⎫
⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=kn n n k k k n k x x x x x x x x x x x x X y y y Y b b b b b ...
1..................1...1...1,...
, (2132313)
222121********* ⎪⎪⎪⎪⎪⎪⎭
⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==kn n
n
k k k kn k k k n n T x x x x x x x x x x x x x x x x x x x x x x x x X X A ...
1
...............
...1
...1 (1)
........................1 (11)
1
213231322212121
113
2
1
2232221
1131211
⎪⎪⎪
⎪⎪⎪⎪⎪⎪
⎪⎪
⎭
⎫ ⎝⎛=∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑===============n a ka n a ka a n a ka a n a ka n
a ka a n a a
n a a a n a a
n
a ka a n a a a n a a n
a a n
a ka n
a a
n
a a x x x x x x x x x x x x x x x x x x x x x n 12
12111
1
212
2121121
11211211111211...........................
⎪⎪⎪
⎪⎪⎪
⎪⎪⎪⎪⎪
⎭
⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==∑∑∑∑====n a a ka n
a a a n a a a n a a n kn k k k n n T y x y x y x y y y y y x x x x x x x x x x x x Y X B 11
211132132122322211131211..............................1 (111)
则正规方程组(3.2.15)式可以进一步写成矩阵形式
B Ab =(3.2.15’)
求解(3.2.15’)式可得:
Y X X X B A b T T 11)(--==(3.2.16)
如果引入记号:
),...,2,1,())((1
k j i x x x x L L n
a j ja i ia ji ij =--==∑=
),...,2,1())((1
k i y y x x L n
a a i ia iy =--=∑=
则正规方程组也可以写成:
⎪⎪⎪⎩⎪
⎪⎪⎨
⎧----==+++=+++=+++k
k ky
k kk k k y k k y k k x b x b x b y b L
b L b L b L L b L b L b L L b L b L b L ........................2211022112222212111212111(3.2.15’’)
(二)多元线性回归模型的显著性检验
与一元线性回归模型一样,当多元线性回归模型建立以后,也需要进行显著性检验。
与前面的一元线性回归分析一样,因变量y 的观测值n y y y ,...,,21之间的波动或差异,是由两个因素引起的,一是由于自变量k x x x ,...,,21的取之不同,另一是受其他随机因素的影响而引起的。
为了从y 的离差平方和中把它们区分开来,就需要对回归模型进行方差分析,也就是将y 的离差平方和T S 或(L yy )分解成两个部分,即回归平方和U 与剩余平方和Q :
Q U L S yy T +==
在多元线性回归分析中,回归平方和表示的是所有k 个自变量对y 的变差的总影响,它可以按公式
∑∑==∧
=-=k
i iy i n
a a L
b y y U 1
2
1
)(
计算,而剩余平方和为
U L y y Q yy n
a a a -=-=∑=∧
2
1
)(
以上几个公式与一元线性回归分析中的有关公式完全相似。
它们所代表的意义也相似,即回归平方和越大,则剩余平方和Q 就越小,回归模型的效果就越好。
不过,在多元线性回归分析中,各平方和的自由度略有不同,回归平方和U 的自由度等于自变量的个数k ,而剩余平方和的自由度等于1--k n ,所以F 统计量为:
)
1/(/--=
k n Q k
U F
当统计量F 计算出来之后,就可以查F 分布表对模型进行显著性检验。