多元线性回归SPSS实验报告
SPSS多元回归实验报告

实验八报告一、数据来源Employee data. sav 二、基本结果(1)确定自变量、因变量:)确定自变量、因变量:一般而言,因变量y与各自变量xj(j=1,2,3,…,n)之间的多元线性回归模型:之间的多元线性回归模型:其中:b0是回归常数;b k (k=1,2,3,…,n)是回归参数;e是随机误差。
是随机误差。
根据employee data.sav的数据,其中Y是当前工资salary,X1是起始资金salbegin,X2是工作经验prevexp,X3是工作时间jobtime,X4是工作种类jobcat,X5是受教育年限edcau。
(2)做出因变量与自变量的散点图:)做出因变量与自变量的散点图:从散点图可以看出因变量与各自变量之间存在线性关系。
(3)检验因变量Y是否服从正态分布的模型假定——因变量Y并没有很好地服从正态分布。
地服从正态分布。
的残差图(4)线性回归Y的残差图此标准化残差图表明,此线性回归的标准化残差呈楔形分布而非带状分布,不满足回归模型同方差的假定。
布,不满足回归模型同方差的假定。
当前薪金多元线性回归分析的残差图图当前薪金多元线性回归分析的残差图(5)通过以上检验可以看出,当前薪金并不是好的变量,对当前薪金进行Ln变换(取对数)生成新的随进变量logsale,将logsale作为因变量Y用逐步回归的方法进行回归分析:的方法进行回归分析:1)p-p图:图:较好的服从了正态分布。
发现取对数后,logY较好的服从了正态分布。
2)logY的标准化残差图:的标准化残差图:上图表明因变量Y(logsale)的标准化残差近似呈带状分布,满足模型同方差的假定。
差的假定。
3)逐步回归的判定系数:)逐步回归的判定系数:通过逐步回归,得到方程的判定系数如下表。
R²越接近1,说明回归方程解释了因变量总变异量的绝大部分比例。
本估计的回归方程有一个好的拟合,,可以认为拟合度高。
在模型5中达到0.810,且调整后的R²达到0.808,可以认为拟合度高。
多元线性回归SPSS实验报告

最终保留的回归方程的变量有:教职工总数与发表论文数 回归方程的DW检验值=1、971,表现残差序列存在正相关。说明该回归方程 没有充分说明被解释变量的变化规律,可能方程中遗漏了一些重要的解释变量
估计的标准误差=9、774。 模型二中偏F检验的概率P值=0、749,对于显著性水平0、05,接受原假设(剔除 变量的偏回归系数与0无显著性差异),认为:剔除的变量在校大学生人数的偏回归 系数与0无显著性差异。该变量对被解释变量的线性解释没有显著性贡献,不应保 留在回归方程中。 模型三中偏F检验的概率P值=0、526,对于显著性水平0、05,接受原假设(剔除 变量的偏回归系数与0无显著性差异),认为:剔除的变量普通高校数的偏回归系数 与0无显著性差异。该变量对被解释变量的线性解释没有显著性贡献,不应保留在
1
、999a 、998 、997
9、822
多元线性回归 SPSS 实验报告
输入/移去的变量
移去的变
模型 输入的变量 量
方法
1 教职工总数 (万人), 专 利申请授权 数(件), 研 究与试验发 展机构数 (个), 普通 高校数 (所), 发表 科技论文数 量(篇), 在 校学生数 (万人)a
、 输入
多元线性回归 SPSS 实验报告
注解:引入/剔除变量表 分别剔除在校学生数(万人),普通高校数(所),研究与试验发展机构数(个),专利申 请授权数(件)四个变量
模型汇总f
更改统计量
【精品】SPSS统计实验报告多元线性回归分析

【精品】SPSS统计实验报告多元线性回归分析
本文旨在通过多元线性回归分析,深入研究X、Y、Z三个变量之间的关系,以探究这三个变量对结果的影响。
本实验中样本数量为100人,本文采用SPSS22.0计算软件进行多元线性回归分析,统计计算结果如下:
(一)检验变量X、Y、Z三个变量是否有关:
Sig.=.633。
结果显示,该值大于0.05,表明X、Y、Z三者之间没有显著统计关系;
(二)确定拟合模型:
以X、Y、Z三个变量回归拟合,得出模型为:y=1.746+0.660X+0.783Y+0.430Z。
(三)检验回归模型的有效性:
1. 回归系数的统计量检验
模型的R方为.668,该值表明,X、Y、Z三个自变量可以解释本回归模型的67.0%的变化量;
2.F检验
结果显示,f分数为20.670,Sig.=.000,结果显示,f分数小于阈值0.05,因此可以接受回归模型;
检验结果显示,当其他X、Y、Z三个自变量的条件不变的情况下,X、Y、Z三个自变量对Y的影响是有显著性的。
综上所述,本文使用SPSS22.0计算软件进行多元线性回归分析,探究X、Y、Z三个变量之间的关系。
结果显示,X、Y、Z三者之间没有显著统计关系;拟合模型为:
y=1.746+0.660X+0.783Y+0.430Z;最后,证实X、Y、Z三个自变量对Y的影响是有显著性的。
SPSS实验多元线性回归分析12

这里我们以总成绩作为因变量Y,平时成绩和期中成绩分别作为自变量X1,X2,建立的多元回归模型为:
Байду номын сангаас2,估计参数,建立回归预测模型
利用SPSS可得一下结果:
Variables Entered/Removedb
Model
Variables Entered
Variables Removed
1183.800
19
a. Predictors: (Constant),期中成绩,平时成绩
b. Dependent Variable:总成绩
注释:从表中可得拟合方程的F统计量值为7.586,相应的P值为0.000说明,拟合方程是显著的。是具有统计意义的。
Coefficientsa
Model
Unstandardized Coefficients
Method
1
期中成绩,平时成绩a
.
Enter
a. All requested variables entered.
b. Dependent Variable:总成绩
注释:根据这个表的结果我们可以初步的知道,经过检验自变量X1,X2是可以加入到准备估计的回归方程中作为变量的。
Model Summaryb
Standardized Coefficients
t
Sig.
95% Confidence Interval for B
Correlations
Collinearity Statistics
B
Std. Error
Beta
Lower Bound
Upper Bound
Zero-order
SPSS—回归—多元线性回归结果分析(二)

SPSS—回归—多元线性回归结果分析(二)2011-10-27 14:44,最近一直很忙,公司的潮起潮落,就好比人生的跌岩起伏,眼看着一步步走向衰弱,却无能为力,也许要学习“步步惊心”里面“四阿哥”的座右铭:“行到水穷处”,”坐看云起时“。
接着上一期的“多元线性回归解析”里面的内容,上一次,没有写结果分析,这次补上,结果分析如下所示:结果分析1:由于开始选择的是“逐步”法,逐步法是“向前”和“向后”的结合体,从结果可以看出,最先进入“线性回归模型”的是“price in thousands"建立了模型1,紧随其后的是“Wheelbase"建立了模型2,所以,模型中有此方法有个概率值,当小于等于0.05时,进入“线性回归模型”(最先进入模型的,相关性最强,关系最为密切)当大于等 0.1时,从“线性模型中”剔除结果分析:1:从“模型汇总”中可以看出,有两个模型,(模型1和模型2)从R2 拟合优度来看,模型2的拟合优度明显比模型1要好一些(0.422>0.300)2:从“Anova"表中,可以看出“模型2”中的“回归平方和”为115.311,“残差平方和”为153.072,由于总平方和= 回归平方和+残差平方和,由于残差平方和(即指随即误差,不可解释的误差)由于“回归平方和”跟“残差平方和”几乎接近,所有,此线性回归模型只解释了总平方和的一半,3:根据后面的“F统计量”的概率值为0.00,由于0.00<0.01,随着“自变量”的引入,其显著性概率值均远小于 0.01,所以可以显著地拒绝总体回归系数为0的原假设,通过ANOVA方差分析表可以看出“销售量”与“价格”和“轴距”之间存在着线性关系,至于线性关系的强弱,需要进一步进行分析。
结果分析:1:从“已排除的变量”表中,可以看出:“模型2”中各变量的T检的概率值都大于“0.05”所以,不能够引入“线性回归模型”必须剔除。
运用SPSS建立多元线性回归模型并进行检验副本

运用S P S S建立多元线性回归模型并进行检验副本集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#计量经济学实验报告一.实验目的:1、学习和掌握用SPSS做变量间的相关系数矩阵;2、掌握运用SPSS做多元线性回归的估计;3、用残差分析检验是否存在异常值和强影响值4、看懂SPSS估计的多元线性回归方程结果;5、掌握逐步回归操作;6、掌握如何估计标准化回归方程7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;二.实验步骤:1、根据所研究的问题提出因变量和自变量,搜集数据。
2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。
3、如果为线性关系,则建立多元线性回归方程并估计方程。
4、运用残差分析检验是否存在异常值点和强影响值点。
5、通过t检验进行逐步回归。
6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t检验)。
7、输出标准化回归结果,写出标准化回归方程。
8、如果通过检验,解释方程并应用(预测)。
三.实验要求:研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。
详细数据见表:(1)计算出y,x1,x2,x3的相关系数矩阵。
(2)求y关于x1,x2,x3的三元线性回归方程(3)做残差分析看是否存在异常值。
(4)对所求方程拟合优度检验。
(5)对回归方程进行显着性检验。
(6)对每一个回归系数做显着性检验。
(7)如果有的回归系数没有通过显着性检验,将其剔除,重新建立回归方程,在做方程的显着性检验和回归系数的显着性检验。
(8)求标准化回归方程。
(9)求当x1=75,x2=42,x3=时y。
并给出置性水平为99%的近似预测区间。
(10)结合回归方程对问题进行一些基本分析。
四.绘制散点图或样本相关阵相关性货运总量工业总产值农业总产值居民非商品支出货运总量Pearson 相关性 1 .556 .731*.724*显着性(双侧).095 .016 .018 N 10 10 10 10工业总产值Pearson 相关性.556 1 .155 .444 显着性(双侧).095 .650 .171 N 10 11 11 11农业总产值Pearson 相关性.731*.155 1 .562 显着性(双侧).016 .650 .072 N 10 11 11 11居民非商品支出Pearson 相关性.724*.444 .562 1 显着性(双侧).018 .171 .072N 10 11 11 11*. 在水平(双侧)上显着相关。
运用SPSS建立多元线性回归模型并进行检验---副本[1]
![运用SPSS建立多元线性回归模型并进行检验---副本[1]](https://img.taocdn.com/s3/m/919a8eb504a1b0717fd5ddc7.png)
计量经济学实验报告一.实验目的:1、学习和掌握用SPSS做变量间的相关系数矩阵;2、掌握运用SPSS做多元线性回归的估计;3、用残差分析检验是否存在异常值和强影响值4、看懂SPSS估计的多元线性回归方程结果;5、掌握逐步回归操作;6、掌握如何估计标准化回归方程7、根据输出结果书写方程、进行模型检验、解释系数意义和预测;二.实验步骤:1、根据所研究的问题提出因变量和自变量,搜集数据。
2、绘制散点图和样本相关阵,观察自变量和因变量间的大致关系。
3、如果为线性关系,则建立多元线性回归方程并估计方程。
4、运用残差分析检验是否存在异常值点和强影响值点。
5、通过t检验进行逐步回归。
6、根据spss输出结果写出方程,对方程进行检验(拟合优度检验、F检验和t检验)。
7、输出标准化回归结果,写出标准化回归方程。
8、如果通过检验,解释方程并应用(预测)。
三.实验要求:研究货运总量y与工业总产值x1,农业总产值x2,居民非商品支出x3,之间的关系。
详细数据见表:(1)计算出y,x1,x2,x3的相关系数矩阵。
(2)求y关于x1,x2,x3的三元线性回归方程(3)做残差分析看是否存在异常值。
(4)对所求方程拟合优度检验。
(5)对回归方程进行显著性检验。
(6)对每一个回归系数做显著性检验。
(7)如果有的回归系数没有通过显著性检验,将其剔除,重新建立回归方程,在做方程的显著性检验和回归系数的显著性检验。
(8)求标准化回归方程。
(9)求当x1=75,x2=42,x3=3.1时y。
并给出置性水平为99%的近似预测区间。
(10)结合回归方程对问题进行一些基本分析。
四.绘制散点图或样本相关阵相关性货运总量工业总产值农业总产值 居民非商品支出货运总量Pearson 相关性1.556 .731*.724*显著性(双侧).095.016 .018 N10 10 10 10 工业总产值Pearson 相关性.556 1.155 .444 显著性(双侧) .095 .650.171 N10 11 11 11 农业总产值Pearson 相关性.731*.155 1.562 显著性(双侧) .016 .650 .072N10 11 11 11 居民非商品支出 Pearson 相关性.724* .444 .562 1显著性(双侧).018 .171 .072 N10111111*. 在 0.05 水平(双侧)上显著相关。
SPSS多元线性回归结果分析

SPSS多元线性回归结果分析输出下⾯三张表第⼀张R⽅是拟合优度对总回归⽅程进⾏F检验。
显著性是sig。
结果的统计学意义,是结果真实程度(能够代表总体)的⼀种估计⽅法。
专业上,p 值为结果可信程度的⼀个递减指标,p 值越⼤,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。
p 值是将观察结果认为有效即具有总体代表性的犯错概率。
如 p=0.05 提⽰样本中变量关联有 5% 的可能是由于偶然性造成的。
即假设总体中任意变量间均⽆关联,我们重复类似实验,会发现约 20 个实验中有⼀个实验,我们所研究的变量关联将等于或强于我们的实验结果。
(这并不是说如变量间存在关联,我们可得到 5% 或 95% 次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效⼒有关。
)在许多研究领域,0.05 的 p 值通常被认为是可接受错误的边界⽔平。
F检验:对于多元线性回归模型,在对每个回归系数进⾏显著性检验之前,应该对回归模型的整体做显著性检验。
这就是F检验。
当检验被解释变量y t与⼀组解释变量x1, x2 , ... , x k -1是否存在回归关系时,给出的零假设与备择假设分别是H0:b1 = b2 = ... = b k-1 = 0 ,H1:b i, i = 1, ..., k -1不全为零。
⾸先要构造F统计量。
由(3.36)式知总平⽅和(SST)可分解为回归平⽅和(SSR)与残差平⽅和(SSE)两部分。
与这种分解相对应,相应⾃由度也可以被分解为两部分。
SST具有T - 1个⾃由度。
这是因为在T个变差 ( y t -), t = 1, ..., T,中存在⼀个约束条件,即 = 0。
由于回归函数中含有k个参数,⽽这k个参数受⼀个约束条件制约,所以SSR具有k -1个⾃由度。
因为SSE中含有T个残差,= y t -, t = 1, 2, ..., T,这些残差值被k个参数所约束,所以SSE具有T - k个⾃由度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回归分析基本分析:
将毕业生人数移入因变量,其他解释变量移入自变量。
在统计量中选择估计和模型拟合度,得到如图
注解:模型的拟合优度检验:
第二列:两变量(被解释变量和解释变量)的复相关系数R=0.999。
第三列:被解释向量(毕业人数)和解释向量的判定系数R2=0.998。
第四列:被解释向量(毕业人数)和解释向量的调整判定系数R2=0.971。
在多个解释变量的时候,需要参考调整的判定系数,越接近1,说明回归方程对样本数据的拟合优度越高,被解释向量可以被模型解释的部分越多。
第五列:回归方程的估计标准误差=9.822
回归方程的显著性检验-回归分析的方差分析表
F检验统计量的值=776.216,对应的概率p值=0.000,小于显著性水平0.05,应拒绝回归方程显著性检验原假设(回归系数与0不存在显著性差异),认为:回归系数不为0,被解释变量(毕业生人数)和解释变量的线性关系显著,可以建立线性模型。
注解:回归系数的显著性检验以及回归方程的偏回归系数和常数项的估计值第二列:常数项估计值=-544.366;其余是偏回归系数估计值。
第三列:偏回归系数的标准误差。
第四列:标准化偏回归系数。
第五列:偏回归系数T检验的t统计量。
第六列:t统计量对应的概率p值;小于显著性水平0.05,拒接原假设(回归系数与0不存在显著性差异),认为回归系数部位0,被解释变量与解释变量的线性关系是显著的;大于显著性水平0.05,接受原假设(回归系数与0不存在显著性差异),认为回归系数为0被解释变量与解释变量的线性关系不显著的。
于是,多元线性回归方程为:
ŷ=-544.366+0.032x1+0.009x2+0.001x3-0.1x5+3.046x6
回归分析的进一步分析:
1.多重共线性检验
从容差和方差膨胀因子来看,在校学生数和教职工总数与其他解释变量的多重共线性很严重。
在重新建模中可以考虑剔除该变量
注解:第二列:特征根
第三列:条件指数
从条件指数看,第3、4、5、6、7个条件指数都大于10,说明变量之间存在多重共线性。
第4-10列:各特征根解释各解释变量的方差比。
从方差比看,第5个特征根解释投入普通高校人数96%;发表科技论文数49%;可以认为:这些变量存在多重共线性。
需要建立回归方程。
2.重建回归方程
输入/移去的变量b
注解:引入/剔除变量表
分别剔除在校学生数(万人),普通高校数(所),研究与试验发展机构数(个),专利申请授权数(件)四个变量
注解:利用向后筛选策略建立回归模型,经过四步完成回归方程的建立,最终模型为第五个模型,依次剔除的变量是在校学生数(万人),普通高校数(所),研究与试验发展机构数(个),专利申请授权数(件)
模型五的负相关系数R=0.999。
判别系数R2=0.998.
调整判别系数R2=0.997,若将作用不显著的变量引入方程,则该系数会减少。
估计的标准误差=9.774。
模型二中偏F检验的概率P值=0.749,对于显著性水平0.05,接受原假设(剔除变量的偏回归系数与0无显著性差异),认为:剔除的变量在校大学生人数的偏回归系数与0无显著性差异。
该变量对被解释变量的线性解释没有显著性贡献,不应保留在回归方程中。
模型三中偏F检验的概率P值=0.526,对于显著性水平0.05,接受原假设(剔除变量的偏回归系数与0无显著性差异),认为:剔除的变量普通高校数的偏回归系数与0无显著性差异。
该变量对被解释变量的线性解释没有显著性贡献,不应保留在回归方程中。
模型四中偏F检验的概率P值=0.135,对于显著性水平0.05,接受原假设(剔除变量的偏回归系数与0无显著性差异),认为:剔除的变量研究与试验发展机构数(个)的偏回归系数与0无显著性差异。
该变量对被解释变量的线性解释没有显著性贡献,不应保留在回归方程中。
模型五中偏F检验的概率P值=0.304,对于显著性水平0.05,接受原假设(剔除变量的偏回归系数与0无显著性差异),认为:剔除的变量专利申请授权数(件)的偏回归系数与0无显著性差异。
该变量对被解释变量的线性解释没有显著性贡献,不应保留在回归方程中。
最终保留的回归方程的变量有:教职工总数和发表论文数
回归方程的DW检验值=1.971,表现残差序列存在正相关。
说明该回归方程没有充分说明被解释变量的变化规律,可能方程中遗漏了一些重要的解释变量。