高中数学空间立体几何讲义

合集下载

高中数学---空间几何体讲义

高中数学---空间几何体讲义

空间几何体1、 多面体的定义:由几个多边形围成的封闭立体叫多面体。

2、 棱柱定义:两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面围成的多面体叫做棱柱。

棱柱的互相平行的两个面叫做棱柱的底面,其余各面叫做棱柱的侧面,相邻的两个侧面的公共边叫做棱柱的侧棱,两个底面间的距离叫做棱柱的高。

基本性质:侧面都是平行四边形;两个底面及平行于底面的截面都是全等的多边形;过不相邻的两条侧棱的截面是平行四边形。

棱柱的分类:侧棱与底面不垂直的的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱。

直棱柱侧面都是矩形;直棱柱侧棱与高相等;正棱柱的侧面都是全等的矩形。

底面是平行四边形的棱柱叫做平行六面体;底面是矩形的直棱柱是长方体。

祖暅原理:夹在两个平行平面间的两个几何体,如果被平行于这两个平面的任何平面所截得的两个截面的面积都相等,那么这两个几何体的体积相等。

侧面积和体积公式:S Cl =侧(C 为垂直于侧棱的直截面的周长,l 为侧棱长),V Sh =(S 为底面面积,h 为高)3、 棱锥(1) 定义:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱锥的这个多边形的面叫做底面,其余各个三角形的面叫做侧面。

相邻的两个侧面的公共边叫做棱锥的侧棱。

各个侧面的公共顶点叫做棱锥的顶点,顶点到底面的距离叫做棱锥的高。

(2) 基本性质:如果一个棱锥被平行于底面的一个平面所截,那么侧棱和高被这个平面分成比例线段;截面与底面都是相似多边形;截面面积与底面面积之比,等于顶点到截面与顶点到底面的距离平方之比。

4、 正棱锥(1) 定义:如果一个棱锥的底面是多边形,且顶点在诺面的射影是底面的中心,这个棱锥叫做正棱锥; (2) 基本性质:各侧棱相等,各侧面都是全等的等腰三角形;正棱锥的高、斜高和斜高在底面上的射影组成一个直角三角形;正棱锥的高、侧棱和侧棱在底面上的射影也组成一个直角三角形。

空间立体几何讲义全

空间立体几何讲义全

①规定长度为0的向量为零向量,记作0;②模为1的向量叫做单位向量;3.相等的向量:两个模相等且方向相同的向量称为相等的向量.4.负向量:两个模相等且方向相反的向量是互为负向量.如a的相反向量记为-a.5.共线与共面向量(1)共线向量:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∕∕b.(2)共面向量:平行于同一平面的向量叫做共面向量.(3)定理共线向量定理:对于空间任意两个向量b(b≠、的充要条件是存在实数λ,使得.b),0a//ab=aλ共面向量定理:如果两个向量b、a不共线,则向量p与向量b、a共面的充要条件是存在唯一的有序史书对(x,y),使得p.b y=a x+6.注意:①零向量的方向是任意的,规定0与任何向量平行;②单位向量不一定相等,但单位向量的模一定相等且为1;③方向相同且模相等的向量称为相等向量,因此,在空间,同向且等长的有向线段表示同一向量或相等向量;④空间任意两个向量都可以通过平移成为共面向量;⑤一般来说,向量不能比较大小.二、空间向量的运算1、加减法(1)空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.空间向量和平面向量一样满足三角形法则和平行四边形法则.(2)加法运算律:空间向量的加法满足交换律及结合律.交换律:结合律:(3)推广*首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量:*首尾相接的若干向量若构成一个封闭图形,则它们的和为:零向量2.空间向量的数乘运算(1)实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算.①当λ>0时,λa与a的方向相同;②当λ<0时,λa与a的方向相反;③当λ=0时,λa=0.④|λa|=|λ|a•,λa的长度是a的长度的|λ|倍.(2)运算律空间向量的数乘满足分配律及结合律分配律:b a b a λλλ+=+)( b a a μλμλ+=+)(结合律:a a )()(λμμλ=3.空间向量的数量积和坐标运算坐标运算三.直线的方向向量1、直线的方向向量:空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定. 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.注意:①一条直线l 有无穷多个方向向量,这些方向向量之间互相平行.②直线l 的方向向量也是所有与l 平行的直线的方向向量.2、方向向量的求法:可根据直线l 上的任意两点的坐标写出直线l 的一个方向向量.3、平面的法向量:由于垂直于同一平面的直线是互相平行的,所以,可以用垂直于平面的直线的方向向量来刻画平面的“方向”.如果表示向量n的有向线段所在直线垂直于平面α,则称这个向量垂直于平面,记作n⊥α,如果n⊥α,那么向量n叫做平面α的法向量.注意:①法向量一定是非零向量;②一个平面α有无穷多个法向量,这些法向量之间互相平行;③向量n是平面的法向量,向量m是与平面平行或在平面内,则有0=n.•m④一个平面α的法向量也是所有与平面α平行的平面的法向量.4、法向量的求法:(1)设:设出平面法向量的坐标为n=),,(wu;v(2)列:根据,0na列出方程组;•nb,0=•=(3)解:把u(或v或w)看作常数,用u(或v或w)表示另外两个量;(4)取:取u为任意一个数(当然取得越特殊越好),则得到平面法向量n的坐标.四、用向量证明平行五、用向量证明垂直一.选择题(共11小题)1.已知直线l的一般方程式为x+y+1=0,则l的一个方向向量为()A.(1,1)B.(1,﹣1)C.(1,2)D.(1,﹣2)2.已知等差数列{a n}的前n项和为S n,且S2=11,S5=50,则过点P(n,a n)和Q(n+2,a n+2)(n∈N*)的直线的一个方向向量的坐标可以是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,1)D.(1,﹣1)3.若直线l1,l2的方向向量分别为=(2,4,﹣4),=(﹣6,9,6),则()A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直D.以上均不正确4.直线a,b的方向向量分别为=(1,﹣2,﹣2),=(﹣2,﹣3,2),则a 与b的位置关系是()A.平行B.重合C.垂直D.夹角等于5.若A(0,2,),B(1,﹣1,),C(﹣2,1,)是平面α内的三点,设平面α的法向量=(x,y,z),则x:y:z=()A.2:3:(﹣4) B.1:1:1 C.﹣:1:1 D.3:2:46.已知=(1,5,﹣2),=(3,1,z),若⊥,=(x﹣1,y,﹣3),且BP ⊥平面ABC,则实数x、y、z分别为()A.,﹣,4 B.,﹣,4 C.,﹣2,4 D.4,,﹣157.若直线l的方向向量为,平面α的法向量为,能使l∥α的是()A.=(1,0,0),=(﹣2,0,0)B.=(1,3,5),=(1,0,1)C.=(0,2,1),=(﹣1,0,﹣1)D.=(1,﹣1,3),=(0,3,1)8.设,在上的投影为,在x轴上的投影为2,且,则为()A.(2,14)B.C.D.(2,8)9.如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个10.已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D 为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.111.在正四棱柱ABCD﹣A1B1C1D1中,顶点B1到对角线BD1和到平面A1BCD1的距离分别为h和d,则下列命题中正确的是()A.若侧棱的长小于底面的边长,则的取值范围为(0,1)B.若侧棱的长小于底面的边长,则的取值范围为C.若侧棱的长大于底面的边长,则的取值范围为D.若侧棱的长大于底面的边长,则的取值范围为二.填空题(共12小题)15.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P 在线段D1E上,点P到直线CC1的距离的最小值为.16.若,,则= .17.已知A(1,2,﹣1)关于面xOz 的对称点为B,则= .18.如图,在三棱锥D﹣ABC中,已知AB=AD=2,BC=1,,则CD= .19.如图,在四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°.若以DA,DC,DS,分别为x轴,y轴,z轴建立如图所示的空间直角坐标系D﹣xyz,则M的坐标为.20.如图,为一个正方体截下的一角P﹣ABC,|PA|=a,|PB|=b,|PC|=c,建立如图坐标系,求△ABC的重心G的坐标.21.下列关于空间向量的命题中,正确的有.①若向量,与空间任意向量都不能构成基底,则∥;②若非零向量,,满足⊥,⊥则有∥;③若,,是空间的一组基底,且=++,则A,B,C,D四点共面;④若向量+,+,+,是空间一组基底,则,,也是空间的一组基底.22.由空间向量=(1,2,3),=(1,﹣1,1)构成的向量集合A={|=+k,k ∈Z},则向量的模的最小值为.23.已知点A(1,2,1),B(﹣2,,4),D(1,1,1),若=2,则||的值是.24.已知空间四点A(0,1,0),B(1,0,),C(0,0,1),D(1,1,),则异面直线AB,CD所成的角的余弦值为.25.如图ABCD﹣A1B1C1D1是正方体,B1E1=D1F1=,则BE1与DF1所成角的余弦值是.26.已知向量,满足||=2,与的夹角为60°,则在上的投影是.三.解答题(共9小题)27.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.28.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,(II)求面APB与面CPB所成二面角的大小.29.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.30.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.31.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.32.如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E 分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.33.如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.34.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.35.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.2017年12月02日空间立体几何参考答案一.选择题(共14小题)1.C;2.B;3.A;4.B;5.A;6.B;7.C;8.A;9.B;10.D;11.B;12.B;13.C;14.C;二.填空题(共12小题)15.;16.3;17.(0,﹣4,0);18.;19.(0,1,1);20.();21.①③④;22.;23.2;24.;25.;26.1;三.解答题(共9小题)27.;28.;29.;30.;31.;32.;33.;34.;35.;。

空间立体几何精讲课件

空间立体几何精讲课件

答案:②④
知识点5:圆锥的结构特征 直角三角形的一条直角边所在直线 为旋转轴,_____ 以________________________________ 其余两边旋转 形成的面所围成的旋转体 ________________ ______叫做圆锥 棱锥 和________ 圆锥 _______ 统称为锥体 圆锥SO 如图,圆锥表示为________
知识点2:棱锥的结构特征 解析:“各侧面都是全等的等腰三角形”并不能保证 底面是正多边形,也不能保证顶点在底面内的射影是 底面的中心,故不是正棱锥,如图(1)中的三棱锥 S-ABC,可令SA=SB=BC=AC=3,SC=AB=1,则此 三棱锥的各侧面都是全等的等腰三角形,但它不是正 三棱锥,故(1)错误;
知识点3:棱台的结构特征 解:(1)不是台体,因为各侧棱延长后不交于同一点, 不是由棱锥截得; (2)不是台体,因为截面与底面不平行; (3)不是台体,理由同(2).
知识点3:棱台的结构特征 练习:下列三种叙述,其中正确的有 (1)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱 台. (2)两个底面平行且相似,其余的面都是梯形的多面体是棱 台. (3)有两个面互相平行,其余四个面都是等腰梯形的六面体 是棱台.( ) A. 0个 B. 1个 C. 2个 D. 3个
球O 如图所示,球表示为_________
知识点7:球的结构特征 例:正方体内接于一个球,过球心作一截面,如图所示, 则截面可能的图形是( )
A.①③④B.②④C.①②③D.②③④
点拨:本题主要考查截面问题,关键考虑过球心的 正方体截面位置的可能情形 解:当截面不平行于任何侧面也不过对角线时得①,
O’ O
知识点6:圆台的结构特征 例:下列四种说法: ①在圆柱的上、下两底面的圆周上各取一点,则这两点 的连线是圆柱的母线; ②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母 线; ③在圆台上、下两底面的圆周上各取一点,则这两点的 点拨:圆锥和圆台 连线是圆台的母线; ④圆柱的任意两条母线相互平行. 的结构特征 其中正确的是( ) 答案:D A.①② B.②③ C.①③ D.②④

高中数学选修2-1《空间向量与立体几何》知识点讲义

高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何一、坐标运算()()111222,,,,,a x y z b x y z ==()()()()121212121212111121212,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=⋅=⋅⋅⋅则二、共线向量定理(),0,=.a b b a b a b λλ≠←−−→∃充要对于使三、共面向量定理,,.a b p a b x y p xa yb ←−−→∃=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←−−−→+=充要条件四、对空间任意一点,若则三点共线,1.P A B C O OP xOA yOB zOC P A B C x y z =++←−−→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点()()()11,1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性、、、四点共面,,,,令()()() 1,1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理{},,a b c p x y z p xa yb zc a b c a b c ∃若,,不共面,对于任意,使=++,称,,做空间的一个基底,,,都叫做基向量.七、立体几何中的向量方法121212,,.n n l l v v αβ设平面和的法向量为和直线和的方向向量为11121111121212121212n v l l l n v l l l v v l l v v n n n n αααβαβ⊥⇒⊂⇒⊥⇒⊥⇒⊥⇔⊥⇔⊥①或②若③④⑤⑥八、角、距离()1θ异面直线的夹角,cos cos ,AB CD AB CD AB CD θ⋅==⋅则()2,θ线与面的夹角sin cos a n a n θα⋅==⋅则()3,θ二面角1212cos cos n n n n θα⋅==⋅则θ说明:只能由已知图观察锐钝.()4,d 点到平面的距离cos PA n d PA n θ⋅=⋅=则cos cos d PA n PA n PA nd PA n θθ⋅=⋅⋅⋅∴=⋅=说明:由图可知为在方向上的投影的绝对值,。

空间立体几何讲义精编版

空间立体几何讲义精编版

①规定长度为0的向量为零向量,记作0;②模为1的向量叫做单位向量;3.相等的向量:两个模相等且方向相同的向量称为相等的向量.4.负向量:两个模相等且方向相反的向量是互为负向量.如a的相反向量记为-a.5.共线与共面向量(1)共线向量:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∕∕b.(2)共面向量:平行于同一平面的向量叫做共面向量.(3)定理共线向量定理:对于空间任意两个向量b),(b≠、的充要条件是存在实数λ,使得.ba//ab=aλ共面向量定理:如果两个向量b、a共面的充要条件是存在唯一a不共线,则向量p与向量b、的有序史书对(x,y),使得p.b ya x+=6.注意:①零向量的方向是任意的,规定0与任何向量平行;②单位向量不一定相等,但单位向量的模一定相等且为1;③方向相同且模相等的向量称为相等向量,因此,在空间,同向且等长的有向线段表示同一向量或相等向量;④空间任意两个向量都可以通过平移成为共面向量;⑤一般来说,向量不能比较大小.二、空间向量的运算1、加减法(1)空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.空间向量和平面向量一样满足三角形法则和平行四边形法则.(2)加法运算律:空间向量的加法满足交换律及结合律.交换律:结合律:(3)推广*首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量:*首尾相接的若干向量若构成一个封闭图形,则它们的和为:零向量2.空间向量的数乘运算(1)实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算.①当λ>0时,λa与a的方向相同;②当λ<0时,λa与a的方向相反;③当λ=0时,λa=0.(2)运算律空间向量的数乘满足分配律及结合律结合律:a a )()(λμμλ=3.空间向量的数量积和坐标运算坐标运算三.直线的方向向量1、直线的方向向量:空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定. 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.注意:①一条直线l 有无穷多个方向向量,这些方向向量之间互相平行.②直线l 的方向向量也是所有与l 平行的直线的方向向量.2、方向向量的求法:可根据直线l 上的任意两点的坐标写出直线l 的一个方向向量.3、平面的法向量:由于垂直于同一平面的直线是互相平行的,所以,可以用垂直于平面的直线的方向向量来刻画平面的“方向”.如果表示向量n的有向线段所在直线垂直于平面α,则称这个向量垂直于平面,记作n⊥α,如果n⊥α,那么向量n叫做平面α的法向量.注意:①法向量一定是非零向量;②一个平面α有无穷多个法向量,这些法向量之间互相平行;③向量n是平面的法向量,向量m是与平面平行或在平面内,则有0n.=∙m④一个平面α的法向量也是所有与平面α平行的平面的法向量.4、法向量的求法:(1)设:设出平面法向量的坐标为n=)vu;(w,,(2)列:根据,0∙nna列出方程组;b,0=∙=(3)解:把u(或v或w)看作常数,用u(或v或w)表示另外两个量;(4)取:取u为任意一个数(当然取得越特殊越好),则得到平面法向量n的坐标.四、用向量证明平行五、用向量证明垂直一.选择题(共11小题)1.已知直线l的一般方程式为x+y+1=0,则l的一个方向向量为()A.(1,1)B.(1,﹣1)C.(1,2)D.(1,﹣2)2.已知等差数列{a n}的前n项和为S n,且S2=11,S5=50,则过点P(n,a n)和Q(n+2,a n+2)(n∈N*)的直线的一个方向向量的坐标可以是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,1)D.(1,﹣1)3.若直线l1,l2的方向向量分别为=(2,4,﹣4),=(﹣6,9,6),则()A.l1∥l2B.l1⊥l2C.l1与l2相交但不垂直 D.以上均不正确4.直线a,b的方向向量分别为=(1,﹣2,﹣2),=(﹣2,﹣3,2),则a 与b的位置关系是()A.平行B.重合C.垂直D.夹角等于5.若A(0,2,),B(1,﹣1,),C(﹣2,1,)是平面α内的三点,设平面α的法向量=(x,y,z),则x:y:z=()A.2:3:(﹣4)B.1:1:1 C.﹣:1:1 D.3:2:46.已知=(1,5,﹣2),=(3,1,z),若⊥,=(x﹣1,y,﹣3),且BP⊥平面ABC,则实数x、y、z分别为()A.,﹣,4 B.,﹣,4 C.,﹣2,4 D.4,,﹣157.若直线l的方向向量为,平面α的法向量为,能使l∥α的是()A.=(1,0,0),=(﹣2,0,0)B.=(1,3,5),=(1,0,1)C.=(0,2,1),=(﹣1,0,﹣1)D.=(1,﹣1,3),=(0,3,1)8.设,在上的投影为,在x轴上的投影为2,且,则为()A.(2,14)B.C.D.(2,8)9.如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个 B.4个 C.5个 D.6个10.已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.111.在正四棱柱ABCD﹣A1B1C1D1中,顶点B1到对角线BD1和到平面A1BCD1的距离分别为h和d,则下列命题中正确的是()A.若侧棱的长小于底面的边长,则的取值范围为(0,1)B.若侧棱的长小于底面的边长,则的取值范围为C.若侧棱的长大于底面的边长,则的取值范围为D.若侧棱的长大于底面的边长,则的取值范围为二.填空题(共12小题)15.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为.16.若,,则=.17.已知A(1,2,﹣1)关于面xOz 的对称点为B,则=.18.如图,在三棱锥D﹣ABC中,已知AB=AD=2,BC=1,,则CD=.19.如图,在四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°.若以DA,DC,DS,分别为x轴,y 轴,z轴建立如图所示的空间直角坐标系D﹣xyz,则M的坐标为.20.如图,为一个正方体截下的一角P﹣ABC,|PA|=a,|PB|=b,|PC|=c,建立如图坐标系,求△ABC的重心G的坐标.21.下列关于空间向量的命题中,正确的有.①若向量,与空间任意向量都不能构成基底,则∥;②若非零向量,,满足⊥,⊥则有∥;③若,,是空间的一组基底,且=++,则A,B,C,D四点共面;④若向量+,+,+,是空间一组基底,则,,也是空间的一组基底.22.由空间向量=(1,2,3),=(1,﹣1,1)构成的向量集合A={|=+k,k∈Z},则向量的模的最小值为.23.已知点A(1,2,1),B(﹣2,,4),D(1,1,1),若=2,则||的值是.24.已知空间四点A(0,1,0),B(1,0,),C(0,0,1),D(1,1,),则异面直线AB,CD所成的角的余弦值为.25.如图ABCD﹣A1B1C1D1是正方体,B1E1=D1F1=,则BE1与DF1所成角的余弦值是.26.已知向量,满足||=2,与的夹角为60°,则在上的投影是.三.解答题(共9小题)27.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.(1)证明:BC∥平面PDA;(2)证明:BC⊥PD;(3)求点C 到平面PDA的距离.28.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,(II)求面APB与面CPB所成二面角的大小.29.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.30.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.31.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(Ⅰ)证明:BE⊥DC;(Ⅱ)求直线BE与平面PBD所成角的正弦值;(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.32.如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.(Ⅰ)证明:DE⊥平面PCD(Ⅱ)求二面角A﹣PD﹣C的余弦值.33.如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B﹣AD﹣F的余弦值.34.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.(Ⅰ)求证:MN∥平面ABCD(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.35.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.2017年12月02日空间立体几何参考答案一.选择题(共14小题)1.C;2.B;3.A;4.B;5.A;6.B;7.C;8.A;9.B;10.D;11.B;12.B;13.C;14.C;二.填空题(共12小题)15.;16.3;17.(0,﹣4,0);18.;19.(0,1,1);20.();21.①③④;22.;23.2;24.;25.;26.1;三.解答题(共9小题)27.;28.;29.;30.;31.;32.;33.;34.;35.;。

空间立体几何精讲课件PPT课件

空间立体几何精讲课件PPT课件

知识点2:棱锥的结构特征 命题(4)中的“正四面体”是正三棱锥,三棱 锥共有4个面,所以也叫四面体,故(4)错误
命题(5)中的“顶点在底面上的射影既是底面 多边形的内心,又是底面多边形的外心”,说明 底面是一个正多边形,故(5)正确
答案:A
知识点3:棱台的结构特征
棱台:用一个_平_行__于_棱__锥_底________的平面去截
解析:主要考查棱锥的结构特征
答案:①④
知识点2:棱锥的结构特征
练习:有下面五个命题: (1)各侧面都是全等的等腰三角形的棱锥是正 棱锥;(2)侧棱都相等的棱锥是正棱锥; (3)底面是正方形的棱锥是正四棱锥; (4)正四面体就是正四棱锥; (5)顶点在底面上的射影既是底面多边形的内 心,又是底面多边形的外心的棱锥是正棱锥. 其中正确命题的个数是()
棱底锥面,和截__面__之_面________的部分,这样棱的台多面体
叫间_____,原棱
下底 上底面
四锥_由___棱的三___台_底棱___面锥、_五_和、棱截四台面棱分锥别 、叫 五做 棱棱 锥台 截面的得的__棱__台_分_和别三台叫棱做
__棱A_'_台_B__'_A_C_B_'_C_D、D_'-________,如图所示,四D棱’ 台顶表点C示’ 为
知识点1:棱柱的结构特征 解析:说法(1)不满足侧面是平行四边形,反例如 图1 说法(2)不满足侧棱互相平行,反例如图2
说法图(14)不能保证底图面2和截面平行,故只
有说法(3)正确.故填(3).
知识点2:棱锥的结构特征
一般地,有一个面是多_边______,其余各面都是有 一个公共三顶角点的___形____,由这些多面面所体围成的 ______形叫棱锥。 这个多边形面叫做棱_锥_的__底____底_或_____ 有__公__共__顶__点__的__各__个面__三__角__形__面___叫做棱锥的侧面 __各__侧__面__的__公__共__顶__点__叫做棱锥的顶点

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义

3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

《新课程标准高中数学必修②复习讲义》第一、二章-立体几何

一、立体几何知识点归纳 第一章 空间几何体(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点.旋转体--把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。

其中,这条定直线称为旋转体的轴。

(2)柱,锥,台,球的结构特征 1。

棱柱1。

1棱柱—-有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

1。

2相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: ①⎧⎪⎧−−−−−→⎨⎪−−−−−→⎨⎪⎪⎩底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱 底面为矩形侧棱与底面边长相等1.3①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。

1。

4长方体的性质:①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】222211AC AB AD AA =++②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=;③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则,222sin sin sin 1αβγ++=222cos cos cos 2αβγ++=.1.5侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形. 1.6面积、体积公式:2S c hS c h S S h=⋅=⋅+=⋅直棱柱侧直棱柱全底棱柱底,V (其中c 为底面周长,h 为棱柱的高)2.圆柱2。

1圆柱—-以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.2圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的母线截面(轴截面)是全等的矩形.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
为.
4.已知A, B, C三点在球心为O,半径为R的球面上,AC BC,且AB R,那么A,B两点的球面距离为,球心到平面ABC的距离为
5.如图,四棱锥P—ABCD中,底面ABCD为矩形,AB=8,AD=43,侧面PAD为等边三角形,并且与底面所成二面角为60°.
(Ⅰ)求四棱锥P—ABCD的体积; (Ⅱ)证明PA⊥BD.
(三)巩固练习:1.若一个圆锥的轴截面是等边三角形,其面积为(A)3(B)3 3(C)6(D)
2、已知各顶点都在一个球面上的正四棱柱高为
3,则这个圆锥的全面积是(
9
4,体积为16,则这个球的表面积是(
A.16B.20C.24D.32
3.一个圆锥和一个半球有公共底面, 如果圆锥的体积恰好与半球的体积相等, 角的余弦值是( )
(Ⅱ)求二面角N—CM—B的大小;(Ⅲ)求点B到平面CMN的距离.
(二)基础训练:
1.已知两条直线m, n,两个平面,,给出下面四个命题:
①m//n,m n

//
,m ,n
m//n
③m // n, m//n//

//
,m//n,m
n
其中正确命题的序号是(

A.①③B.②④C
.①④
D
.②③
2.已知P为平面a外一点,直线
◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.
◆垂直于同一个平面的两条直线平行.
◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直
3 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.(一)例题选讲:
34
A. B. C.
45
那么,这个圆锥轴截面顶
4.已知球O的半径为
的距离为(
(A)13
5.表面积为2 3
2
A.
3
35 D.
1,A、B、
C三点都在球面上,且每两点间的球面距离为
,则球心O到平面ABC
2
B)33
的正八面体的各个顶点都在同一个球面上,则此球的体积为()
2 2 2
C.D.33
12,底面对角线的长为2 6,则侧面与底面所成的二面角等于
l a,点Q∈l,
记点P到平面
a的距离为a,点P到直线l的距离为b,
点P、Q之间的距离为c,则()
(A)
(C)a c b(D)b c a3、给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面 ③如果两条直线都平行于一个平面,那么这两条直线互相平行, ④如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
4会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)
5了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).
一)例题选讲:
CD上,且CD=2,AB=3,在外接球面上两点A、B间的球面距离
例4.如图所示,等腰△ABC的底边AB=66,高CD=3,点B是线段BD上异于点B、D的动点.点F在BC
例3.在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积与底面面积间的关系,可以得出的正确结论是: “设三棱 锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则
例4.在三棱锥S—ABC中,△ABC是边长为4的正三角形,面ABC,SA=SC=22,M、N分别为AB、SB的中点。 (Ⅰ)证明:AC⊥SB;
边上,且EF⊥AB.现沿EF将△BEF折起到△PEF的位置,使PE⊥AE.记BE=x,V(x)表示四棱锥P-ACFE
的体积.
(1)求V(x)的表达式;
(2)当x为何值时,V(x)取得最大值?
(3)当V(x)取得最大值时,求异面直线
二)基础训练:
面距离为( )
52
R(C)R(D)R 6
3.若一个底面边长为6,棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球的体积
(I)证明:C1C⊥BD;
CD
(II)当CD的值为多少时,能使A1C平面C1BD?请给出证明。CC1
第2讲 空间直线和平面高考《考试大纲》的要求:①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.
◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.
C)Байду номын сангаас3
D)36
1B.
33
6.已知正四棱锥的体积为
7.请您设计一个帐篷。 它下部的形状是高为1m的正六棱柱, 上部的形状是侧棱长为3m的正六棱锥 (如 图所示)。试问当帐篷的顶点O到底面中心o1的距离为多少时,帐篷的体积最大?
8.如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且C1CB=C1CDBCD。
◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.
◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.
理解以下性质定理,并能够证明 :
◆公理2:过不在同一条直线上的三点,有且只有一个平面.
◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
◆公理4:平行于同一条直线的两条直线互相平行.
◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
2以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定理解以下判定定理:
例1.如图,在正四棱柱ABCD A1B1C1D1中,E、F分别是AB1、BC1的中点,则以下结论中不成立的是( )
A
C.
例2.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α、β所成的角ππ
分别为4和6,过A、B分别作两平面交线的垂线,垂足为A′、B′,
则AB∶A′B′=()
(A)2∶1(B)3∶1(C)3∶2(D)4∶3

高考《考试大纲》的要求:
1认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体 的结构.
2能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述 的三视图所表示的立体模型,会用斜二测法画出它们的直观图.
3会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不 同表示形式.
相关文档
最新文档