初中奥数恒等变形知识点归纳整理.pdf
奥数-分式恒等变形师

分式恒等变形方法一、通分:直接通分;逐步通分;移项通分;分组通分;分母因式分解再通分。
例1. 若22004a m +=,22003b m +=,22002c m +=且24abc =,求111a b c bc ca ab a b c++---的值。
(1/8) 例2. 若0abc ≠,0a b c ++=,求222a b c bc ac ab++的值。
(3)例3. 求证:2220()()()()()()a bcb ac c baa b a c a b b c c b a c ---++=++++++例4. 设正数x ,y ,z 满足不等式2222x y z xy +-+2222y z x yz +-+2222z x y xz+->1,求证x ,y ,z 是某个三角形的三边长【分析与证明】原不等式可变形为z(x^2+y^2-z^2)+x(y^2+z^2-x^2)+y(x^2+z^2-y^2)-2xyz>0 因式分解得(x+y-z)(y+z-x)(z+x-y)>0所以三个括号内的数全正或者1正2负,因为x ,y ,z 全正,所以不可能1正2负(证明略)所以三个括号内均为正数,所以x ,y ,z 是某个三角形的三边长例5. 求分式248161124816111111a a a a a a +++++-+++++,当2a =时的值. 【解析】 先化简再求值.直接通分较复杂,注意到平方差公式:()()22a b a b a b -=+-,可将分式分步通分,每一步只通分左边两项.原式()()()()248161124816111111a a a a a a a a ++-=++++-+++++22481622481611111a a a a a =++++-++++ ()()()()224816222121481611111a a a a a a a +++=++++++-+44816448161111a a a a =+++-+++1616161611a a =+-+32323232112a ==--例6. 若实数a ,b ,c 满足1111a b c a b c++=++,求证: 7777771111a b c a b c++=++.【证明】:由已知得到()()bc ac ab a b c abc ++++=,有()()()0a b b c a c +++=,则a ,b ,c 中一定有两个数互为相反数。
代数式恒等变形法则归纳

代数式恒等变形法则归纳引言代数式是代数学中的基础概念之一,它用字母和常数通过运算符号相连而成。
在数学中,我们常常需要对代数式进行变形,以达到简化、分解、合并或者推导等目的。
代数式的变形是数学问题解决过程中重要的一环,它不仅能提高计算效率,还能揭示代数运算的本质。
在代数式的变形中,恒等变形法则是重要的基础工具,本文将对代数式的恒等变形法则进行归纳总结。
一、基本变形法则1. 加法法则:•加法结合律:a+(b+c)=(a+b)+c•加法交换律:a+b=b+a•加法零元:a+0=a #### 2. 乘法法则:•乘法结合律:$a \\cdot (b \\cdot c) = (a \\cdot b) \\cdot c$•乘法交换律:$a \\cdot b = b \\cdot a$•乘法零元:$a \\cdot 0 = 0$•乘法单位元:$a \\cdot 1 = a$二、分配律1. 左分配律:对于任意的a,b,c,有$a \\cdot (b + c) = a \\cdot b + a \\cdot c$ #### 2. 右分配律:对于任意的a,b,c,有$(a + b) \\cdot c = a \\cdot c + b \\cdot c$三、幂运算法则1. 幂运算与乘法运算:•幂运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•幂运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.幂运算的乘方法则:•幂运算的乘方法则1:$a^n \\cdot a^m = a^{n + m}$•幂运算的乘方法则2:$(a^n)^m = a^{n \\cdot m}$•幂运算的乘方法则3:$(a \\cdot b)^n = a^n \\cdot b^n$四、指数运算法则1. 指数运算与乘法运算:•指数运算与乘法运算的交换律:$(a \\cdot b)^n = a^n \\cdot b^n$•指数运算与乘法运算的结合律:$(a^n)^m = a^{n \\cdot m}$ #### 2.指数运算的指数法则:•指数运算的指数法则1:$a^n^m = a^{n \\cdot m}$•指数运算的指数法则2:$(a^n)^m = a^{n \\cdot m}$•指数运算的指数法则3:$(a^m)^n = a^{m \\cdot n}$五、因式分解法则1. 公因式提取法则:•公因式提取法则1:ax+ay=a(x+y)•公因式提取法则2:$a \\cdot b + a \\cdot c = a \\cdot (b + c)$ ####2. 公式分解法则:•差的平方公式:a2−b2=(a+b)(a−b)•平方差公式:a2−b2=(a−b)(a+b)•完全平方公式:a2+2ab+b2=(a+b)2•完全平方公式:a2−2ab+b2=(a−b)2六、合并同类项法则合并同类项法则:将含有相同字母指数的项合并为一个项•合并同类项法则1:ax+bx=(a+b)x•合并同类项法则2:ax2+bx2=(a+b)x2•合并同类项法则3:ax n+bx n=(a+b)x n结论恒等变形法则在代数式的变形中起着重要的作用。
2代数式的恒等变形 讲义

有关恒等式的证明一、知识要点恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。
在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。
二、例题精讲例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n=1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n )例2 证明恒等式()()()()()()11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++(第二十届全俄数学奥林匹克九年级试题)例3 若abc=1,求证1111=++++++++c ca c b bc b a ab a例4 已知bc=ad ,求证:ab(c 2-d 2)=(a 2-b 2)cd例5 已知x=by+cz ,y=cz+ax ,z=ax+by ,且x+y+z ≠0.证明:1111=+++++c c b b a a例6 数x 、y 、z 满足关系式1=+++++y x z x z y z y x 证明:0222=+++++y x z x z y z y x (第十六届全俄数学奥林匹克十年级试题)例7 已知a+b+c=a 2+b 2+c 2=2,求证:a(1-a)2=b(1-b)2=c(1-c)2例8设c b a c b a ++=++1111,证明(1) a 、b 、c 三数中必有两个数之和为零;(2) 对任何奇数n ,有n n n n n n c b a c b a++=++1111例9 已知ad-bc=1,求证:a 2+b 2+c 2+d 2+ab+cd ≠1例10证明:1132113211211+-=++++++++++n n n。
恒等变形知识点总结

恒等变形知识点总结恒等变形是指根据等式的性质和算术运算的性质,将一个等式变形成另一个等式的过程。
在变换的过程中,通过适当的运算,将等式的两侧转变成相同的表达式。
首先,我们来看一下恒等变形的基本原则,它包括以下几个方面:1. 相等的两个数(对象)可以相互规约。
2. 等式的两边加(或减)相等的数(或算式)仍相等。
3. 等式的两边同乘(或同除)一个不为零的数(或数的倒数)仍相等。
4. 在等式中引进(或去除)平方根,绝对值符号对方程做平方根变形,只有当两边都为非负数时,该等式才成立。
这些基本原则是我们进行恒等变形时需要牢记的,只有在遵守这些原则的前提下,我们才能正确进行恒等变形。
在进行恒等变形时,我们通常会用到一些基本的代数运算,例如加减法、乘除法、开平方、平移等,这些运算在恒等变形中起着非常重要的作用。
接下来,我们来看一些常见的恒等变形的方法和技巧。
1. 加减法变形加减法变形是指用等于同一个数的两个数互换位置,并相加或相减,来得到一个新的等式。
例如:a +b =c 和 a = c - b这里,我们可以将第一个等式两边分别减去b,得到新的等式 a = c - b。
通过这个例子,我们可以看出,加减法变形是一种常见且有效的恒等变形方法,它可以帮助我们将一个复杂的等式化简成一个简单的等式。
2. 乘除法变形乘除法变形是指用等于同一数的两个数相除或相乘,得到新的等式。
例如:ab = c 和 a = c/b这里,我们可以将第一个等式两边都除以b,得到新的等式a = c/b。
通过这个例子,我们可以看出,乘除法变形也是一个常见且有效的恒等变形方法。
3. 平方根变形平方根变形是指用等于同一数的两个数同时开平方,得到新的等式。
例如:a^2 = c 和a = √c这里,我们可以将第一个等式两边同时开平方,得到新的等式a = √c。
通过这个例子,我们可以看出,平方根变形也是一个常见且有效的恒等变形方法。
4. 移项变形移项变形是指将等式中的某一项移到等式的另一侧,得到新的等式。
常用的14个恒等变形公式

常用的14个恒等变形公式恒等变形公式是数学中的重要概念,它指的是在等式两边同时进行相同的运算,从而得到等价的新式子的过程。
在数学中,恒等变形公式被广泛应用于各种数学问题的解决中。
本文将介绍常用的14个恒等变形公式,希望能够帮助读者更好地理解数学知识。
1. 平方差公式平方差公式是指:$a^2-b^2=(a+b)(a-b)$。
这个公式在代数中是非常常用的,它可以帮助我们快速计算两个数之间的平方差。
2. 完全平方公式完全平方公式是指:$a^2+2ab+b^2=(a+b)^2$。
这个公式可以帮助我们快速计算一个二次项的平方。
3. 二次差公式二次差公式是指:$a^2-b^2=(a+b)(a-b)$。
这个公式与平方差公式相同,但它更适用于计算两个数的平方差。
4. 一次多项式恒等式一次多项式恒等式是指:$ax+by=c$。
这个公式可以帮助我们快速求解一次方程。
5. 一次多项式因式分解公式一次多项式因式分解公式是指:$ax+ay+bx+by=a(x+y)+b(x+y)=(x+y)(a+b)$。
这个公式可以帮助我们快速因式分解一次多项式。
6. 二次多项式恒等式二次多项式恒等式是指:$ax^2+bx+c=(x-p)(x-q)$,其中$p$和$q$是二次方程的解。
这个公式可以帮助我们快速求解二次方程。
7. 二次多项式完全平方公式二次多项式完全平方公式是指:$ax^2+bx+c=a(x+p)^2+q$,其中$p$是二次方程的解。
这个公式可以帮助我们快速将二次多项式变成完全平方的形式。
8. 二次多项式配方法二次多项式配方法是指:$ax^2+bx+c=a(x+frac{b}{2a})^2-frac{b^2-4ac}{4a}$。
这个公式可以帮助我们快速将二次多项式配成平方的形式。
9. 欧拉公式欧拉公式是指:$e^{ix}=cos x+isin x$。
这个公式是数学中的重要公式,它将复数与三角函数联系起来。
10. 对数公式对数公式是指:$log_ab=frac{log_cb}{log_ca}$。
中考数学备考资料-第八讲 因式分解与恒等变形及详细解析

6.已知:x2﹣x﹣1=0,则﹣x3+2x2+2002 的值为 .
7.若 m2=n+2,n2=m+2(m≠n),则 m3﹣2mn+n3 的值为 .
8.要使二次三项式 x2+mx﹣6 能在整数范围内分解因式,则 m 可取的整数为 .
ห้องสมุดไป่ตู้
9.阅读下列文字与例题
将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.
a2 2ab b 2 ab 2
a2 2ab b 2 ab 2
利用公式把一个多项式分解因式的方法,叫做公式法 十字相乘法:
引入:乘法公式 x ax b x 2 a b x ab
x 应用这个公式,我们可以得到分解形如 2 px q 的二次三项式的方法:
如果可以得到两个数 a、b,使得常数项为两者的积,同时一次项系数为两者的和,也即 ab=q,a+b=p,如下图:
4.把 8a3﹣8a2+2a 进行因式分解,结果正确的是( )
A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)2
5.将下列各式因式分解:
(1)x2﹣9
(2)﹣3ma2+12ma﹣9m
(3)4x2﹣3y(4x﹣3y)
(4)(a+2b)2+2(a+2b﹣1)+3.
例如:(1)am+an+bm+bn=(am+bm)+(an+bn)
(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)
=m(a+b)+n(a+b)
=x2﹣(y+1)2
(完整)初2103根式的恒等变形

第2103讲根式的恒等变形一、知识和方法要点●表示方根的代数式称为根式,即含有根号,且根号内有字母的代数式称为根式。
对于根式中的字母的一组允许的值,代入此根式得到的值称为根式的值。
根式的恒等变形是指利用根式的基本性质将根式化为与其恒等的根式。
●二次根式具有以下基本性质1)2a=(0a≥);20 ||00a aa aa a>⎧⎪===⎨⎪-<⎩;3)(b c+0a≥);4a≥,0b≥);5=(0a≥,0b≥);6)n=(0a≥)。
●根式的恒等变形有它的特殊性,需要较强的代数式变形技巧。
通常要对题目中的条件根式和欲变形根式综合考虑,寻求一个简单而清晰运算线路进行变形。
常用的方法有:分解因式法,配方法,平方法,换元法等。
●化简根式必须化到最简根式为止,所谓最简根式,是指满足以下三个条件的根式:1)被开方数(式)的幂指数与根指数互质;2)被开方数(式)的每一个因式的幂指数都小于根指数;3)被开方数(式)不含有分母。
二、典型题例选讲例1。
(复合根式化简;配方法)【分析】这是一个数字型的复合二次根式的化简问题。
可通过配方法进行化简。
应首先变形为适合配方的形式,然后进行配方。
【解答】化简如下=。
【评注】配方法是复合二次根式化简的最常用的方法。
例2+。
(复合根式化简;平方法)【分析】这是一个数字型的复合二次根式的化简问题。
,可通过平方法进行化简。
应前两项使用平方法,后两项使用平方法后相加。
【解答】因为==2=。
两式相加得2。
所以,2=原式。
【评注】 为了书写简洁,平方运算在根号下进行。
例3(复合根式化简;方程法)【分析】 如果设x =x 的方程220x x --=,解这个方程就可能求出x 的值。
【解答】 设x =22x =,于是 22x x =+, 即x 满足方程 220x x --=,解方程得 21()x x ==-或舍去。
2。
【评注】例4 设y 是偶数,最简根式3x y 是同次根式,求y 的值。
恒等变换知识

恒 等 变 换——初中数学教师学科素养之三常用数学解题方法是针对各种不同的数学知识而定的一种策略,是解决数学问题的一种工具。
不同的问题可以用不同的方法,相同的问题也可以用不同的方法,同时还依赖于已有知识的掌握程度、记忆程度和思维的灵活性、创造性。
从这一意义上说,掌握一些特殊的解题方法和技能技巧,常常能缩短思考过程,尽快谋取最优解题方法,在解决较复杂的问题中应把各种思想方法结合使用。
我们不仅要学会各种解题方法,还要知道题是用什么方法去解的,如2003年杭州市中考中出现了这样一道题:求函数的最小值,较合适的解题方法应该是 法,当然还可以用 法等方法解决。
一. 等式用等号连接的两个解析式叫做等式。
等式两边的解析式的定义域的公共部分(交集),称为此等式的定义域。
等式是命题,如果等号两边的解析式对于其定义域内所有允许值都有相等的数值,叫做这两个解析式恒等,这样的等式叫做恒等式,如果等号两边的解析式对于自变数的所有允许值中,只有某些数才有相等的数值,这样的等式叫做条件等式。
如果等号两边的解析式对于自变数的所有允许值,它们的值都不相等,这样的等式叫做矛盾等式。
例如22()()x y x y x y +-=-,3+5=8等都是恒等式;x+3=10是条件等式;53x x +=+是矛盾等式,有时为了强调一个等式是恒等式,常用""≡代替""=。
二. 恒等变换把一个解析式换成另一个与它恒等的解析式,这种变换叫做恒等变换或叫做恒等变形。
三.多项式恒等定理1.多项式恒等于零的定理:给定数域上标准形式的多项式,如果对自变量的任意数,该多项式的值总等于零,那么它的所有系数都等于零。
2.两个标准形式的多项式恒等的充要条件是同类项的系数都对应相等。
四.解题方法( 一 ) 配方法在数学上特指将代数式通过凑配等手段得到完全平方、完全立方等形式,从而再利用诸如完全平方项非负性质,达到增加题目的条件等,从而达到解决数学问题的目的,配方法主要用在多元代数式求值,无理式的证明或化简、解方程及函数的最值等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中奥数恒等变形知识点归纳整理
恒等概念是对两个代数式来说,如果两个代数式里的字母换成任意的数
值,这两个代数式的值都相等,就说这两个代数式恒等.
表示两个代数式恒等的等式叫做恒等式.
如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.
将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).
以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种
形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.
如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.
1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.
如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).
2.通过一系列的恒等变形,证明两个多项式是恒等的.
如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r例:求b、c的值,使下面的恒等成立.
x2+3x+2=(x-1)2+b(x-1)+c ①
解一:∵①是恒等式,对x的任意数值,等式都成立
设x=1,代入①,得
12+3×1+2=(1-1)2+b(1-1)+c
c=6
再设x=2,代入①,因为已得c=6,故有
22+3×2+2=(2-1)2+b(2-1)+6
b=5
∴x2+3x+2=(x-1)2+5(x-1)+6
解二:将右边展开
x2+3x+2=(x-1)2+b(x-1)+c
=x2-2x+1+bx-b+c
=x2+(b-2)x+(1-b+c)
比较两边同次项的系数,得
由②得b=5
将b=5代入③得
1-5+c=2
c=6
∴x2+3x+2=(x-1)2+5(x-1)+6
这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.。