高中数学竞赛讲义---代数式的恒等变换方法与技巧
代数式的恒等变形

代数式的恒等变形一、常值代换求值法——“1”的妙用例1 、 已知ab=1,求221111ba +++的值 [解] 把ab=1代入,得221111b a +++ =22b ab aba ab ab +++ =b a a b a b +++=1例2 、已知xyzt=1,求下面代数式的值:分析 直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解 根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理练习:1111,1=++++++++=c ca cb bc b a ab a abc 证明:若二、配方法例1、 若实数a 、b 满足a2b2+a2+b2-4ab+1=0,求b aa b +之值。
[解] ∵a2b2+a2+b2-4ab+1=(a2b2-2ab+1)(a2-2ab+b2) =(ab-1)2+(a-b)2 则有(ab-1)2+(a-b)2=0∴⎩⎨⎧==-.1,0ab b a解得⎩⎨⎧==;1,1b a ⎩⎨⎧-=-=.1,1b a当a=1,b=1时,b aa b +=1+1=2 当a=-1,b=-1时,b aa b +=1+1=2 例1 设a 、b 、c 、d 都是整数,且m=a2+b2,n=c2+d2,mn 也可以表示成两个整数的平方和,其形式是______.解mn=(a2+b2)(c2+d2)=a2c2+2abcd+b2d2+a2d2+b2c2-2abcd =(ac+bd)2+(ad-bc)2 =(ac-bd)2+(ad+bc)2,所以,mn 的形式为(ac+bd)2+(ad-bc)2或(ac-bd )2+(ad+bc)2.例 2 设x 、y 、z 为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.解 将条件化简成2x2+2y2+2z2-2xy-2x2-2yz=0 ∴ (x-y)2+(x-z)2+(y-z)2=0 ∴ x=y=z,∴原式=1.练习:,0146422222=+---++x cx bx ax c b a 已知求证:3:2:1::=c b a三、因式分解法例6 已知a4+b4+c4+d4=4abcd ,且a ,b ,c ,d 都是正数,求证:a=b=c=d . 证 由已知可得a4+b4+c4+d4-4abcd=0,(a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0, 所以(a2-b2)2+(c2-d2)2+2(ab-cd)2=0.因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以 a2-b2=c2-d2=ab-cd=0,所以 (a+b)(a-b)=(c+d)(c-d)=0.又因为a ,b ,c ,d 都为正数,所以a+b≠0,c+d≠0,所以 a =b ,c=d . 所以ab-cd=a2-c2=(a+c)(a-c)=0, 所以a =c .故a=b =c=d 成立.例4 已知|a|+|b|=|ab|+1, 求a+b 之值 [解] ∵|a|+|b|=|ab|+1∴|a|·|b|-|a|-|b|+1=0 (|a|-1)(|b|-1)=0 |a|=1 |b|=1 ∴a=±1或b=±1. 则当a=1,b=1时,a+b=2 当a=1,b=-1时,a+b=0 当a=-1,b=1时,a+b=0 当a=-1,b=-1时,a+b=-2[评注] 运用该法一般有两种途径求值,一是将已知条件变形为一边为0,另一边能分解成几个因式的积的形式,运用“若A ·B=0,则A=0或B=0”的思想来解决问题。
竞赛讲座(整式的恒等变形)

竞赛讲座(整式的恒等变形)一、知识要点1、整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。
3、乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条:①(a+b) (a-b)=a2-b2②(a±b)2=a2±2ab+b2③ (a+b) (a2-ab+b2)=a3+b3④ (a-b) (a2+ab+b2)=a3-b3⑤ (a+b+c)2= a2+b2+c2+2ab+2bc+2ca⑥ (a+b+c) (a2+b2+c2-ab-bc-ca)= a3+b3+c3-3abc⑦(a±b)3= a3±3a2b+3a b2±b34、整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。
5、余数定理多项式()x f除以 (x-a) 所得的余数等于()a f。
特别地:()a f=0时,多项式()x f能被(x-a) 整除二、例题精讲例1在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解因1+2+3+ (1998)()19999992199811998⨯=+⨯是一个奇数,又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。
先考虑四个连续的自然数n、n+1、n+2、n+3之间如何添符号,使其代数和最小。
很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号,即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1,例2计算 (2x3-x+6)•(3x2+5x-2)分析计算整式的乘法时,先逐项相乘(注意不重不漏),再合并同类项,然后将所得的多项式按字母的降幂排列。
代数式的恒等变换

代数式的恒等变换方法与技巧例:设px =有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p x x x ⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0p x x p p x x x x p x ⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043p x p p x x ⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩ 由上式知,原方程有实根,当且仅当p 满足条件24(4)44048(2)33p p p p --≤≤⇔≤≤- 这说明原方程有实根的充要条件是403p ≤≤。
这时,原方程有惟一实根x =。
一、分类变换当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。
分类变换方法适用于式的化简与方程(组)的化简、求解。
例1:当x 取什么样的实数值时,下列等式成立:(a=;(b1=;(c2=。
解:(0)m m =≥ 记方程左边为f(x),则()f x =1|1|1|112xx≥==≤≤由此可知,当m=时,原方程的解集为1[,1]2;当m∈时,解集为∅;当)m∈+∞m=,解得21(2)4x m=+。
即当)m∈+∞时,原方程的解集为21{(2)}4m+。
例2:在复数范围内解方程组2225553,3,3.x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩解:考虑数列*,n n nna x y z n=++∈N。
不难证明此数列满足递推式321()()n n n na x y z a xy yz zx a xyza+++=++-+++,其中1253,3a a a===。
利用基本恒等式,得2121()32xy yz zx a a++=-=,312311[()]33xyz a a a xy yz zx a=--++=,∴{}na的递推式化为*3213133,3n n n na a a a a n+++=-+⋅∈N由此得432313543323113349,33102733a a a a a a a a a a a a=-+⋅=---+⋅=-由53a=,得310273a-=,∴33a=。
恒等变形知识点总结

恒等变形知识点总结恒等变形是指根据等式的性质和算术运算的性质,将一个等式变形成另一个等式的过程。
在变换的过程中,通过适当的运算,将等式的两侧转变成相同的表达式。
首先,我们来看一下恒等变形的基本原则,它包括以下几个方面:1. 相等的两个数(对象)可以相互规约。
2. 等式的两边加(或减)相等的数(或算式)仍相等。
3. 等式的两边同乘(或同除)一个不为零的数(或数的倒数)仍相等。
4. 在等式中引进(或去除)平方根,绝对值符号对方程做平方根变形,只有当两边都为非负数时,该等式才成立。
这些基本原则是我们进行恒等变形时需要牢记的,只有在遵守这些原则的前提下,我们才能正确进行恒等变形。
在进行恒等变形时,我们通常会用到一些基本的代数运算,例如加减法、乘除法、开平方、平移等,这些运算在恒等变形中起着非常重要的作用。
接下来,我们来看一些常见的恒等变形的方法和技巧。
1. 加减法变形加减法变形是指用等于同一个数的两个数互换位置,并相加或相减,来得到一个新的等式。
例如:a +b =c 和 a = c - b这里,我们可以将第一个等式两边分别减去b,得到新的等式 a = c - b。
通过这个例子,我们可以看出,加减法变形是一种常见且有效的恒等变形方法,它可以帮助我们将一个复杂的等式化简成一个简单的等式。
2. 乘除法变形乘除法变形是指用等于同一数的两个数相除或相乘,得到新的等式。
例如:ab = c 和 a = c/b这里,我们可以将第一个等式两边都除以b,得到新的等式a = c/b。
通过这个例子,我们可以看出,乘除法变形也是一个常见且有效的恒等变形方法。
3. 平方根变形平方根变形是指用等于同一数的两个数同时开平方,得到新的等式。
例如:a^2 = c 和a = √c这里,我们可以将第一个等式两边同时开平方,得到新的等式a = √c。
通过这个例子,我们可以看出,平方根变形也是一个常见且有效的恒等变形方法。
4. 移项变形移项变形是指将等式中的某一项移到等式的另一侧,得到新的等式。
代数变形常用的技巧

代数变形中常用的技巧代数变形是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活应用。
代数变形技巧是学习掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
本文就初等代数变形中的解题技巧,作一些论述。
两个代数式A、B,如果对于其中所含字母的一切允许值它们对应的值都相等,则称这两个代数式恒等,记作A≡B或A=B,把一个代数式换成另一个和它恒等的代数式,叫做代数式的恒等变形。
恒等变形是代数的最基本知识,是学好中学数学的基础,恒等变形的理论依据是运算律和运算法则,所以,恒等变形必须遵循各运算法则,并按各运算法则在其定义域内进行变形。
代数恒等变形技巧是学习与掌握代数的重要基础,这种变形能力的强弱直接关系到解题能力的发展。
代数恒等变形实质上是为了达到某种目的或需要而采取的一种手段,是化归、转化和联想的准备阶段,它属于技能性的知识,当然存在着技巧和方法,也就需要人们在学习代数的实践中反复操练才能把握,乃至灵活与综合应用。
中学生在平时的学习中不善于积累和总结变形经验,在稍复杂的问题面前常因变形方向不清,而导致常规的化归、转化工作难以实施,甚至失败,其后果直接影响着应试的能力及效率。
代数的恒等变形包括的内容较多,本文着重阐述代数运算和解题中常见的变形技巧及应用。
一、整式变形整式变形包括整式的加减、乘除、因式分解等知识。
这些知识都是代数中的最基础的知识。
有关整式的运算与化简求值,常用到整式的变形。
例1:化简(y+z-2x)2+(z+x-2y)2+(x+y-2z)2-3(y-z)2-3(z-x)2-3(x-y)2分析:此题若按常规方法先去括号,再合并类项来进行恒等变形的话,计算会繁杂。
而通过观察发现此题是一个轮换对称多项式,就其特点而言,若用换元法会使变形简单,从而也说明了换元法是变形的一种重要方法。
高中数学竞赛讲义(全套)

高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高二数学竞赛班讲义-第五讲--组合恒等式

高二数学竞赛班二试第五讲 组合恒等式班级 姓名一、知识要点:数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础,并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。
解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。
同时,此类问题的解决也有着自身特殊的解题技巧。
因此,在各类数学竞赛中经常被采用。
1.基本的组合恒等式简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。
事实上,许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。
课本中的组合恒等式有:①r n r n nC C -=; ②111r r rn n n C C C +++=+;③11k k n n kC nC --=; ④r m m r mn r n n m C C C C --=;⑤0122n nn n n n C C C C ++++=L ;⑥()01210.nnn n n n C C C C -+++-=L2.解题中常用方法① 运用基本组合恒等式进行变换;② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标;⑤ 运用赋值法进行证明;⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。
二、经典例题例1.求证:1231232n n n n n n C C C nC n -++++=⋅L .例1.证明:根据前面提到的基本的组合恒等式第三条,可得:左边0121111112n n n n n n nC nC nC nC n ------=++++=⋅=L 右边例2.求和式21nk nk k C=∑的值。
例2.基本思路:将2k n k C 改写为k n k kC ⋅,先将k n kC 用恒等式3提取公因式n ,然后再将11k n kC --变形成为()11111k k n n k C C -----+,而()111k n k C ---又可以继续运用上述恒等变形,这样就使得各项系数中均不含有变动指标k 了。
代数式的变形的技巧

代数式的变形的技巧一、展开和简化1. 乘法公式展开:例如,(a+b)^2=a^2+2ab+b^2,(a-b)^2 = a^2-2ab+b^2,(a+b)(a-b)=a^2-b^22.平方差公式展开:例如,a^2-b^2=(a+b)(a-b)。
3. 三角函数的展开:例如,sin(a+b)=sinacosb+cosasinb,cos(a+b)=cosacosb-sinasinb。
二、合并同类项当代数式中含有相同的字母和指数时,可以将它们合并成一个项,从而简化代数式。
例如,2a+3a=5a,4x^2-2x^2=2x^2三、因式分解1.提取公因式:将代数式中的公因式提取出来,并将其余部分合并。
例如,2ax+4ay=2a(x+2y),3x^2+6x=3x(x+2)。
2.二次因式分解:将一个二次多项式分解成两个一次多项式的乘积。
例如,x^2+5x+6=(x+2)(x+3),x^2-6x+8=(x-2)(x-4)。
3.因式分解的特殊情况:a)平方差公式:a^2-b^2=(a-b)(a+b)。
b) 完全平方公式:a^2+2ab+b^2=(a+b)^2,a^2-2ab+b^2=(a-b)^2四、配方法针对一些复杂的多项式,可以通过配方法将其变形为一个简化的形式,以便更好地进行计算和分析。
例如,(a+b)^2=a^2+2ab+b^2,可以使用配方法将其变形为(a+b)^2=a^2+ab+ab+b^2=a^2+2ab+b^2五、分式的变形对于分式的变形,可以进行以下操作:1.分子分母同乘或同除:a)将分式的分子和分母同乘或同除以同一个数,可以使分子和分母变得更简单。
b)有理化分母:将分式的分母中含有根号的部分进行有理化,以便更好地计算。
2.分式的加减乘除:a)分式的加减:先通分,再将分子进行加减运算。
b)分式的乘法:将分子分母分别相乘。
c)分式的除法:将除法转化为乘法,即将一个分式的分子乘以另一个分式的倒数。
六、指数与对数的变形1.指数的变形:a)乘以相同底数的幂,底数相同则指数相加:a^m*a^n=a^(m+n)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1—1 代数式的恒等变换方法与技巧一、代数式恒等的一般概念定义1 在给定的数集中,使一个代数式有意义的字母的值,称为字母的允许值。
字母的所有允许值组成的集合称为这个代数式的定义域。
对于定义域中的数值,按照代数式所包含的运算所得出的值,称为代数式的值,这些值的全体组成的集合,称为代数式的值域。
定义2 如果两个代数式A、B,对于它们定义域的公共部分(或公共部分的子集)内的一切值,它们的值都相等,那么称这两个代数式恒等,记作A=B。
两个代数式恒等的概念是相对的。
同样的两个代数式在它们各自的定义域的某一个子集内是恒等,但x=,在x≥0时成立,但在x<0时不成立。
因此,在研究两个代数式恒等时,一定要首先弄清楚它们在什么范围内恒等。
定义3 把一个代数式变形成另一个与它恒等的代数式,这种变形称为恒等变换。
代数式的变形,可能引起定义域的变化。
如lgx2的定义域是(,0)(0,)-∞+∞,2lgx的定义域是(0,)+∞,因此,只有在两个定义域的公共部分(0,)+∞内,才有恒等式lgx2=2lgx。
由lgx2变形为2lgx时,定义域缩小了;反之,由2lgx变形为lgx2时,定义域扩大了。
这种由恒等变换而引起的代数式定义域的变化,对研究方程和函数等相关问题时也十分重要。
由于方程的变形不全是代数式的恒等变形,但与代数式的恒等变形有类似之处,因此,在本节里,我们把方程的恒等变形与代数式的恒等变形结合起来讨论。
例1:设px=有实根的充要条件,并求出所有实根。
由于代数式的变形会引起定义域的改变,因此,在解方程时,尽量使用等价变形的方法求解。
这样可避免增根和遣根的出现。
解:原方程等价于222(0,0x p xx x⎧-=-⎪⎨-≥≥⎪⎩222222(4)4448(2)441330440,0pxx p px xx x p x⎧-=⎪⎧=+--⎪⎪⎪⎪⇔≤≤⇔≤⎨⎨⎪⎪≥⎪⎪+-≤≥⎩⎪⎩222(4)8(2)44,043pxppx x⎧-=⎪⎪-⇔⎨-⎪≤≤≥⎪⎩由上式知,原方程有实根,当且仅当p满足条件24(4)4448(2)33p ppp--≤≤⇔≤≤-这说明原方程有实根的充要条件是43p≤≤。
这时,原方程有惟一实根x=。
二、恒等变换的方法与技巧恒等变换的目的是使问题变得简单,便于求解。
因此,式的恒等变换是根据需要进行的,根据不同问题的特点,有其不同的规律性。
1.分类变换当式的变换受到字母变值的限制时,可对字母的取值进行分类,然后对每一类进行变换,以达到求解的目的。
分类变换方法适用于式的化简与方程(组)的化简、求解。
例1:当x取什么样的实数值时,下列等式成立:(a=;(b1=;(c2 =。
解:(0) m m=≥记方程左边为f(x),则()f x=11|1|112xx≥==≤≤由此可知,当m=时,原方程的解集为1[,1]2;当m∈时,解集为∅;当)m∈+∞时,m=,解得21(2)4x m=+。
即当)m∈+∞时,原方程的解集为21{(2)}4m+。
例2:在复数范围内解方程组2225553,3,3.x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩解:考虑数列*,n n nna x y z n=++∈N。
不难证明此数列满足递推式321()()n n n na x y z a xy yz zx a xyza+++=++-+++,其中1253,3a a a===。
利用基本恒等式,得2121()32xy yz zx a a++=-=,312311[()]33xyz a a a xy yz zx a=--++=,∴{}na的递推式化为*3213133,3n n n na a a a a n+++=-+⋅∈N由此得432313543323113349,33102733a a a a a a a a a a a a=-+⋅=---+⋅=-由53a=,得310273a-=,∴33a=。
∴3113xyz a==。
综上所述知,原方程组等价于3,3,1.x y zxy yz zxxyz++=⎧⎪++=⎨⎪=⎩由韦达定理知,x,y,z是关于t的三次方程333310t t t-+-=的三根,此三次方程即3123(1)0,1t t t t-=∴===,这说明原方程组在复数范围内的解集为{(1,1,1)}。
注:此题还可以利用三次单位根12ω=-+的性质来解。
2.利用对称性定义4 一个n 元解析式12(,,,)n f x x x 称为对称式,当且仅当对于任意的i ,(1)j i j n ≤<≤都有11(,,,,,,)(,,,,,,)i j n j i n f x x x x f x x x x ≡。
由定义可知,对称式的各变元所处的地位相同,因此,一个对称式12(,,,)n f x x x 具有下列性质:(1)若对于变元x 1,x 2,f 具有性质p ,则对于任意的变元,,i j x x f 也具有性质p 。
(2)对于x 1,x 2,…,x n 的任意排12,,,i i in x x x ,有1212(,,,)(,,,)i i in n f x x x f x x x =,因此,对于讨论f 具有某一性质时,可不妨设12n x x x ≥≥≥。
定义5 一个n 元解析式称为轮换对称式,当且仅当x 2代x 1,x 3代x 2,…,x n 代x n-1,x 1代x n 时有12231(,,,)(,,,,)n n f x x x f x x x x ≡。
显角,对称式一定是轮换式,但轮换式不一定是对称式。
例如,x 2y+y 2z+z 2x 是轮换式,但不是对称式。
因此,对称式所具有的性质(1)、(2)对轮换式一般不成立。
由轮换的特点,在解题中,为了方便起见,我们可指定变元中x 1最大(或最小)。
例3:设x ,y ,z>0,求证(x+y+z)5-(x 5+y 5+z 5)≥10(x+y)(y+z)(z+x)(xy+yz+zx)等号成立当且仅当x=y=z 。
证:令5555(,,)()()f x y z x y z x y z =++-++。
易知(,,f x y z )是对称式。
∵当x+y=0时,f(x ,y ,z)=0,∴()|(,,)x y f x y z +。
从而()|,()|y z f z x f ++, ∴()()()|x y y z z x f +++。
注意到f 是关于x ,y ,z 的五次齐次式,故可设222(,,)()()()[()]()f x y z x y y z z x A x y z B xy yz zx =++++++++,令0,1,1x y z ===,得2A+B=15。
令1x y z ===,得A+B=10。
因此,A=B=5。
∴222(,,)5()()()()f x y z x y y z z x x y z xy yz zx =++++++++注意到,,0x y z >,且222x y z xy yz zx ++≥++,得(,,)10()()()()f x y z x y y z z x xy yz zx ≥+++++等号成立的条件为x y z ==。
例4:设a ,b ,c 是三角形的边长,证明222()()()0a b a b b c b c c a c a -+-+-≥并说明等号何时成立。
证:令欲证不等左边为(,,)f a b c ,则易证(,,)f a b c 为轮换式(非对称)。
故可设,a b c ≥。
注意到0b c a +->,则可先考虑将f 中分离出一个含b+c-a 的非负式子。
事实上222()()[()]()f a b a b b c b c c b b a c a =-+-+-+-2222()()()()(2)()()c b a b c a ab b c ab c a c b a b a b b c b c =-+---+--+-+-再令222*()()(2)()()f ab b c ab c a c b a b a b b c b c =--+--+-+- 令a c =,有222*()()()0f bc b c c b c b b c b c =--+-+-=令a b =,有2222*()()(2)()0f b b c b c b c b b c b c =--+--+-=∴**|,|a c f a b f --。
又*|b f ,∴*()()b a c a b f --+。
注意到*f 关于c 是二次式,a ,b 是三次式,故可设*()()()f b a c a b xa yb zc =--++令b=c ,得22*()()[()]f ab a c b a c xa y z b =-≡-++, ∴()a xa y z b ≡++,∴0,1y z x +==令a=0,得22*()()f b c b c b c yb zc =-≡+,∴b c yb zc -≡+,∴1,1y z ==-。
于是2**()()0f b a c a b c a f =-+-+≥。
从而2*()()0f c b a b c a f =-+-+≥显然,当且仅当a=b=c 时f=0。
注:对于*f ,也可直接通过提取公因式法来分解因式。
事实上1222*()(2)()()()()b f a c a c b a a c a c b a b c bc b c -⋅=--+-+---+-22()(2)()[]()(2)()()()()[2()]()[()()()]()()()a c a c ab bc a ab ac bc a c a c a b b c c a a b c a ac a a b ab ac bc b c a a b c b a a b c a b a a b c =---+---++=---+--+=--++--+=--+-+=--+-3.逆推分析从一个数学过程的结果出发,按与原来相反的程序去推求初始条件的方法叫做逆推分析法,它的特点是每一步逆推均可逆。
由此可见,逆推分析法是证明恒等式的重要方法。
例5:设a ,b ,c ,d ,x ,y 为正实数,且满足,x ad bc xy ac bd y ab cd+=+=+。
求证: abx cdx ady bcya b x c d x a d y b c y+=+++++++++。
证:注意到,xxy y的表达式有()()ab c d x cd a b x +++++ ()()()()()()()()ab c d cd a b x ab cd ab c d cd a b y ad bc ad b c y bc a d y =+++++=+++++=+++++ 利用①式,将欲证等式两边通分化简,等价于()()()()x a d y b c y y a b x c d x ++++=++++②式左边=2()()()x a d b c xy a b c d xy +++++++2()()()x ac bd x ab cd xy a b c d xy =++++++++ 22()()x y y ad bc xy a b c d xy =+++++++ 2[()()()]y x x a b c d a b c d =+++++++()()y a b x c d x =++++②式右边。