数据结构堆栈与队列实验报告
栈和队列的实验报告

栈和队列的实验报告栈和队列的实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在算法设计和程序开发中起着重要的作用。
本实验旨在通过实际操作和观察,深入理解栈和队列的概念、特点以及它们在实际应用中的作用。
一、栈的实验1.1 栈的定义和特点栈是一种具有特殊操作约束的线性数据结构,它的特点是“先进后出”(Last-In-First-Out,LIFO)。
栈的操作包括入栈(push)和出栈(pop),入栈操作将元素放入栈顶,出栈操作将栈顶元素移除。
1.2 实验步骤在本次实验中,我们使用编程语言实现了一个栈的数据结构,并进行了以下实验步骤:1.2.1 创建一个空栈1.2.2 向栈中依次压入若干元素1.2.3 查看栈顶元素1.2.4 弹出栈顶元素1.2.5 再次查看栈顶元素1.3 实验结果通过实验,我们观察到栈的特点:最后入栈的元素最先出栈。
在实验步骤1.2.2中,我们依次压入了元素A、B和C,栈顶元素为C。
在实验步骤1.2.4中,我们弹出了栈顶元素C,此时栈顶元素变为B。
二、队列的实验2.1 队列的定义和特点队列是一种具有特殊操作约束的线性数据结构,它的特点是“先进先出”(First-In-First-Out,FIFO)。
队列的操作包括入队(enqueue)和出队(dequeue),入队操作将元素放入队尾,出队操作将队头元素移除。
2.2 实验步骤在本次实验中,我们使用编程语言实现了一个队列的数据结构,并进行了以下实验步骤:2.2.1 创建一个空队列2.2.2 向队列中依次插入若干元素2.2.3 查看队头元素2.2.4 删除队头元素2.2.5 再次查看队头元素2.3 实验结果通过实验,我们观察到队列的特点:最先入队的元素最先出队。
在实验步骤2.2.2中,我们依次插入了元素X、Y和Z,队头元素为X。
在实验步骤2.2.4中,我们删除了队头元素X,此时队头元素变为Y。
三、栈和队列的应用栈和队列在实际应用中有广泛的应用场景,下面简要介绍一些常见的应用:3.1 栈的应用3.1.1 表达式求值:通过栈可以实现对表达式的求值,如中缀表达式转换为后缀表达式,并计算结果。
数据结构栈和队列实验报告

数据结构栈和队列实验报告实验报告:数据结构栈和队列一、实验目的1.了解栈和队列的基本概念和特点;2.掌握栈和队列的基本操作;3.掌握使用栈和队列解决实际问题的方法。
二、实验内容1.栈的基本操作实现;2.队列的基本操作实现;3.使用栈和队列解决实际问题。
三、实验原理1.栈的定义和特点:栈是一种具有后进先出(LIFO)特性的线性数据结构,不同于线性表,栈只能在表尾进行插入和删除操作,称为入栈和出栈操作。
2.队列的定义和特点:队列是一种具有先进先出(FIFO)特性的线性数据结构,不同于线性表,队列在表头删除元素,在表尾插入元素,称为出队和入队操作。
3.栈的基本操作:a.初始化:建立一个空栈;b.入栈:将元素插入栈的表尾;c.出栈:删除栈表尾的元素,并返回该元素;d.取栈顶元素:返回栈表尾的元素,不删除。
4.队列的基本操作:a.初始化:建立一个空队列;b.入队:将元素插入队列的表尾;c.出队:删除队列表头的元素,并返回该元素;d.取队头元素:返回队列表头的元素,不删除。
四、实验步骤1.栈的实现:a.使用数组定义栈,设置栈的大小和栈顶指针;b.实现栈的初始化、入栈、出栈和取栈顶元素等操作。
2.队列的实现:a.使用数组定义队列,设置队列的大小、队头和队尾指针;b.实现队列的初始化、入队、出队和取队头元素等操作。
3.使用栈解决实际问题:a.以括号匹配问题为例,判断一个表达式中的括号是否匹配;b.使用栈来实现括号匹配,遍历表达式中的每个字符,遇到左括号入栈,遇到右括号时将栈顶元素出栈,并判断左右括号是否匹配。
4.使用队列解决实际问题:a.以模拟银行排队问题为例,实现一个简单的银行排队系统;b.使用队列来模拟银行排队过程,顾客到达银行时入队,处理完业务后出队,每个顾客的业务处理时间可以随机确定。
五、实验结果与分析1.栈和队列的基本操作实现:a.栈和队列的初始化、入栈/队、出栈/队以及取栈顶/队头元素等操作均能正常运行;b.栈和队列的时间复杂度均为O(1),操作效率很高。
数据结构栈和队列实验报告

数据结构栈和队列实验报告数据结构栈和队列实验报告1.实验目的本实验旨在通过设计栈和队列的数据结构,加深对栈和队列的理解,并通过实际操作进一步掌握它们的基本操作及应用。
2.实验内容2.1 栈的实现在本实验中,我们将使用数组和链表两种方式实现栈。
我们将分别实现栈的初始化、入栈、出栈、判断栈是否为空以及获取栈顶元素等基本操作。
通过对这些操作的实现,我们可将其用于解决实际问题中。
2.2 队列的实现同样地,我们将使用数组和链表两种方式实现队列。
我们将实现队列的初始化、入队、出队、判断队列是否为空以及获取队头元素等基本操作。
通过对这些操作的实现,我们可进一步了解队列的特性,并掌握队列在实际问题中的应用。
3.实验步骤3.1 栈的实现步骤3.1.1 数组实现栈(详细介绍数组实现栈的具体步骤)3.1.2 链表实现栈(详细介绍链表实现栈的具体步骤)3.2 队列的实现步骤3.2.1 数组实现队列(详细介绍数组实现队列的具体步骤)3.2.2 链表实现队列(详细介绍链表实现队列的具体步骤)4.实验结果与分析4.1 栈实验结果分析(分析使用数组和链表实现栈的优缺点,以及实际应用场景)4.2 队列实验结果分析(分析使用数组和链表实现队列的优缺点,以及实际应用场景)5.实验总结通过本次实验,我们深入了解了栈和队列这两种基本的数据结构,并利用它们解决了一些实际问题。
我们通过对数组和链表两种方式的实现,进一步加深了对栈和队列的理解。
通过实验的操作过程,我们也学会了如何设计和实现基本的数据结构,这对我们在日后的学习和工作中都具有重要意义。
6.附件6.1 源代码(附上栈和队列的实现代码)6.2 实验报告相关数据(附上实验过程中所产生的数据)7.法律名词及注释7.1 栈栈指的是一种存储数据的线性数据结构,具有后进先出(LIFO)的特点。
栈的操作主要包括入栈和出栈。
7.2 队列队列指的是一种存储数据的线性数据结构,具有先进先出(FIFO)的特点。
数据结构实验三栈和队列的应用

数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。
本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。
一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。
这意味着最后进入栈的元素将首先被取出。
1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。
例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。
当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。
最终,操作数栈中的唯一值就是表达式的结果。
2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。
可以使用栈来实现。
遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。
3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。
当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。
当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。
递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。
二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。
1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。
新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。
通过这种方式,保证了先来的顾客先得到服务,体现了公平性。
2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。
从起始节点开始,将其放入队列。
数据结构实验报告 栈和队列

数据结构实验报告栈和队列
栈(Stack)和队列(Queue)都是常用的数据结构。
它们都是有限的数据存储结构,主要用于记录数据的存储和检索。
它们具有许多相同的特征,可以根据每一个实例的需要而定制遍历,并可以使用相同的存储方法。
但是,从数据操作和操作数据的角度来看,它们仍有差异。
首先,栈和队列的数据操作模式不同。
栈是遵循“先进后出”(LIFO)的原则,只有最后一个元素可以被弹出或者取出;而队列则是遵循“先进先出”(FIFO)的原则,第一个元素是最先被取出或弹出的。
此外,栈不允许插入新元素,而队列允许任何位置插入和删除元素。
此外,栈只能被依次访问,而队列允许改变已有元素的位置。
此外,栈和队列可以用相似的实现方式来构建。
一般来说,它们都使用 .链表,数组或者树来存储数据,并使用相同的Pointers来指向数据结构中的元素。
栈和队列也可以使用交换的方式来改变其存储方式,从而提高其效率。
对于实际应用来说,栈和队列都有自己的优势,具体取决于应用中的需求。
比如,栈通常被用于数据的深度优先遍历,而队列则可以用于数据的广度优先遍历。
此外,栈也可以用于处理函数调用,而队列可以用于处理操作系统任务或者打印池中的任务等。
【最新】队列操作实验报告-范文word版 (12页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==队列操作实验报告篇一:栈和队列基本操作实验报告实验二堆栈和队列基本操作的编程实现【实验目的】堆栈和队列基本操作的编程实现要求:堆栈和队列基本操作的编程实现(2学时,验证型),掌握堆栈和队列的建立、进栈、出栈、进队、出队等基本操作的编程实现,存储结构可以在顺序结构或链接结构中任选,也可以全部实现。
也鼓励学生利用基本操作进行一些应用的程序设计。
【实验性质】验证性实验(学时数:2H)【实验内容】内容:把堆栈和队列的顺序存储(环队)和链表存储的数据进队、出队等运算其中一部分进行程序实现。
可以实验一的结果自己实现数据输入、数据显示的函数。
利用基本功能实现各类应用,如括号匹配、回文判断、事物排队模拟、数据逆序生成、多进制转换等。
【实验分析、说明过程】【思考问题】【实验小结】 ( 总结本次实验的重难点及心得、体会、收获)【附录-实验代码】篇二:队列存储与操作实验报告实验四队列存储与操作一. 实验目的1、掌握队列顺序存储结构(循环队列)及实现及操作2、掌握队列的链接存储结构及实现及操作二. 实验内容1、建立一个空顺序存储结构队列;对已建立的队列进行插入、删除、取队头元素等基本操作。
2、建立一个空链式存储结构队列;对已建立的队列进行插入、删除、取队头元素等基本操作。
三、详细设计:1、顺序队列的实现:#include<iostream>using namespace std;const int Size=100;typedef char DataType;class CirQueue{public:CirQueue() { } ~CirQueue(){} void EnQueue(DataType x){if((rear+1)%Size==front) {} cout<<"队列已经满了"<<endl; return; front=rear=0;//构造队列,初始化一个空的循环队列,front和rear指向};} data[rear]=x; cout<<x<<"已入队"<<endl; return; DataTypeGetQueue()//取队头 { } DataType DeQueue() { } int isEmpty()//是否为空{ } DataType data[Size]; int front,rear; if(front==rear) { } else{ } return 0; return 1; if(isEmpty()) {} front=(front+1)%Size;//队头指针在循环的意义下加 return data[front]; cout<<"队列为空"<<endl; return 0; if(isEmpty()) {} int i; i=(front+1)%Size; return data[i]; cout<<"队列为空"<<endl; return 0; private:int main(){int index; DataType temp; do{cout<<"**********************************"<<endl; cout<<"1、入队操作"<<endl; cout<<"2、取队头操作"<<endl; cout<<"3、出队操作"<<endl;cout<<"4、判断队列是否为空"<<endl; cout<<"5、退出"<<endl;cout<<"**********************************"<<endl; cin>>index;if(index==5){return 0;} switch(index) { case 1:cout<<"请输入要入队的元素"<<endl; cin>>temp; a.EnQueue(temp); break; temp=a.GetQueue();if(temp!=0) { } cout<<"队头的元素为"<<temp<<" "<<endl;case 2: break; temp=a.DeQueue(); if(temp!=0) { } cout<<"出队的元素为"<<temp<<""<<endl; case 3: break; bool temp; temp=a.isEmpty(); if(temp){cout<<"空队"<<endl; cout<<"非空队"<<endl; }else{ case 4:} } break; }while(index); return 0;2、链队列的实现: #include<iostream> using namespace std;const int Size=100; typedef char DataType; struct Node{};class LinkQueue {public:LinkQueue() { } ~LinkQueue(){} void EnQueue(DataType x) {} DataType GetQueue()//取?队ó头? {if(isEmpty()) {} cout<<"队ó列为a空?"<<endl; return 0; auto s=new Node; s->data=x; s->next=NULL;//申Θ?请?一?个?数簓据Y域?为aX的?结á点?s rear->next=s; rear=s; auto head=new Node; head->next=NULL; front=rear=head; DataType data; Node *next;};} return front->next->data; DataType DeQueue() { } int isEmpty()//是?否?为a空? { } Node*front,*rear;//队ó头?和í队ó尾2指?针?if(front==rear) { } else{ } return 0; return 1; if(isEmpty()) {} auto p=new Node;//用?于?暂Y存?队ó头?元a素? DataType x;//用?于?暂Y存?队ó头?数簓据Y p=front->next; x=p->data; front->next=p->next;if (p->next==NULL) { } delete p; return x; rear=front; cout<<"队ó列为a空?"<<endl; return 0; private:int main() {LinkQueue a; int index; DataType temp; do{cout<<"**********************************"<<endl; cout<<"1、¢入?队ó操ù作痢?<<endl;篇三:队列存储与操作实验报告实验四队列存储与操作一、实验目的1、掌握队列的特点(先进先出FIFO)及基本操作,如入队、出队等,队列顺序存储结构、链式存储结构和循环队列的实现,以便在实际问题背景下灵活运用。
实验报告——栈和队列的应用

实验报告——栈和队列的应用第一篇:实验报告——栈和队列的应用实验5 栈和队列的应用目的和要求:(1)熟练栈和队列的基本操作;(2)能够利用栈与队列进行简单的应用。
一、题目题目1.利用顺序栈和队列,实现一个栈和一个队列,并利用其判断一个字符串是否是回文。
所谓回文,是指从前向后顺读和从后向前倒读都一样的字符串。
例如,a+b&b+a等等。
题目2.假设在周末舞会上,男士们和女士们进入舞厅时,各自排成一队。
跳舞开始时,依次从男队和女队的队头上各出一人配成舞伴。
若两队初始人数不相同,则较长的那一队中未配对者等待下一轮舞曲。
现要求写一算法模拟上述舞伴配对问题,并实现。
题目3.打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
每台打印机具有一个队列(缓冲池),用户提交打印请求被写入到队列尾,当打印机空闲时,系统读取队列中第一个请求,打印并删除之。
请利用队列的先进先出特性,完成打印机网络共享的先来先服务功能。
题目4.假设以数组Q[m]存放循环队列中的元素, 同时设置一个标志tag,以tag == 0和tag == 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空”还是“满”。
试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
题目5.利用循环链队列求解约瑟夫环问题。
请大家从本组未讨论过的五道题中选择一道,参照清华邓俊辉老师MOOC视频及课本相关知识,编写相应程序。
选择题目3:打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
二、程序清单//Ch3.cpp #include #include #include“ch3.h” template void LinkedQueue::makeEmpty()//makeEmpty//函数的实现{ LinkNode*p;while(front!=NULL)//逐个删除队列中的结点{p=front;front=front->link;delete p;} };template bool LinkedQueue::put_in(T&x){//提交命令函数if(front==NULL){//判断是否为空front=rear=new LinkNode;//如果为空,新结点为对头也为对尾front->data=rear->data=x;if(front==NULL)//分配结点失败return false;} else{rear->link=new LinkNode;//如不为空,在链尾加新的结点rear->link->data=x;if(rear->link==NULL)return false;rear=rear->link;} return true;};template bool LinkedQueue::carry_out()//执行命令函数 { if(IsEmpty()==true)//判断是否为空{return false;} cout<data<LinkNode*p=front;front=front->link;//删除以执行的命令,即对头修改delete p;//释放原结点return true;};void main()//主函数 { LinkedQueue q;//定义类对象char flag='Y';//标志是否输入了命令const int max=30;//一次获取输入命令的最大个数while(flag=='Y')//循环{ int i=0;char str[max];//定义存储屏幕输入的命令的数组gets(str);//获取屏幕输入的命令while(str[i]!=''){q.put_in(str[i]);//调用提交命令函数,将每个命令存入队列中i++;}for(int j=0;j<=i;j++){if(q.IsEmpty()==true)//判断是否为空,为空则说明没有可执行的命令{cout<cin>>flag;continue;//为空跳出for循环为下次输入命令做好准备}q.carry_out();//调用执行命令的函数,将命令打印并删除}三、程序调试过程中所出现的错误无。
数据结构堆栈实验报告

数据结构堆栈实验报告篇一:数据结构-堆栈和队列实验报告实验报告实验二堆栈和队列实验目的:1.熟悉栈这种特殊线性结构的特性;2.熟练并掌握栈在顺序存储结构和链表存储结构下的基本运算;3.熟悉队列这种特殊线性结构的特性;3.熟练掌握队列在链表存储结构下的基本运算。
实验原理:堆栈顺序存储结构下的基本算法;堆栈链式存储结构下的基本算法;队列顺序存储结构下的基本算法;队列链式存储结构下的基本算法;实验内容:3-18 链式堆栈设计。
要求(1)用链式堆栈设计实现堆栈,堆栈的操作集合要求包括:初始化StackInitiate(S),非空否StackNotEmpty(S),入栈StackiPush(S,x),出栈StackPop(S,d),取栈顶数据元素StackTop(S,d);(2)设计一个主函数对链式堆栈进行测试。
测试方法为:依次把数据元素1,2,3,4,5入栈,然后出栈并在屏幕上显示出栈的数据元素;(3)定义数据元素的数据类型为如下形式的结构体,Typedef struct{c(本文来自:小草范文网:数据结构堆栈实验报告)har taskName[10];int taskNo;}DataType;首先设计一个包含5个数据元素的测试数据,然后设计一个主函数对链式堆栈进行测试,测试方法为:依次吧5个数据元素入栈,然后出栈并在屏幕上显示出栈的数据元素。
3-19 对顺序循环队列,常规的设计方法是使用対尾指针和对头指针,对尾指针用于指示当前的対尾位置下标,对头指针用于指示当前的対头位置下标。
现要求:(1)设计一个使用对头指针和计数器的顺序循环队列抽象数据类型,其中操作包括:初始化,入队列,出队列,取对头元素和判断队列是否为空;(2)编写一个主函数进行测试。
实验结果:3-18typedef struct snode{DataType data;struct snode *next;} LSNode;/*初始化操作:*/void StackInitiate(LSNode **head)/*初始化带头结点链式堆栈*/{if((*head = (LSNode *)malloc(sizeof(LSNode))) == NULL) exit(1); (*head)->next = NULL;}/*判非空操作:*/int StackNotEmpty(LSNode *head)/*判堆栈是否非空,非空返回1;空返回0*/{if(head->next == NULL) return 0;else return 1;}/*入栈操作:*/int StackPush(LSNode *head, DataType x)/*把数据元素x插入链式堆栈head的栈顶作为新的栈顶 */ {LSNode *p;if((p = (LSNode *)malloc(sizeof(LSNode))) == NULL){printf("内存空间不足无法插入! \n");return 0;}p->data = x;p->next = head->next; /*新结点链入栈顶*/ head->next = p;/*新结点成为新的栈顶*/ return 1;}/*出栈操作:*/int StackPop(LSNode *head, DataType *d)/*出栈并把栈顶元素由参数d带回*/{LSNode *p = head->next;if(p == NULL){printf("堆栈已空出错!");return 0;}head->next = p->next;/*删除原栈顶结点*/*d = p->data; /*原栈顶结点元素赋予d*/ free(p); /*释放原栈顶结点内存空间*/ return 1;}/*取栈顶数据元素操作:*/int StackTop(LSNode *head, DataType *d)/*取栈顶元素并把栈顶元素由参数d带回*/{LSNode *p = head->next;if(p == NULL){printf("堆栈已空出错!");return 0;}*d = p->data;return 1;}/*撤销*/void Destroy(LSNode *head){LSNode *p, *p1;p = head;while(p != NULL){p1 = p;p = p->next;free(p1);}}(2)主函数程序:#include#includetypedef int DataType;#include "LinStack.h"void main(void){ LSNode *myStack;int i, x;StackInitiate(&myStack);for(i=0;i { if(StackPush(myStack,i+1)==0) {printf("error!\n");return;}}if(StackTop(myStack, &x)==0){printf("error!\n");return;}elseprintf("The element of local top is :%d\n",x); printf( "The sequence of outing elements is:\n"); while(StackNotEmpty(myStack)){StackPop(myStack, &x);printf("%d ", x);}printf("\n");Destroy(myStack);printf("This program is made by\n"); }运行结果为:(3)设计结构体和测试函数如下:#include#include#includetypedef struct{char taskName[10];int taskNo;}DataType;#include"LinStack.h"void main(){LSNode *myStack;FILE *fp;DataType task,x;if((fp=fopen("task.txt","r"))==NULL){printf("不能打开文件task.txt!\n");exit(0);}StackInitiate(&myStack);while(!feof(fp)){fscanf(fp,"%s %d",&task.taskName,&task.taskNo); StackPush(myStack,task);}fclose(fp);while(StackNotEmpty(myStack)){StackPop(myStack,&x);printf("%s %d\n",x.taskName,x.taskNo); }Destroy(myStack);printf("This program is made by \n");}运行结果为:3-19(1)typedef struct{DataType queue[MaxQueueSize];int front; /*队头指针*/int count;/*计数器*/} SeqCQueue;/*初始化操作:QueueInitiate(SeqCQueue *Q) */void QueueInitiate(SeqCQueue *Q)/*初始化顺序循环队列Q */{Q->front=0; /*定义初始队头指针下标*/ Q->count=0;/*定义初始计数器值*/}/*判非空否操作:QueueNotEmpty(SeqCQueue Q)*/ int QueueNotEmpty(SeqCQueue Q)篇二:数据结构栈和队列实验报告一、实验目的和要求(1)理解栈和队列的特征以及它们之间的差异,知道在何时使用那种数据结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二堆栈和队列实验目的:1.熟悉栈这种特殊线性结构的特性;2.熟练并掌握栈在顺序存储结构和链表存储结构下的基本运算;3.熟悉队列这种特殊线性结构的特性;3.熟练掌握队列在链表存储结构下的基本运算。
实验原理:堆栈顺序存储结构下的基本算法;堆栈链式存储结构下的基本算法;队列顺序存储结构下的基本算法;队列链式存储结构下的基本算法;实验内容:第一题链式堆栈设计。
要求(1)用链式堆栈设计实现堆栈,堆栈的操作集合要求包括:初始化StackInitiate(S),非空否StackNotEmpty(S),入栈StackiPush(S,x),出栈StackPop(S,d),取栈顶数据元素StackTop(S,d);(2)设计一个主函数对链式堆栈进行测试。
测试方法为:依次把数据元素1,2,3,4,5入栈,然后出栈并在屏幕上显示出栈的数据元素;(3)定义数据元素的数据类型为如下形式的结构体,Typedef struct{char taskName[10];int taskNo;}DataType;首先设计一个包含5个数据元素的测试数据,然后设计一个主函数对链式堆栈进行测试,测试方法为:依次吧5个数据元素入栈,然后出栈并在屏幕上显示出栈的数据元素。
第二题对顺序循环队列,常规的设计方法是使用対尾指针和对头指针,对尾指针用于指示当前的対尾位置下标,对头指针用于指示当前的対头位置下标。
现要求:(1)设计一个使用对头指针和计数器的顺序循环队列抽象数据类型,其中操作包括:初始化,入队列,出队列,取对头元素和判断队列是否为空;(2)编写主函数进行测试。
程序代码:第一题:(1)源程序"LinStack.h"如下:#define NULL 0typedef struct snode{ DataType data;struct snode *next;} LSNode;/*(1)初始化StackInitiate(LSNode ** head) */void StackInitiate(LSNode ** head)/*初始化带头结点链式堆栈*/{ if((*head=(LSNode *)malloc(sizeof(LSNode)))==NULL)exit(1);(*head)->next=NULL;}/*(2)非空否StackNotEmpty(LSNode * head) */int StackNotEmpty(LSNode * head)/*判断堆栈是否为空,非空返回1,否则返回0*/{ if(head->next==NULL) return 0;else return 1;}/*(3)入栈StackPush(LSNode * head, DataType x) */ int StackPush(LSNode *head, DataType x)/*把数据元素x插压入链式堆栈head的栈顶作为新的栈顶,*//*入栈成功返回1,否则返回0 */{ LSNode *p;if((p=(LSNode *)malloc(sizeof(LSNode)))==NULL){ printf("The memory space is not enough!\n");return 0;}p->data=x;p->next=head->next; /*新结点入栈*/head->next=p; /*新结点成为新的栈顶*/return 1;}/*(4)出栈StackPop(SLNode *head, DataType *d) */int StackPop(LSNode *head, DataType *d)/*出栈并把栈顶数据元素值带到参数d,*//*出栈成功返回1,否则返回0 */{ LSNode *p;p=head->next;if(p==NULL){ printf("The Stack has been empty!\n");return 0;}head->next=p->next;*d=p->data;free(p);return 1;}/*(5)取栈顶数据元素StackTop(LSNode *head, DataType *d) */ int StackTop(LSNode *head, DataType *d)/*取栈顶数据元素并由参数d带回,*//* 成功返回1,否则返回0 */{ LSNode *p;p=head->next;if(p==NULL){ printf("The Stack has been empty!\n");return 0;}*d=p->data;return 1;}/*(6)撤销动态申请空间Destroy(LSNode *head) */ void Destroy(LSNode *head){ LSNode *p, *p1;p=head;while(p!=NULL){ p1=p;p=p->next;free(p1);}}(2)测试函数如下:#include<stdio.h>/*该文件包含printf()函数*/#include<stdlib.h>/*该文件包含exit()函数*/#define NULL 0typedef int DataType;#include "LinStack.h"void main(void){ LSNode *myStack;int i, x;StackInitiate(&myStack);for(i=0;i<5; i++){ if(StackPush(myStack,i+1)==0){printf("error!\n");return;}}if(StackTop(myStack, &x)==0){printf("error!\n");return;}elseprintf("The element of local top is :%d\n",x);printf( "The sequence of outing elements is:\n");while(StackNotEmpty(myStack)){StackPop(myStack, &x);printf("%d ", x);}Destroy(myStack);}(3)设计结构体和测试函数如下:#include<stdio.h>#include<stdlib.h>#include<malloc.h>typedef struct{char taskName[10];int taskNo;}DataType;#include"LinStack.h"void main(){LSNode *myStack;FILE *fp;DataType task,x;if((fp=fopen("task.dat","r"))==NULL){printf("不能打开文件task.dat!\n");exit(0);}StackInitiate(&myStack);while(!feof(fp)){fscanf(fp,"%s %d",&task.taskName,&task.taskNo);StackPush(myStack,task);}fclose(fp);while(StackNotEmpty(myStack)){StackPop(myStack,&x);printf("%s %d\n",x.taskName,x.taskNo);}Destroy(myStack);}其中task.dat为:第一个 1第二个 2第三个 3第四个 4第五个 5第二题:原函数设计如下:typedef struct{DataType queue[MaxQueueSize];int front; /*队头指针*/int count; /*计数器*/} SeqCQueue;/*==========================*//*(1)初始化QueueInitiate(SeqCQueue *Q) */void QueueInitiate(SeqCQueue *Q)/*初始化顺序循环队列Q */{Q->front=0; /*定义初始队头指针下标*/Q->count=0; /*定义初始计数器值*/}/*==========================*//*(2)非空否QueueNotEmpty(SeqCQueue Q)*/int QueueNotEmpty(SeqCQueue Q)/*判断顺序循环队列Q非空否,非空时返回1,否则返回0 */{if(Q.count!=0)return 1;else return 0;}/*==========================*//*(3)入队列QueueAppend(SeqCQueue *Q, DataType x)*/int QueueAppend(SeqCQueue *Q, DataType x)/*把数据元素x插入顺序循环队列Q的队尾,成功时返回1,否则返回0 */ {if(Q->count==MaxQueueSize){printf("The queue is full!\n");return 0;}else{ int r;r=Q->front+Q->count;Q->queue[r]=x;Q->count++;return 1;}}/*==========================*//*(4)出队列QueueDelete(SeqCQueue *Q, DataType *d)*/int QueueDelete(SeqCQueue *Q, DataType *d)/*删除顺序循环队列队头数据元素并赋值d,成功时返回1,否则返回0 */ {if(Q->count==0){printf("The queue is empty!\n");return 0;}else{*d=Q->queue[Q->front];Q->front=(Q->front+1)%MaxQueueSize;Q->count--;return 1;}}/*==========================*//*(6)取对头数据元素QueueGet(SeqCQueue Q, DataType *d)*/int QueueGet(SeqCQueue Q, DataType *d)/* 取顺序循环队列队头数据元素并赋值d,成功时返回1,否则返回0 */ {if(Q.count==0){printf("The queue is empty!\n");return 0;}else{*d=Q.queue[Q.front];return 1;}}(2)测试函数如下:#include<stdio.h>#define MaxQueueSize 100typedef int DataType;#include"SeqQueue.h"void main(void){int i,j,d;SeqCQueue myQueue;QueueInitiate(&myQueue);printf("%d\n",QueueNotEmpty(myQueue)); /*判空*/for(i=0;i<=10;i++){if(QueueAppend(&myQueue,i+1)==0)break;}printf("%d\n",myQueue.count); /*输出元素个数*/ for(j=0;j<=9;j++){if(QueueDelete(&myQueue,&d)==0)break;printf("%d ",d); /*出队列并显示元素*/}printf("\n");printf("%d\n",QueueNotEmpty(myQueue)); /*再次判空*/}实验结果:(1)测试函数输出结果如下:(2)测试设计的结构体结果如下:(3)测试仅使用头指针和计数器的队列结果如下:总结与思考只使用对头指针和计数器的循环队列,实现方法和加上尾指针只有在入队列操作时有所不同,其他的都一样;而此时,入队列元素的位置就由对头指针和计数器决定,此算法的清晰度(可读性)比不上有尾指针的循环队列;但是在判空以及循环具体操作时更为方便;在以结构体数据类型的操作中,要注意的是,取数据元素时也要用结构体类型的变量去取出,输出时也一样。