高中数学空间立体几何讲义
高中数学选修空间向量与立体几何知识点讲义

第三章 空间向量与立体几何一、坐标运算()()111222,,,,,a x y z b x y z ==()()()()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅则二、共线向量定理(),0,=.a b b a b a b λλ≠←−−→∃充要对于使三、共面向量定理,,.a b p a b x y p xa yb ←−−→∃=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←−−−→+=充要条件四、对空间任意一点,若则三点共线,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点()()()11,1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性、、、四点共面,,,,令()()() 1,1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量根本定理{},,a b c p x y z p xa yb zc a b c a b c ∃若,,不共面,对于任意,使=++,称,,做空间的一个基底,,,都叫做基向量.七、立体几何中的向量方法121212,,.n n l l v v αβ设平面和的法向量为和直线和的方向向量为11121111121212121212n v l l l n v l l l v v l l v v n n n n αααβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥①或②若③④⑤⑥八、角、距离()1θ异面直线的夹角,cos cos ,AB CD AB CD AB CD θ⋅==⋅则()2,θ线与面的夹角sin cos a n a n θα⋅==⋅则()3,θ二面角1212cos cos n n n n θα⋅==⋅则θ说明:只能由已知图观察锐钝.()4,d 点到平面的距离cos PA n d PA n θ⋅=⋅=则cos cos d PA n PA n PA nd PA n θθ⋅=⋅⋅⋅∴=⋅=说明:由图可知为在方向上的投影的绝对值,。
高中数学专题讲义:立体几何初步

高中数学专题讲义:立体几何初步第1讲空间几何体的结构、三视图和直观图最新考纲 1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图;3.会用平行投影方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.知识梳理1.简单多面体的结构特征(1)棱柱的侧棱都平行且相等,上、下底面是全等且平行的多边形;(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形;(3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.2.旋转体的形成3.三视图(1)几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②在画三视图时,重叠的线只画一条,挡住的线要画成虚线.4.直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z 轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴、y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x轴和z 轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.诊断自测1.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.()(3)用斜二测画法画水平放置的∠A时,若∠A的两边分别平行于x轴和y轴,且∠A =90°,则在直观图中,∠A=45°.()(4)正方体、球、圆锥各自的三视图中,三视图均相同.()解析(1)反例:由两个平行六面体上下组合在一起的图形满足条件,但不是棱柱.(2)反例:如图所示不是棱锥.(3)用斜二测画法画水平放置的∠A时,把x,y轴画成相交成45°或135°,平行于x轴的线还平行于x轴,平行于y轴的线还平行于y轴,所以∠A也可能为135°.(4)正方体和球的三视图均相同,而圆锥的正视图和侧视图相同,且为等腰三角形, 其俯视图为圆心和圆.答案(1)×(2)×(3)×(4)×2.某空间几何体的正视图是三角形,则该几何体不可能是()A.圆柱B.圆锥C.四面体D.三棱柱解析由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形.答案A3.如图,长方体ABCD-A′B′C′D′中被截去一部分,其中EH∥A′D′.剩下的几何体是()A.棱台B.四棱柱C.五棱柱D.六棱柱解析由几何体的结构特征,剩下的几何体为五棱柱.答案C4.(2016·天津卷)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧视图为( )解析 先根据正视图和俯视图还原出几何体,再作其侧视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧视图为图②.答案 B5.正△AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.解析 画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点.易知D ′B ′=12DB (D 为OA 的中点),∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2. 答案 616a 2考点一 空间几何体的结构特征【例1】(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3(2)以下命题:①以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;②圆柱、圆锥、圆台的底面都是圆面;③一个平面截圆锥,得到一个圆锥和一个圆台.其中正确命题的个数为()A.0B.1C.2D.3解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.(2)由圆台的定义可知①错误,②正确.对于命题③,只有平行于圆锥底面的平面截圆锥,才能得到一个圆锥和一个圆台,③不正确.答案(1)A(2)B规律方法(1)关于空间几何体的结构特征辨析关键是紧扣各种空间几何体的概念,要善于通过举反例对概念进行辨析,即要说明一个命题是错误的,只需举一个反例即可.(2)圆柱、圆锥、圆台的有关元素都集中在轴截面上,解题时要注意用好轴截面中各元素的关系.(3)既然棱(圆)台是由棱(圆)锥定义的,所以在解决棱(圆)台问题时,要注意“还台为锥”的解题策略.【训练1】下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.夹在圆柱的两个平行截面间的几何体还是一个旋转体C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上任意一点的连线都是母线解析如图1知,A不正确.如图2,两个平行平面与底面不平行时,截得的几何体不是旋转体,则B不正确.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,C错误.由母线的概念知,选项D正确.答案D考点二空间几何体的三视图(多维探究)命题角度一由空间几何体的直观图判断三视图【例2-1】一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选项B适合.答案B命题角度二由三视图判定几何体【例2-2】(1)(2014·全国Ⅰ卷)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱(2)(2015·北京卷)某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1B. 2C. 3D.2解析(1)由题知,该几何体的三视图为一个三角形、两个四边形,经分析可知该几何体为三棱柱,故选B.(2)由题中三视图知,此四棱锥的直观图如图所示,其中PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长P A=12+12+12= 3.答案(1)B(2)C规律方法(1)由实物图画三视图或判断选择三视图,按照“正侧一样高,正俯一样长,俯侧一样宽”的特点确认.(2)根据三视图还原几何体.①对柱、锥、台、球的三视图要熟悉.②明确三视图的形成原理,并能结合空间想象将三视图还原为直观图.③根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.提醒对于简单组合体的三视图,首先要确定正视、侧视、俯视的方向,其次要注意组合体由哪些几何体组成,弄清它们的组成方式,特别应注意它们的交线的位置,区分好实线和虚线的不同.【训练2】(1)将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的侧视图为()(2)如图,网格纸的各小格都是正方形,粗实线画出的是一个锥体的侧视图和俯视图,则该锥体的正视图可能是()解析(1)还原正方体后,将D1,D,A三点分别向正方体右侧面作垂线,D1A的射影为C1B,且为实线,B1C被遮挡应为虚线.故选B.(2)由俯视图和侧视图可知原几何体是四棱锥,底面是长方形,内侧的侧面垂直于底面,所以正视图为A.答案(1)B(2)A考点三空间几何体的直观图【例3】已知等腰梯形ABCD,上底CD=1,腰AD=CB=2,下底AB=3,以下底所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.解析如图所示,作出等腰梯形ABCD的直观图:因为OE=(2)2-1=1,所以O′E′=12,E′F=24,则直观图A′B′C′D′的面积S′=1+3 2×24=22.答案2 2规律方法(1)画几何体的直观图一般采用斜二测画法,其规则可以用“斜”(两坐标轴成45°或135°)和“二测”(平行于y轴的线段长度减半,平行于x轴和z轴的线段长度不变)来掌握.对直观图的考查有两个方向,一是已知原图形求直观图的相关量,二是已知直观图求原图形中的相关量.(2)按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积的关系:S直观图=24S原图形.【训练3】(2017·贵阳联考)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB=AD=1,DC⊥BC,则这块菜地的面积为________.解析如图1,在直观图中,过点A作AE⊥BC,垂足为E.在Rt△ABE中,AB=1,∠ABE=45°,∴BE=2 2.又四边形AECD为矩形,AD=EC=1.∴BC=BE+EC=22+1.由此还原为原图形如图2所示,是直角梯形A′B′C′D′.在梯形A′B′C′D′中,A′D′=1,B′C′=22+1,A′B′=2.∴这块菜地的面积S=12(A′D′+B′C′)·A′B′=12×⎝⎛⎭⎪⎫1+1+22×2=2+22.答案2+2 2[思想方法]1.画三视图的三个原则:(1)画法规则:“长对正,宽相等,高平齐”.(2)摆放规则:侧视图在正视图的右侧,俯视图在正视图的正下方.(3)实虚线的画法规则:可见轮廓线和棱用实线画出,不可见线和棱用虚线画出.2.棱台和圆台是分别用平行于棱锥和圆锥的底面的平面截棱锥和圆锥后得到的,所以在解决棱台和圆台的相关问题时,常“还台为锥”,体现了转化的数学思想. [易错防范]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视实虚线的画法.基础巩固题组(建议用时:30分钟)一、选择题1.关于空间几何体的结构特征,下列说法不正确的是()A.棱柱的侧棱长都相等B.棱锥的侧棱长都相等C.三棱台的上、下底面是相似三角形D.有的棱台的侧棱长都相等解析根据棱锥的结构特征知,棱锥的侧棱长不一定都相等.答案B2.如图所示的几何体是棱柱的有()A.②③⑤B.③④⑤C.③⑤D.①③解析由棱柱的定义知③⑤两个几何体是棱柱.答案C3.(2017·衡水中学月考)将长方体截去一个四棱锥后得到的几何体如图所示,则该几何体的侧视图为()解析易知侧视图的投影面为矩形,又AF的投影线为虚线,即为左下角到右上角的对角线,∴该几何体的侧视图为选项D.答案D4.如图是一几何体的直观图、正视图和俯视图,该几何体的侧视图为()解析由直观图和正视图、俯视图可知,该几何体的侧视图应为面P AD,且EC投影在面P AD上且为实线,点E的投影点为P A的中点,故B正确.答案B5.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为( ) A.6 2B.42C.6D.4解析 如图,设辅助正方体的棱长为4,三视图对应的多面体为三棱锥A -BCD ,最长的棱为AD =(42)2+22=6. 答案 C6.某几何体的正视图和侧视图均为如图所示的图形,则在下图的四个图中可以作为该几何体的俯视图的是( )A.①③B.①④C.②④D.①②③④解析 由正视图和侧视图知,该几何体为球与正四棱柱或球与圆柱体的组合体,故①③正确. 答案 A7.(2015·全国Ⅱ卷)一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为( ) A.18 B.17 C.16D.15解析 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16.剩余部分的体积V 2=13-16=56.因此,V 1V 2=15.答案 D8.(2017·石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()解析由题图可知,该几何体为如图所示的三棱锥,其中平面ACD⊥平面BCD.所以该三棱锥的侧视图可能为选项D.答案D二、填空题9.(2017·福建龙岩联考)一水平放置的平面四边形OABC,用斜二测画法画出它的直观图O′A′B′C′如图所示,此直观图恰好是一个边长为1的正方形,则原平面四边形OABC面积为________.解析因为直观图的面积是原图形面积的24倍,且直观图的面积为1,所以原图形的面积为2 2.答案2210.(2017·兰州模拟)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于________.解析由题知此正方体的正视图与侧视图是一样的,正视图的面积与侧视图的面积相等为 2.答案211.某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析由题中三视图可知,三棱锥的直观图如图所示,其中P A⊥平面ABC,M为AC的中点,且BM⊥AC.故该三棱锥的最长棱为PC.在Rt△P AC中,PC=P A2+AC2=22+22=2 2.答案2212.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正视图与侧视图的面积的比值为________.解析三棱锥P-ABC的正视图与侧视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案1能力提升题组(建议用时:15分钟)13.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①②③④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析 如图,在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④,俯视图为②. 答案 D14.如图是一个几何体的三视图,则该几何体任意两个顶点间距离的最大值是( )A.4B.5C.32D.33解析 由三视图知几何体的直观图如图所示,计算可知线段AF 最长,且AF =BF 2+AB 2=3 3. 答案 D15.(2017·长郡中学月考)已知△ABC 的平面直观图△A ′B ′C ′是边长为a 的正三角形,那么原△ABC 的面积为________.解析 如图,过C ′作y ′轴的平行线C ′D ′,与x ′轴交于点D ′.则C ′D ′=32a sin 45°=62a .又C ′D ′是原△ABC 的高CD 的直观图, 所以CD =6a .故S △ABC =12AB ·CD =62a 2. 答案 62a 216.(2016·北京卷)某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析由题中三视图可画出长为2、宽为1、高为1的长方体,将该几何体还原到长方体中,如图所示,该几何体为四棱柱ABCD-A′B′C′D′.故该四棱柱的体积V=Sh=12×(1+2)×1×1=32.答案32第2讲空间几何体的表面积与体积最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式.知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrl S圆台侧=π(r1+r2)l表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=4πR2V=43πR31.判断正误(在括号内打“√”或“×”)精彩PPT展示(1)锥体的体积等于底面面积与高之积.()(2)球的体积之比等于半径比的平方.()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=32a.()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2.已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为()A.1 cmB.2 cmC.3 cmD.32cm解析S表=πr2+πrl=πr2+πr·2r=3πr2=12π,∴r2=4,∴r=2(cm).答案B3.(2017·西安一中月考)一个几何体的三视图如图所示,则该几何体的表面积为()A.3πB.4πC.2π+4D.3π+4解析由几何体的三视图可知,该几何体为半圆柱,直观图如图所示.表面积为2×2+2×12×π×12+π×1×2=4+3π.答案D4.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.323π C.8π D.4π解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3a,即R = 3.所以球的表面积S=4πR2=12π.答案A5.(2016·天津卷)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为________m3.解析根据三视图可知该四棱锥的底面是底边长为2 m,高为1 m的平行四边形,四棱锥的高为3 m.故该四棱锥的体积V=13×2×1×3=2 (m3).答案2考点一空间几何体的表面积【例1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+2 2B.11+22C.14+2 2D.15(2)(2016·全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是()A.17πB.18πC.20πD.28π解析(1)由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3.所以该几何体的表面积为8+22+3=11+2 2.(2)由三视图知该几何体为球去掉了18球所剩的几何体(如图).设球的半径为R,则78×43πR3=28π3,R=2.故几何体的表面积S=78×4πR2+34πR2=17 π.答案(1)B(2)A规律方法空间几何体表面积的求法.(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)旋转体的表面积问题注意其侧面展开图的应用.【训练1】(2016·全国Ⅲ卷)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5B.54+185C.90D.81解析由几何体的三视图可知,该几何体是底面为正方形的斜平行六面体.由题意可知该几何体底面边长为3,高为6,所以侧棱长为32+62=3 5.故该几何体的表面积S =32×2+(3×6)×2+(3×35)×2=54+18 5. 答案 B考点二 空间几何体的体积【例2】 (1)(2016·山东卷)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A.13+23πB.13+23πC.13+26πD.1+26π(2)(2014·全国Ⅱ卷)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( ) A.3B.32C.1D.32解析 (1)由三视图知该四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×43π×⎝ ⎛⎭⎪⎫223=13+26π.(2)由题意可知,AD ⊥平面B 1DC 1,即AD 为三棱锥A -B 1DC 1的高, 且AD =32×2=3,易求得S △B 1DC 1=12×2×3=3, 所以VA -B 1DC 1=13×3×3=1. 答案 (1)C (2)C规律方法 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.【训练2】 (1)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.22π3B.42π3C.22πD.42π(2)(2015·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积是________cm 3.解析 (1)绕等腰直角三角形的斜边所在的直线旋转一周形成的曲面围成的几何体为两个底面重合,等体积的圆锥的组合体,如图所示.每一个圆锥的底面半径和高都为2,故所求几何体的体积V =2×13×2π×2=42π3.(2)由三视图可知该几何体是由棱长为2 cm 的正方体与底面边长为2 cm 正方形、高为2 cm 的正四棱锥组成. 又正方体的体积V 1=23=8(cm 3), 正四棱锥的体积V 2=13×22×2=83(cm 3). 所以该几何体的体积V =V 1+V 2=323(cm 3). 答案 (1)B (2)323考点三 多面体与球的切、接问题(典例迁移)【例3】 (经典母题)(2016·全国Ⅲ卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A.4πB.9π2C.6πD.32π3解析 由AB ⊥BC ,AB =6,BC =8,得AC =10.要使球的体积V 最大,则球与直三棱柱的部分面相切,若球与三个侧面相切,设底面△ABC 的内切圆的半径为r .则12×6×8=12×(6+8+10)·r ,所以r =2. 2r =4>3,不合题意.球与三棱柱的上、下底面相切时,球的半径R 最大. 由2R =3,即R =32.故球的最大体积V =43πR 3=92π. 答案 B【迁移探究1】 若本例中的条件变为“直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,求球O 的表面积. 解 将直三棱柱补形为长方体ABEC -A 1B 1E 1C 1, 则球O 是长方体ABEC -A 1B 1E 1C 1的外接球. ∴体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.【迁移探究2】 若本例中的条件变为“正四棱锥的顶点都在球O 的球面上”,若该棱锥的高为4,底面边长为2,求该球的体积. 解 如图,设球心为O ,半径为r , 则在Rt △AOF 中,(4-r )2+(2)2=r 2,解得r =94,则球O 的体积V 球=43πr 3=43π×⎝ ⎛⎭⎪⎫943=243π16.规律方法 空间几何体与球接、切问题的求解方法.(1)与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.(2)若球面上四点P ,A ,B ,C 中P A ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.[思想方法]1.转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.2.求体积的两种方法:(1)割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.(2)等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高.[易错防范]1.求组合体的表面积时:组合体的衔接部分的面积问题易出错.2.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.3.底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.基础巩固题组(建议用时:40分钟)一、选择题1.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛解析设米堆的底面半径为r尺,则π2r=8,所以r=16π.所以米堆的体积为V =14×13π·r 2·5=π12·⎝ ⎛⎭⎪⎫16π2·5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 答案 B2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( ) A.2 B.92 C.32D.3解析 由三视图知,该几何体是四棱锥,底面是直角梯形,且S 底=12(1+2)×2=3.∴V =13x ·3=3,解得x =3. 答案 D3.(2017·合肥模拟)一个四面体的三视图如图所示,则该四面体的表面积是( )A.1+ 3B.2+3C.1+2 2D.22解析 四面体的直观图如图所示.侧面SAC ⊥底面ABC ,且△SAC 与△ABC 均为腰长是2的等腰直角三角形,SA =SC =AB =BC =2,AC =2.设AC 的中点为O ,连接SO ,BO ,则SO ⊥AC ,又SO ⊂平面SAC ,平面SAC ∩平面ABC =AC ,∴SO ⊥平面ABC ,又BO ⊂平面ABC ,∴SO ⊥BO . 又OS =OB =1,∴SB =2,故△SAB 与△SBC 均是边长为2的正三角形,故该四面体的表面积为2×12×2×2+2×34×(2)2=2+ 3. 答案 B4.(2015·全国Ⅱ卷)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36πB.64πC.144πD.256π解析 因为△AOB 的面积为定值,所以当OC 垂直于平面AOB 时,三棱锥O -ABC 的体积取得最大值.由13×12R 2×R =36,得R =6.从而球O 的表面积S =4πR 2=144π. 答案 C5.(2017·青岛模拟)如图,四棱锥P -ABCD 的底面ABCD 为平行四边形,NB =2PN ,则三棱锥N -P AC 与三棱锥D -P AC 的体积比为( ) A.1∶2 B.1∶8 C.1∶6D.1∶3解析 设点P ,N 在平面ABCD 内的投影分别为点P ′,N ′,则PP ′⊥平面ABCD ,NN ′⊥平面ABCD ,所以PP ′∥NN ′,则在△BPP ′中,由BN =2PN 得NN ′PP ′=23. V 三棱锥N -P AC =V 三棱锥P -ABC -V 三棱锥N -ABC =13S △ABC ·PP ′- 13S △ABC ·NN ′=13S △ABC ·(PP ′-NN ′)=13S △ABC · 13PP ′=19S △ABC ·PP ′,V 三棱锥D -P AC =V 三棱锥P -ACD =13S △ACD ·PP ′,又∵四边形ABCD 是平行四边形,∴S △ABC =S △ACD ,∴V 三棱锥N -P AC V 三棱锥D -P AC =13.故选D.答案 D 二、填空题6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.。
高一立体几何讲义(一)

立体几何初步【知识网络及在高考中的重要性】立体几何是高中数学中的重要内容,也是高考的热点内容。
该部分新增加了三视图,对三视图的考查应引起格外的注意。
立体几何在高考解答题中,常以空间几何体(柱,锥,台)为背景,考查几何元素之间的位置关系。
另外还应注意非标准图形的识别、三视图的运用、图形的翻折、求体积时的割补思想等,以及把运动的思想引进立体几何。
最近几年综合分析全国及各省高考真题,立体几何开放题是高考命题的一个重要方向,开放题更能全面的考查学生综合分析问题的能力。
考查内容一般有以下几块内容:1、平行:包括线线平行,线面平行,面面平行;2、垂直:包括线线垂直,线面垂直,面面垂直;3、角度:包括线线(主要是异面直线)所成的角,线面所成的角,面面所成的角;4、求距离或体积;1.1.1构成空间几何体的基本元素【感悟新课标新理念】背景知识激趣生活中的几何———欧式几何“几何”这个词在汉语里是“多少”的意思,但在数学里“几何”的含义就完全不同了。
“几何”这个词的词义来源于希腊文,原意是土地测量,或叫测地术几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。
在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、宽、窄、厚、薄等概念,并且逐步认识了这些概念之间,以及它们之间位置关系跟数量之间的关系,这些后来就成了几何学的基本概念。
柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导,逐步趋向于系统和严密的方向发展.柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证. 亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的.到今天,在初等几何学中,仍是运用“三段论”的形式来进行推理。
但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。
真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里德。
高中数学讲义第七章立体几何初步(超级详细)

高中数学复习讲义 第七章 立体几何初步【方法点拨】立体几何研究的是现实空间,认识空间图形,可以培养学生的空间想象能力、推理论证能力、运用图 形语言进行交流的能力以及几何直观能力。
空间的元素是点、线、面、体,对于线线、线面、面面的位置 关系着重研究它们之间的平行与垂直关系,几何体着重研究棱柱、棱锥和球。
在复习时我们要以下几点:1 .注意提高空间想象能力。
在复习过程中要注意:将文字语言转化为图形,并明确已知元素之间的位置 关系及度量关系;借助图形来反映并思考未知的空间形状与位置关系;能从复杂图形中逻辑的分析出基本 图形和位置关系,并借助直观感觉展开联想与猜想,进行推理与计算。
2 .归纳总结,分门别类。
从知识上可以分为:平面的基本性质、线线、线面、面面的平行与垂直、空间 中角与距离的计算。
3 .抓主线,攻重点。
针对一些重点内容加以训练,平行和垂直是位置关系的核心,而线面垂直又是核心 的核心,角与距离的计算已经降低要求。
4 .复习中要加强数学思想方法的总结与提炼。
立体几何中蕴含着丰富的思想方法,如:将空间问题转化 成平面图形来解决、线线、线面与面面关系的相互转化、空间位置关系的判断及角与距离的求解转化成空 间向量的运算。
【知识图解】 空间几何体 —►构成几何体 的基本元素直观认识线 囿平行与垂—►中心投影与 平行投影*---►柱、锥、台、 球的特征——►表面积与体 积直观图与三 视图的画法*点、线、面 之间的位置 关系第1课空间几何体【考点导读】1 .观察认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2 .能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图;3 .通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;4 . 了解球、棱柱、棱锥、台的表面积和体积的计算公式。
高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何一、坐标运算()()111222,,,,,a x y z b x y z ==()()()()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅则二、共线向量定理(),0,=.a b b a b a b λλ≠←−−→∃充要对于使三、共面向量定理,,.a b p a b x y p xa yb ←−−→∃=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←−−−→+=充要条件四、对空间任意一点,若则三点共线,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点()()()11,1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性、、、四点共面,,,,令()()() 1,1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理{},,a b c p x y z p xa yb zc a b c a b c ∃若,,不共面,对于任意,使=++,称,,做空间的一个基底,,,都叫做基向量.七、立体几何中的向量方法121212,,.n n l l v v αβ设平面和的法向量为和直线和的方向向量为11121111121212121212n v l l l n v l l l v v l l v v n n n n αααβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥①或②若③④⑤⑥八、角、距离()1θ异面直线的夹角,cos cos ,AB CD AB CD AB CD θ⋅==⋅则()2,θ线与面的夹角sin cos a n a n θα⋅==⋅则()3,θ二面角1212cos cos n n n n θα⋅==⋅则θ说明:只能由已知图观察锐钝.()4,d 点到平面的距离cos PA n d PA n θ⋅=⋅=则cos cos d PA n PA n PA nd PA n θθ⋅=⋅⋅⋅∴=⋅=说明:由图可知为在方向上的投影的绝对值,。
【精】高中数学:立体几何优质讲义.docx

高中数学:立体几何优质讲义姓名:指导:日期:立体几何证平行(一)甄蟻平有<■图丄E)--------------- K如果两条蛾切平行于第三条最,那么这两条蛾相互平行.2.如果一条蛛平行于另一个平面,那么这条蟻就平行于这这条地的平面与已知平而的交蟻. 图丄】3 .血果商个平面平行,那玄另一个平血虹诳两个平血的交妹互制平行.4如果两喪直蟻都制另一•个平而垂直.那么这两条直蟻平有.5一在同T面内,如果两条直或垂直于同一条直墟,那么这两条直慟'成.,程茜师中学亞建化L.如果平而外一条直絞平行于平面内的一条直銭,那衣宜城与平而干径 :!.如果两个平部平行,一个平薊内的任何一条直域平行于另一个平面. 3 .州果平血*了平而如一条如果干时垂直于另--条直邑, 4 一如果平面与平面外一条直理同时垂直于另一个平面,I. 如果一个平而内有两果闵全平f li 平有于另一个平而,丄如果两个平面揺平行于第三个平潮,那互这两个平面平有. 3.如果两个平面问畦垂直于同一条面雄,那么这两个平ffii 平行.证塔直大部分毎是通过隼直证垂直:下能ii 史旳时榛.平移到另i 一个位置证垂直. (一) 或蟻垂西如果一案直蛾垂直于一个平St 那佥谊条宜戒垂直于这个平ifi 内的任何一条直銭一 (二) 蜷海垂苴【一如果一条直蜷垂直于平而内两条招交的部,那么这条直坡就垂直于两条相交直域所在的平面. 丄如果睥个平而常有,在其中一个 平血內,垂森于公芯検的il 注垂立于yi-t-Tni!. t 三)而而垂直(■囲At )【.辻一个平而垂洼旳平而垂辻于巳辻平而. 土二部南为直请的两个平面垂直.〈理科)(四〉不能祝匿征垂直的情况L 把已知蟻成ffii 平秽到容駐证照垂直的位置 2.询和已知蟻或面平行的蟻凍海证垂直一那么场面平有. 图卩二.求相疔,求距离,成求体根〈一)求術》〈理我丄技线爾.絞血曲•和二而跆歩L建系,崖可能il.薮将计算的点落在抽我和軸而L坐株系可以任意拆向*凡是角度渉成的面都要至少已如(SU出)3个点,肅度演及的絞都要至少巳知《成求出)£个点.歩,标期段坐标,不能表廚的可以持定字毋系数,当盧坐岳中只舍有一个未知字毋时可以直接代入下一歩求解:当点坐标中含有£个以上未知字毋盹需要握据以下三点列式求字母取住.①前量垂成a ijj =>^15 +y L k'i + -^i = u囲向量其蟻,"Jj2n W =虹2.乂 =加.=切崖向0模,何|=巧了「了歩丄表航向量,终点跋起点歩4:朮法曲丽1也(歩I上(如丄"I'""(歩3丄不姉妨X."中一一个字辱为。
《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征 1。
棱柱1。
1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1。
2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
1。
4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。
1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。
空间立体几何讲义

第1讲 空间几何体高考《考试大纲》的要求:① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲:例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( )A .6π B .3πC .32πD .65π例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( )A .π2B .π23C .π332D .π21例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角是 .例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积.(1)求V (x )的表达式;(2)当x 为何值时,V (x )取得最大值?(3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。
(二)基础训练:1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )A .①②B .①③C .①④D .②④2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度075东经0120,则甲、乙两地球面距离为( )(A(B) 6R π(C)56R π(D) 23R π①正方形 ②圆锥 ③三棱台 ④正四棱锥C3.若一个底面边长为2的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .4. 已知,,A B C 三点在球心为O ,半径为R 的球面上,AC BC ⊥,且AB R =,那么,A B 两点的球面距离为___________,球心到平面ABC 的距离为________ 5.如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD.(三)巩固练习:1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是( )(A )π3 (B )π33 (C )π6 (D )π92、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( )A .16πB .20πC .24πD .32π3.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( ) A.34 B.45 C.35 D.-35 4.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为( )(A )31 (B )33 (C )32 (D)36 5.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为()A .3 B .13π C.23π D .36.已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于________7.请您设计一个帐篷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
. 第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲:
例1.四面体ABCD的外接球球心在CD上,且CD=2,AB=3,在外接球面上两点A、B间的球面距离是( )
A.6 B.3 C.32 D.65 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A.2 B.23 C.332 D.21 例3.在正三棱柱ABC—A1B1C1中,侧棱长为2,底面三角形的边长为1,则BC1与侧面ACC1A1所成的角是 .
例4.如图所示,等腰△ABC的底边AB=66,高CD=3,点B是线段BD上异于点B、D的动点.点F在BC边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记BE=x,V(x)表示四棱锥P-ACFE的体积. (1)求V(x)的表达式; (2)当x为何值时,V(x)取得最大值? (3)当V(x)取得最大值时,求异面直线AC与PF所成角的余弦值。
(二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( )
A.①② B.①③ C.①④ D.②④ 2.设地球半径为R,若甲地位于北纬045东经0120,乙地位于南纬度075东经0120,则甲、乙两地球面距离为( )
(A)3R (B) 6R (C) 56R (D) 23R
①正方形 ②圆锥 ③三棱台 ④正四棱锥 .
ABCDP3.若一个底面边长为62,棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 . 4. 已知,,ABC三点在球心为O,半径为R的球面上,ACBC,且ABR,那么,AB两点的球面距离为___________,球心到平面ABC的距离为________ 5.如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=43, 侧面PAD为等边三角形,并且与底面所成二面角为60°. (Ⅰ)求四棱锥P—ABCD的体积; (Ⅱ)证明PA⊥BD.
(三)巩固练习: 1.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是( ) (A)3 (B)33 (C)6 (D)9 2、已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是( ) A.16 B.20 C.24 D.32 3.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )
A.34 B.45 C.35 D.-35
4.已知球O的半径为1,A、B、C三点都在球面上,且每两点间的球面距离为2,则球心O到平面ABC的距离为( ) (A)31 (B)33 (C)32 (D)36 5.表面积为23 的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A.23 B.13 C.23 D.223 6.已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于________ 7.请您设计一个帐篷。它下部的形状是高为1m的正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心1o的距离为多少时,帐篷的体积最大?
O .
8. 如图,已知平行六面体ABCD-1111DCBA的底面ABCD是菱形,且 CBC1=BCDCDC1。
(I)证明:CC1⊥BD;
(II)当1CCCD的值为多少时,能使CA1平面BDC1?请给出证明。
第2讲 空间直线和平面 高考《考试大纲》的要求: ①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理. ◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内. ◆公理2:过不在同一条直线上的三点,有且只有一个平面. ◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. ◆公理4:平行于同一条直线的两条直线互相平行. ◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. ②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定. 理解以下判定定理: ◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. ◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. ◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. ◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明: ◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行. ◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平行. ◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. ③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. (一)例题选讲: 例1.如图,在正四棱柱 1111ABCDABCD中,E、F分别是11ABC、B的中点,则以下结论中不成立的是( ) A.1EFBB与垂直 B. EFBD与垂直 C. EF与CD异面 D. EF11与AC异面
例2.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角分别为π4和π6,过A、B分别作两平面交线的垂线,垂足为A′、B′, 则AB∶A′B′=( ) (A)2∶1 (B)3∶1 (C)3∶2 (D)4∶3
例3.在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则
α β A
B A′
B′ .
例4.在三棱锥S—ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=22, M、N分别为AB、SB的中点。 (Ⅰ)证明:AC⊥SB; (Ⅱ)求二面角N—CM—B的大小; (Ⅲ)求点B到平面CMN的距离.
(二)基础训练: 1.已知两条直线,mn,两个平面,,给出下面四个命题: ①//,mnmn ②//,,//mnmn ③//,////mnmn ④//,//,mnmn 其中正确命题的序号是( ) A.①③ B.②④ C.①④ D.②③ 2.已知P为平面a外一点,直线la,点Q∈l,记点P到平面a的距离为a,点P到直线l的距离为b,点P、Q之间的距离为c,则( ) (A) cba (B)cba (C) bca (D)acb 3、给出以下四个命题: ①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行, ②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行, ④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. 其中真命题的个数是( ) A.4 B. 3 C. 2 D. 1 4、下列命题中,正确的是 ( ) A.经过不同的三点有且只有一个平面 B.分别在两个平面内的两条直线一定是异面直线 C.垂直于同一个平面的两条直线是平行直线 D.垂直于同一个平面的两个平面平行 5.已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于0的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的大小是__________.
6.已知平面,和直线,给出条件:①//m;②m;③m;④;⑤//. (i)当满足条件 时,有//m; (ii)当满足条件 时,有m.(填所选条件的序号) 7.三棱锥P—ABC中,侧面PAC与底面ABC垂直,PA=PB=PC=3. (1) 求证AB⊥BC;
(2) 如果AB=BC=32,求侧面PBC与侧面PAC所成二面角的大小.
(三)巩固练习: 1.若mn,是两条不同的直线,,,是三个不同的平面,则下列命题中的真命题...是( )
P C A B .
A.若m,,则m B.若m,m∥,则 C.若,⊥,则 D.若m,n,mn∥,则∥ 2.设ab,为两条直线,,为两个平面,下列四个命题中,正确的命题是( ) A.若ab,与所成的角相等,则ab∥ B.若a∥,b∥,∥,则ab∥ C.若a,b,ab∥,则∥ D.若a,b,,则ab 3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( ) A.5部分 B.6部分 C.7部分 D.8部分 4.给出下列四个命题: ①垂直于同一直线的两条直线互相平行. ②垂直于同一平面的两个平面互相平行. ③若直线12,ll与同一平面所成的角相等,则12,ll互相平行. ④若直线12,ll是异面直线,则与12,ll都相交的两条直线是异面直线. 其中假.命题的个数是( ) (A)1 (B)2 (C)3 (D)4 5.设m、n是两条不同的直线,、是两个不同的平面.考查下列命题,其中正确的命题是( ) A.nmnm,, B.nmnm//,,// C.nmnm//,, D.nmnm,, 6.在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,下面四个结论中不成立...的是( ) (A)BC//平面PDF (B)DF⊥平面PA E (C)平面PDF⊥平面ABC (D)平面PAE⊥平面 ABC 7.设、、为平面,lnm、、为直线,则m的一个充分条件是( ) (A) lml,, (B) ,,m (C) m,, (D) mnn,, 8.对于不重合的两个平面与,给定下列条件: ①存在平面,使得α、β都垂直于; ②存在平面,使得α、β都平等于; ③存在直线l,直线m,使得ml//; ④存在异面直线l、m,使得.//,//,//,//mmll 其中,可以判定α与β平行的条件有( ) A.1个 B.2个 C.3个 D.4个 9.设P是60的二面角l内一点,,PAPB平面平面,A,B为垂足,4,2,PAPB则AB的长为:( ) A 23 B 25 C 27 D 42 10. 已知直线、m,平面、,且,给出下列四个命题。 (1)若; (2); (3)若,则; (4)若 其中正确命题的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个 11.已知m、n是不同的直线,,是不重合的平面,给出下列命题: ①若//,,,mn则//mn ②若,,//,//,mnmn则// ③若,,//mnmn,则// ④m、n是两条异面直线,若//,//,//,//,mmnn则// 上面命题中,真命题的序号是____________(写出所有真命的序号) 12.在直三棱柱ABC—A1B1C1中,AB=BC=2,BB1=2,90ABC,E、F分别为AA1、C1B1的中点,沿棱柱的表面从E到F两点的最短路径的长度为 .