空间立体几何讲义全

空间立体几何讲义全
空间立体几何讲义全

①规定长度为0的向量为零向量,记作0;

②模为1的向量叫做单位向量;

3.相等的向量:两个模相等且方向相同的向量称为相等的向量.

4.负向量:两个模相等且方向相反的向量是互为负向量.如a的相反向量记为-a.

5.共线与共面向量

(1)共线向量:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∕∕b.

(2)共面向量:平行于同一平面的向量叫做共面向量.

(3)定理

共线向量定理:对于空间任意两个向量b

(b≠

、的充要条件是存在实数λ,使得.b

),0

a//

a

b

=

aλ共面向量定理:如果两个向量b、a不共线,则向量p与向量b、a共面的充要条件是存在唯一的有序史书对(x,y),使得p.b y

=

a x+

6.注意:

①零向量的方向是任意的,规定0与任何向量平行;

②单位向量不一定相等,但单位向量的模一定相等且为1;

③方向相同且模相等的向量称为相等向量,因此,在空间,同向且等长的有向线段表示同一向量或相等向量;

④空间任意两个向量都可以通过平移成为共面向量;

⑤一般来说,向量不能比较大小.

二、空间向量的运算

1、加减法

(1)空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.空间向量和平面向量一样满足三角形法则和平行四边形法则.

(2)加法运算律:

空间向量的加法满足交换律及结合律.

交换律:

结合律:

(3)推广

*首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量:

*首尾相接的若干向量若构成一个封闭图形,则它们的和为:零向量

2.空间向量的数乘运算

(1)实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算.

①当λ>0时,λa与a的方向相同;

②当λ<0时,λa与a的方向相反;

③当λ=0时,λa=0.

④|λa|=|λ|a?,λa的长度是a的长度的|λ|倍.

(2)运算律

空间向量的数乘满足分配律及结合律

分配律:b a b a λλλ+=+)( b a a μλμλ+=+)(

结合律:a a )()(λμμλ=

3.空间向量的数量积和坐标运算

坐标运算

三.直线的方向向量

1、直线的方向向量:

空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定. 直线l 上的向量e 以及与e 共线的向量叫做直线l 的方向向量.

注意:

①一条直线l 有无穷多个方向向量,这些方向向量之间互相平行.

②直线l 的方向向量也是所有与l 平行的直线的方向向量.

2、方向向量的求法:可根据直线l 上的任意两点的坐标写出直线l 的一个方向向量.

3、平面的法向量:

由于垂直于同一平面的直线是互相平行的,所以,可以用垂直于平面的直线的方向向量来刻画平面的“方向”.如果表示向量n的有向线段所在直线垂直于平面α,则称这个向量垂直于平面,记作n⊥α,如果n⊥α,那么向量n叫做平面α的法向量.注意:

①法向量一定是非零向量;

②一个平面α有无穷多个法向量,这些法向量之间互相平行;

③向量n是平面的法向量,向量m是与平面平行或在平面内,则有0=

n.

?m

④一个平面α的法向量也是所有与平面α平行的平面的法向量.

4、法向量的求法:

(1)设:设出平面法向量的坐标为n=),,(w

u;

v

(2)列:根据,0

b

a列出方程组;

?n

n

,0=

?

=

(3)解:把u(或v或w)看作常数,用u(或v或w)表示另外两个量;

(4)取:取u为任意一个数(当然取得越特殊越好),则得到平面法向量n的坐标.四、用向量证明平行

五、用向量证明垂直

一.选择题(共11小题)

1.已知直线l的一般方程式为x+y+1=0,则l的一个方向向量为()A.(1,1)B.(1,﹣1)C.(1,2)D.(1,﹣2)

2.已知等差数列{a n}的前n项和为S n,且S2=11,S5=50,则过点P(n,a n)和Q(n+2,a n+2)(n∈N*)的直线的一个方向向量的坐标可以是()A.(﹣1,﹣3)B.(1,﹣3)C.(1,1)D.(1,﹣1)

3.若直线l1,l2的方向向量分别为=(2,4,﹣4),=(﹣6,9,6),则()A.l1∥l2B.l1⊥l2

C.l1与l2相交但不垂直D.以上均不正确

4.直线a,b的方向向量分别为=(1,﹣2,﹣2),=(﹣2,﹣3,2),则a 与b的位置关系是()

A.平行B.重合C.垂直D.夹角等于

5.若A(0,2,),B(1,﹣1,),C(﹣2,1,)是平面α内的三点,设平面α的法向量=(x,y,z),则x:y:z=()

A.2:3:(﹣4) B.1:1:1 C.﹣:1:1 D.3:2:4

6.已知=(1,5,﹣2),=(3,1,z),若⊥,=(x﹣1,y,﹣3),且BP ⊥平面ABC,则实数x、y、z分别为()

A.,﹣,4 B.,﹣,4 C.,﹣2,4 D.4,,﹣15

7.若直线l的方向向量为,平面α的法向量为,能使l∥α的是()A.=(1,0,0),=(﹣2,0,0)B.=(1,3,5),=(1,0,1)C.=(0,2,1),=(﹣1,0,﹣1)D.=(1,﹣1,3),=(0,3,1)

8.设,在上的投影为,在x轴上的投影为2,且,则为()

A.(2,14)B.C.D.(2,8)

9.如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()

A.3个B.4个C.5个D.6个

10.已知直二面角α﹣l﹣β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D 为垂足,若AB=2,AC=BD=1,则D到平面ABC的距离等于()A.B.C.D.1

11.在正四棱柱ABCD﹣A1B1C1D1中,顶点B1到对角线BD1和到平面A1BCD1的距离分别为h和d,则下列命题中正确的是()

A.若侧棱的长小于底面的边长,则的取值范围为(0,1)

B.若侧棱的长小于底面的边长,则的取值范围为

C.若侧棱的长大于底面的边长,则的取值范围为

D.若侧棱的长大于底面的边长,则的取值范围为

二.填空题(共12小题)

15.如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E为BC的中点,点P 在线段D1E上,点P到直线CC1的距离的最小值为.

16.若,,则= .

17.已知A(1,2,﹣1)关于面xOz 的对称点为B,则= .

18.如图,在三棱锥D﹣ABC中,已知AB=AD=2,BC=1,,则CD= .

19.如图,在四棱锥S﹣ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=,DC=SD=2,点M在侧棱SC上,∠ABM=60°.若以DA,DC,DS,分别为x轴,y轴,z轴建立如图所示的空间直角坐标系D﹣xyz,则M的坐标为.

20.如图,为一个正方体截下的一角P﹣ABC,|PA|=a,|PB|=b,|PC|=c,建立如图坐标系,求△ABC的重心G的坐标.

21.下列关于空间向量的命题中,正确的有.

①若向量,与空间任意向量都不能构成基底,则∥;

②若非零向量,,满足⊥,⊥则有∥;

③若,,是空间的一组基底,且=++,则A,B,C,D四点共面;

④若向量+,+,+,是空间一组基底,则,,也是空间的一组基底.

22.由空间向量=(1,2,3),=(1,﹣1,1)构成的向量集合A={|=+k,k ∈Z},则向量的模的最小值为.

23.已知点A(1,2,1),B(﹣2,,4),D(1,1,1),若=2,则||的值是.

24.已知空间四点A(0,1,0),B(1,0,),C(0,0,1),D(1,1,),

则异面直线AB,CD所成的角的余弦值为.

25.如图ABCD﹣A1B1C1D1是正方体,B1E1=D1F1=,则BE1与DF1所成角的余弦值是.

26.已知向量,满足||=2,与的夹角为60°,则在上的投影是.

三.解答题(共9小题)

27.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.

(1)证明:BC∥平面PDA;

(2)证明:BC⊥PD;

(3)求点C 到平面PDA的距离.

28.如图,已知四棱锥P﹣ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离,

(II)求面APB与面CPB所成二面角的大小.

29.如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求证:PC⊥BC;

(2)求点A到平面PBC的距离.

30.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.

(1)求平面BPC的法向量;

(2)求二面角B﹣PC﹣A的正切值.

31.如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.

(Ⅰ)证明:BE⊥DC;

(Ⅱ)求直线BE与平面PBD所成角的正弦值;

(Ⅲ)若F为棱PC上一点,满足BF⊥AC,求二面角F﹣AB﹣P的余弦值.

32.如题图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=.D,E 分别为线段AB,BC上的点,且CD=DE=,CE=2EB=2.

(Ⅰ)证明:DE⊥平面PCD

(Ⅱ)求二面角A﹣PD﹣C的余弦值.

33.如图,在三棱台ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,

(Ⅰ)求证:BF⊥平面ACFD;

(Ⅱ)求二面角B﹣AD﹣F的余弦值.

34.如图,在四棱柱ABCD﹣A1B1C1D1中,侧棱AA1⊥底面ABCD,AB⊥AC,AB=1,AC=AA1=2,AD=CD=,且点M和N分别为B1C和D1D的中点.

(Ⅰ)求证:MN∥平面ABCD

(Ⅱ)求二面角D1﹣AC﹣B1的正弦值;

(Ⅲ)设E为棱A1B1上的点,若直线NE和平面ABCD所成角的正弦值为,求线段A1E的长.

35.如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点.

(Ⅰ)证明:PB∥平面AEC;

(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.

2017年12月02日空间立体几何

参考答案

一.选择题(共14小题)

1.C;2.B;3.A;4.B;5.A;6.B;7.C;8.A;9.B;10.D;11.B;12.B;13.C;14.C;

二.填空题(共12小题)

15.;16.3;17.(0,﹣4,0);18.;19.(0,1,1);20.();21.①③④;22.;23.2;24.;25.;26.1;

三.解答题(共9小题)

27.;28.;29.;30.;31.;32.;33.;34.;35.;

打印:高考立体几何知识点总结

一、空间几何体 (一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何 体。其中,这条直线称为旋转体的轴。 (二)几种空间几何体的结构特征 1 、棱柱的结构特征 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形 的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 棱柱的分类 棱柱四棱柱平行六面体直平行六面体长方体正四棱 柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行;Ⅲ、平行于底面的截面和底面全等; 棱柱的面积和体积公式 ch S= 直棱柱侧 (c是底周长,h是高)S直棱柱表面 = c·h+ 2S底V棱柱 = S底·h 2 、棱锥的结构特征 棱锥的定义 (1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。(2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的结构特征 Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 ' 2 S ch = 正棱椎 (c为底周长,'h为斜高) 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱 A B C D P O H

高中数学选修2-1《空间向量与立体几何》知识点讲义

第三章 空间向量与立体几何 一、坐标运算 ()()111222,,,,,a x y z b x y z == ()()()()121212121212 11112121 2,,,,,,,,a b x x y y z z a b x x y y z z a x y z a b x x y y z z λλλλ+=+++-=---=?=???则 二、共线向量定理 (),0,=.a b b a b a b λλ≠←??→?充要对于使 三、共面向量定理 ,,.a b p a b x y p x a y b ←??→?=+充要若与不共线,则与共面使 ,,, 1.O OP xOA yOB P A B x y =+←???→+=充要条件四、对空间任意一点,若则三点共线 ,1.P A B C O OP xOA yOB zOC P A B C x y z =++←??→++=充要五、对空间异于、、、四点的任意一点,若若、、、四点 ()()()11, 1.P A B C AP xAB y AC OP OA x OB OA y OC OA OP xOB yOC x y OA x y z x y z ∴=+∴-=-+-∴=++----=∴++=证明:①必要性 、、、四点共面, ,,, 令()()() 1, 1,x y z OP y z OA yOB zOC OP OA y OB OA z OC OA AP y AB z AC A B C P ++=∴=--++∴-=-+-∴=+∴②充分性,,、、、四点共面. 六、空间向量基本定理 {} ,,a b c p x y z p xa yb zc a b c a b c ?若,,不共面,对于任意,使=++,称,,做空间的一个基底,, ,都叫做基向量.

立体几何证明方法汇总

G P A B C D F E A B C D E F ① 中位线定理 例题:已知如图:平行四边形ABCD 中,6BC =,正方形 ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点. (1)求证:GH ∥平面CDE ; (2)若2,CD DB ==F-ABCD 的体积. 练习:1、如下图所示:在直三棱柱ABC —A 1B 1C 1中,AC=3,BC=4,AB=5,AA 1=4,点D 是AB 的中点。 求证:AC 1∥平面CDB 1; 2. 如图,1111D C B A ABCD -是正四棱柱侧棱长为1,底面边长为2,E 是棱BC 的中点。(1)求证://1BD 平面DE C 1;(2)求三棱锥BC D D 1-的体积. 3、如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱 PD ⊥底面ABCD ,4,3PD DC ==,E 是PC 的中点。 (1)证明://PA BDE 平面; (2)求PAD ?以PA 为轴旋转所围成的几何体体积。 例2、 如图, 在矩形ABCD 中,2AB BC = , ,P Q 分别为线段,AB CD 的中点, EP ⊥平 面ABCD .求证: AQ ∥平面CEP ;(利用平行四边形) 练习:①如图,PA 垂直于矩形ABCD 所在的平面,E 、F 分别是AB 、PD 的中 点。求证:AF ∥平面PCE ; ②如图,已知P 是矩形ABCD 所在平面外一点,ABCD 平面PD ⊥,M ,N 分别 是AB ,PC 中点。求证://PAD MN 平面 ③ 如图,已知AB ?平面ACD ,DE//AB ,△ACD 是正三角形,AD = DE = 2AB ,且F 是CD 的中点.⑴求证:AF//平面BCE ; ④、已知正方体ABCD-1111D C B A ,O 是底ABCD 对角线的交点.求证: //1O C 面11AB D . ③比例关系 A 1 C _ H _ G _ D _ A _ B _ C E F

高考立体几何知识点总结

立体几何知识点总结(二) 一.点、直线、平面之间的关系 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (2)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (3)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (4)、垂直于同一平面的两直线平行。 (5) 平行四边形两组对边平行,三角形中位线平行底边,,,,,, 2、线线垂直的判断: (1)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。 (2)相交直线两直线可组成三角形利用勾股定理证垂直。 (3)一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断: (1)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (2)、两个平面平行,其中一个 平面内的直线必平行于另一个平 面。

4、线面垂直的判断: (1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 (2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 5、面面平行的判断: (1)一个平面内的两条相交直线分别平行于另一个平面, 这两个平面平行: 线面平行面面平行 (2)垂直于同一条直线的两个平面平行。 6、面面垂直的判断: (1)一个平面经过另一个平面的垂线,这两个平面互相垂直。 7,体积的求法 (1)三棱锥换底换高 (2)其他图形根据情况适用公式或分割成几个图形

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

最新空间几何—平行垂直证明(高一)

空间几何平行垂直证明专题训练知识点讲解 (一)直线与直线平行的证明 1)利用某些平面图形的特性:如平行四边形的对边互相平行 2)利用三角形中位线性质 3)利用空间平行线的传递性:m//a,m//b = a//b 平行于同一条直线的两条直线互相平行。 4)利用直线与平面平行的性质定理: 如果一条直线与一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行 a II - ' a= a II b -b - 5)利用平面与平面平行的性质定理: 如果两个平行平面同时和第三个平面相交,那么它们的交线平行. -// I _ o(nY = a〉= a // b 6)利用直线与平面垂直的性质定理: 垂直于同一个平面的两条直线互相平行 a _ :' b _ = a // b 7)利用平面内直线与直线垂直的性质: 在同一个平面内,垂直于同一条直线的两条直线互相平行 8)利用定义:在同一个平面内且两条直线没有公共点 (二)直线与平面平行的证明

平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。 两个平面互相平行,则其中一个平面内的任一直线平行于另 (二)平面与平面平行的证明 常见证明方法: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 、“垂直关系”常见证明方法 (一)直线与直线垂直的证明 1) 利用某些平面图形的特性:如 直角三角形的两条直角边互相垂直 等。 2) 看夹角:两条共(异)面直线的夹角为 90°,则两直线互相垂直。 3) 利用直线与平面垂直的性质: 1) 利用直线与平面平行的判定定理: 2) a // b 丿 利用平面与平面平行的性质推论: 个平面 3) 1) 利用平面与平面平行的判定定理: 2) 3) // // b = P :?:〃: 利用某些空间几何体的特性:如 利用定义:两个平面没有公共点 利用定义:直线在平面外,

知识点立体几何知识点常见结论总结

立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. A B C O I K H E F D A B C M A B C D E F G

空间几何证明

立体几何中平行、垂直关系证明的思路 平行垂直的证明主要利用线面关系的转化: 线∥线线∥面面∥面 判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面 ←→?←→??→??←→?←→?←???←→?←→? 线面平行的判定: a b b a a ∥,面,∥面???ααα a b α 线面平行的性质: αααβαβ∥面,面,∥?=? b a b 三垂线定理(及逆定理): PA AO PO ⊥面,为在内射影,面,则αααa ? a OA a PO a PO a AO ⊥⊥;⊥⊥?? α a P O 线面垂直: a b a c b c b c O a ⊥,⊥,,,⊥?=?αα a O α b c 面面垂直: a a ⊥面,面⊥αββα??

a a a l l =?? 面⊥面,,,⊥⊥ αβαβαβ αa l β ⊥面,⊥面∥ αα? a b a b a a? 面⊥,面⊥∥ αβαβ a b α 定理: 1.如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 作用:判断直线是否在平面内;证明点在平面内;检验平面。 2.过不在一条直线上的三点,有且只有一个平面。 作用:确定平面;判断两个平面是否重合;证明点线共面。 推论:a.经过一条直线和这条直线外的一点,有且只有一个平面; b.经过两相交直线,有且只有一个平面; c.经过两条平行直线,有且只有一个平面。 3.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。 作用:a.判定两个不重合平面是否相交; b.判断点在直线上。 4.平行于同一条直线的两条直线互相平行。(平行线的传递性)。

5.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6.(直线与平面平行的判定定理) 平面外一条直线与此平面内的一条直线平行,则该直线与该平面平行。 条件:a.一条直线在平面外; b.一条直线在平面内; c..这两条直线互相平行。 7.(平面与平面平行的判定定理) 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。 条件:a.两条相交直线; b.相交直线在一个平面内; c.对应平行。 8.(直线与平面平行的性质定理) 一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。 条件:a.一条直线与一个平面平行; b.过这条直线的任一个平面与此平面相交; c.交线与直线平行。 9.(平面与平面平行的性质定理) 如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 条件:a.两个平行平面:平面1和平面2和第三个平面:平面3 b.平面1与3相交,平面2与3相交 c.交线平行

高考立体几何知识点详细总结

八、立体几何 一、立体几何网络图: (1)线线平行的判断: ⑴平行于同一直线的两直线平行。 ⑶如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直 线和交线平行。 ⑹如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 ⑿垂直于同一平面的两直线平行。 (2)线线垂直的判断: ⑺在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜 线垂直。 ⑻在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影 垂直。 ⑽若一直线垂直于一平面,这条直线垂直于平面内所有直线。 补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 (3)线面平行的判断: ⑵如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 ⑸两个平面平行,其中一个平面内的直线必平行于另一个平面。 (4)线面垂直的判断: ⑼如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。 ⑾如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 ⒁一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⒃如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。

(5)面面平行的判断: ⑷一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。 ⒀垂直于同一条直线的两个平面平行。 (6)面面垂直的判断: ⒂一个平面经过另一个平面的垂线,这两个平面互相垂直。 二、其他定理: (1)确定平面的条件:①不公线的三点;②直线和直线外一点;③相交直线; (2)直线与直线的位置关系:相交;平行;异面; 直线与平面的位置关系:在平面内;平行;相交(垂直是它的特殊情况); 平面与平面的位置关系:相交;;平行; (3)等角定理:如果两个角的两边分别平行且方向相同,那么这两个角相等; 如果两条相交直线和另外两条相交直线分别平行,那么这两组直线所成的 锐角(或直角)相等; (4)射影定理(斜线长、射影长定理):从平面外一点向这个平面所引的垂线段和斜线段中,射影相等的两条斜线段相等;射影较长的斜线段也较长;反之,斜线段相 等的射影相等;斜线段较长的射影也较长;垂线段比任何一条斜线段都短。(5)最小角定理:斜线与平面内所有直线所成的角中最小的是与它在平面内射影所成的角。(6)异面直线的判定:①反证法; ②过平面外一点与平面内一点的直线,和平面内不过该点的直线是异面直线。 (7)过已知点与一条直线垂直的直线都在过这点与这条直线垂直平面内。 (8)如果—直线平行于两个相交平面,那么这条直线平行于两个平面的交线。 (9)如果两个相交平面都垂直于第三个平面,那么它们的交线也垂直于第三个平面。 三、唯一性定理: (1)过已知点,有且只能作一直线和已知平面垂直。 (2)过已知平面外一点,有且只能作一平面和已知平面平行。 (3)过两条异面直线中的一条能且只能作一平面与另一条平行。 四、空间角的求法:(所有角的问题最后都要转化为解三角形的问题,尤其是直角三角形)(1)异面直线所成的角:通过直线的平移,把异面直线所成的角转化为平面内相交直线所 o90 o 0≤ <α 注意:若异面直线中一条直线是三角形的一边,则平移时可找三角形的中位线。有的

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面内有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面内的所有直线都_____于另一个平面. 二.知识点梳理 知识点一、直线和平面垂直的定义与判定 定义判定 语言描述如果直线l和平面α内的任意一条直 线都垂直,我们就说直线l与平面 互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直. 图形 条件b为平面α内的任一直线,而l对这 一直线总有l⊥αl⊥m,l⊥n,m∩n=B,m?α,n?α 结论l⊥αl⊥α 要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线” 不同(线线垂直线面垂直) 性质 语言描述一条直线垂直于一个平面,那么这条 直线垂直于这个平面内的所有直线 垂直于同一个平面的两条直线平行.

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

高中数学立体几何知识点总结

高中数学之立体几何 平面的基本性质 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内. 公理2 如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 公理3 经过不在同一直线上的三个点,有且只有一个平面. 根据上面的公理,可得以下推论. 推论1 经过一条直线和这条直线外一点,有且只有一个平面. 推论2 经过两条相交直线,有且只有一个平面. 推论3 经过两条平行直线,有且只有一个平面. 空间线面的位置关系 共面平行—没有公共点 (1)直线与直线相交—有且只有一个公共点 异面(既不平行,又不相交) 直线在平面内—有无数个公共点 (2)直线和平面直线不在平面内平行—没有公共点 (直线在平面外) 相交—有且只有一公共点 (3)平面与平面相交—有一条公共直线(无数个公共点) 平行—没有公共点 异面直线的判定 证明两条直线是异面直线通常采用反证法. 有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”. 线面平行与垂直的判定 (1)两直线平行的判定 ①定义:在同一个平面内,且没有公共点的两条直线平行. ②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a∥α,aβ,α∩β=b,则a∥b. ③平行于同一直线的两直线平行,即若a∥b,b∥c,则a∥c. ④垂直于同一平面的两直线平行,即若a⊥α,b⊥α,则a∥b ⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a∥b ⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a∥α,a∥β,则a∥b. (2)两直线垂直的判定

空间立体几何讲义全

①规定长度为0的向量为零向量,记作0; ②模为1的向量叫做单位向量; 3.相等的向量:两个模相等且方向相同的向量称为相等的向量. 4.负向量:两个模相等且方向相反的向量是互为负向量.如a的相反向量记为-a. 5.共线与共面向量 (1)共线向量:与平面向量一样,如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量,记作a∕∕b. (2)共面向量:平行于同一平面的向量叫做共面向量. (3)定理 共线向量定理:对于空间任意两个向量b (b≠ 、的充要条件是存在实数λ,使得.b ),0 a// a b = aλ共面向量定理:如果两个向量b、a不共线,则向量p与向量b、a共面的充要条件是存在唯一的有序史书对(x,y),使得p.b y = a x+ 6.注意: ①零向量的方向是任意的,规定0与任何向量平行; ②单位向量不一定相等,但单位向量的模一定相等且为1; ③方向相同且模相等的向量称为相等向量,因此,在空间,同向且等长的有向线段表示同一向量或相等向量; ④空间任意两个向量都可以通过平移成为共面向量; ⑤一般来说,向量不能比较大小.

二、空间向量的运算 1、加减法 (1)空间任意两个向量都是共面的,它们的加、减法运算类似于平面向量的加减法.空间向量和平面向量一样满足三角形法则和平行四边形法则. (2)加法运算律: 空间向量的加法满足交换律及结合律. 交换律: 结合律: (3)推广 *首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量: *首尾相接的若干向量若构成一个封闭图形,则它们的和为:零向量 2.空间向量的数乘运算 (1)实数λ与空间向量a的乘积λa仍是一个向量,称为向量的数乘运算. ①当λ>0时,λa与a的方向相同; ②当λ<0时,λa与a的方向相反; ③当λ=0时,λa=0. ④|λa|=|λ|a?,λa的长度是a的长度的|λ|倍.

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题 1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 2、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点, 求证: 1// A C 平面BDE 。 3、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC . 4、已知正方体 1111 ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C1O ∥面11 AB D ;(2) 1 AC ⊥面 11 AB D . 5、正方体''''ABCD A B C D -中,求证: ''AC B D DB ⊥平面; 6、正方体ABCD —A1B1C1D1中. (1)求证:平面A1BD ∥平面B1D1C ; (2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD . 7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且 22EF AC = ,90BDC ∠=, A E D B C A E D 1 C B 1 D C B A S D C B A D 1 O D B A C 1 B 1 A 1 C A 1 A B 1 B C 1 C D 1 D G E F

求证:BD ⊥平面ACD 8、如图,在正方体 1111 ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、 11 C D 的中点.求证:平面 1D EF ∥平面BDG . 9、如图,在正方体1111 ABCD A B C D -中,E 是 1 AA 的中点. (1)求证: 1// A C 平面BDE ; (2)求证:平面1A AC ⊥ 平面BDE . 10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==, E 为BC 的中点. 求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 11、如图,在四棱锥P ABCD -中,底面ABCD 是0 60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥. 12、如图1,在正方体 1111 ABCD A B C D -中,M 为 1 CC 的中点,AC 交BD

高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016高考立体几何知识点总结 一 、空间几何体 (一) 空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的 面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线称为旋转体的轴。 (二) 几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2 棱柱的分类 棱柱 四棱柱平行六面体 直平行 六面体长方体 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3 棱柱的面积和体积公式 ch S 直棱柱侧(c 是底周长,h 是高) S 直棱柱表面 = c·h+ 2S 底 V 棱柱 = S 底 ·h? 2 、棱锥的结构特征 2.1 棱锥的定义 (1) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面 棱长都相等 底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是四边形 图1-1 棱柱

所围成的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心,这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、 平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、 正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积:1 '2 S ch = 正棱椎(c 为底周长,'h 为斜高) 体积:1 3 V Sh = 棱椎(S 为底面积,h 为高) 正四面体: 对于棱长为a 正四面体的问题可将它补成一个边长为 a 2 2 的正方体问题。 对棱间的距离为 a 2 (正方体的边长) 正四面体的高 a 6(正方体体对角线l 3 2 =) 正四面体的体积为 32a (正方体小三棱锥正方体V V V 3 1 4=-) 正四面体的中心到底面与顶点的距离之比为3:1(正方体体对角线正方体体对角线:l l 2 1 61= ) 3 、棱台的结构特征 3.1 棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 3.2 正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 A B C D P O H

利用空间向量立体几何(完整版)

向量法解立体几何 引言 立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。教材上讲的比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,给老师对这部分内容的教学及学生解有关这部分内容的题目造成一定的困难,下面主要就这几方面问题谈一下自己的想法,起到一个抛砖引玉的作用。 基本思路与方法 一、基本工具 1.数量积: cos a b a b θ?= 2.射影公式:向量a 在b 上的射影为 a b b ? 3.直线0Ax By C ++=的法向量为 (),A B ,方向向量为 (),B A - 4.平面的法向量(略) 二、用向量法解空间位置关系 1.平行关系 线线平行?两线的方向向量平行 线面平行?线的方向向量与面的法向量垂直 面面平行?两面的法向量平行 2.垂直关系

线线垂直(共面与异面)?两线的方向向量垂直 线面垂直?线与面的法向量平行 面面垂直?两面的法向量垂直 三、用向量法解空间距离 1.点点距离 点()111,,P x y z 与()222,,Q x y z 的 距离为222212121()()()PQ x x y y z z =-+-+- 2.点线距离 求点()00,P x y 到直线:l 0Ax By C ++=的距离: 方法:在直线上取一点(),Q x y , 则向量PQ 在法向量(),n A B =上的射影PQ n n ?= 0022 Ax By C A B +++ 即为点P 到l 的距离. 3.点面距离 求点()00,P x y 到平面α的距离: 方法:在平面α上去一点(),Q x y ,得向量PQ , 计算平面α的法向量n , 计算PQ 在α上的射影,即为点P 到面α的距离. 四、用向量法解空间角 1.线线夹角(共面与异面) 线线夹角?两线的方向向量的夹角或夹角的补角 2.线面夹角 求线面夹角的步骤:

空间立体几何点线面判断与证明

常州知典教育一对一教案学生:年级:学科:数学授课时间:月日授课老师:赵鹏飞

直线与直线直线与平面平面与平面平行关系 相交关系 独有关系 (1)已知m,n表示两条不同直线,α表示平面,下列说法正确的是() A.若m∥α,n∥α,则m∥n B.若m⊥α,n?α,则m⊥n C.若m⊥α,m⊥n,则n∥α D.若m∥α,m⊥n,则n⊥α (2)下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行 B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D.若两个平面都垂直于第三个平面,则这两个平面平行 【解析】(1)对于选项A,m与n还可以相交或异面; 对于选项C,还可以是n?α; 对于选项D,还可以是n∥α或n?α或n与α相交. (2)对于命题A,这两条直线可以相交或为异面直线, ∴A错误;对于命题B,这两个平面可以相交,∴B错误;对于命题D,这两个平面还可能相交,∴D错误;而由线面平行的性质定理可证C正确.故选C. 【答案】(1)B(2)C 【点拨】解题(1)根据空间线面、面面、线线平行的判定与性质、垂直的判定与性质逐个进行判断,注意空间位置关系的各种可能情况.解题(2)时要注意充分利

用正方体(或长方体)模型辅助空间想象. 解决空间位置关系问题的方法 (1)解决空间中点、线、面位置关系的问题,首先要明确空间位置关系的定义,然后通过转化的方法,把空间中位置关系的问题转化为平面问题解决. (2)解决位置关系问题时,要注意几何模型的选取,如利用正(长)方体模型来解决问题. 考向2 异面直线所成的角 1.两条异面直线所成的角 过空间任意一点分别引两条异面直线的平行直线,那么这两条相交直线所成的锐角或直角叫作这两条异面直线所成的角.若记这个角为θ,则θ∈? ? ???0,π2. 2.判定空间两条直线是异面直线的方法 (1)判定定理:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线. (2)反证法:证明两直线平行、相交不可能或证明两直线共面不可能,从而可得两直线异面. (1)(2014·大纲全国,4)已知正四面体ABCD 中,E 是AB 的中点,则 异面直线CE 与BD 所成角的余弦值为( ) A.16 B.3 6 C.13 D.33 (2)如图,已知二面角α-MN -β的大小为60°,菱形ABCD 在面β内,A ,B 两

立体几何证明方法大全

(二)立体几何证明方法汇总 1、线线平行判定定理 一个平面 点 平行于同一条直线的两条直线的 两条直线平行 线面平行性质如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交, 面面平行的性一个平面与两个平行平面相交 则交线平行 线面垂直的性垂直于同 行

两条直线所成的角是 线面垂直的性质一条直线垂直于一个平面任何一条直线 一条直线垂直三角形两边则垂直一条直线垂直于三角形的两条边 第三边 三垂线定理 个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线定理逆定三垂线逆定理 这个平面的一条斜线垂直,那么它和这条斜线的射影垂直

一条直线与平面没有交点 线面平行判两个平面平行, 平行于另一个平面 如果一条直线垂直于平面内的任何一条 直线,则直线与平面垂直。 的一条直线垂直于平面内两条相交直线, 则平行于这个平面。 的推一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 的若二平面垂直,那么在一个平面内垂直 于它们的交线的直线垂直于另一个平面

如果两个平面没有公共点,则两个平面平行。 面面平行的如果一个平面内有两条相交直线平行于另一 个平面,那么这两个平面平行 面面平行的判定定理推如果两个平面内两条相交直线平行于另一个平面内两条相交直线,则两个平面平行。 线面垂直的 垂直于同一直线的两个平面平行 两个平面相交, 这两个平面垂直。 面面垂直的判如果平面经过另一个平面的一条垂线, 面垂直。

公理 么这条直线上的所有点都在这个平面内。( ( 公理 它公共点,这些公共点的集合是一条直线( ( 公理 个平面。 干个点共面的依据 推论 有一个平面。 ( ( 推论 推论

高考文科数学 立体几何大题-知识点、考点及解题方法

立体几何大题题型及解题方法 立体几何大题一般考以下五个方面: 一、平行位置关系的证明 1、证明线面平行(重点) 解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。 2、证明面面平行 解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。 3、平行位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 二、垂直位置关系的证明 1、证明线线垂直 解题方法: 2、证明线面垂直(重点) 解题方法: 3、证明面面垂直 4、垂直位置关系的探索 (1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。 三、求空间距离

1、点到平面的距离 解题方法: 2、空间线段长 解题方法:(1)解三角形法;(2)列方程法。 四、求几何体体积 五、求空间角 1、异面直线所成的角 2、直线与平面所成的角 考点一:如何判断空间中点、线、面的位置关系(排除法)

考点二:平行位置关系的证明 证明题一般的解题步骤: 一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法, 如果无法确定,则要通过逆向思维来分析题目; 二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等 分点,特别是中点; 三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什 么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列; 四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论; 五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接

高中数学立体几何讲义

平面与空间直线 (Ⅰ)、平面的基本性质及其推论 图形 符号语言 文字语言(读法) A a A a ∈ 点A 在直线a 上。 A a A a ? 点A 不在直线a 上。 A α A α∈ 点A 在平面α内。 A α A α? 点A 不在平面α内。 b a A a b A =I 直线a 、b 交于A 点。 a α a α? 直线a 在平面α内。 a α a α=?I 直线a 与平面α无公共点。 a A α a A α=I 直线a 与平面α交于点A 。 l αβ=I 平面α、β相交于直线l 。 2、平面的基本性质 公理1: 如果一条直线的两点在一个平面内,那么这条直线上的所有点都在这个平面内 推理模式:A AB B ααα∈? ??∈? ?。 如图示: 应用:是判定直线是否在平面内的依据,也是检验平面的方法。 B A α

公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。 推理模式: A l A ααββ∈? ?=?∈? I 且A l ∈且l 唯一如图示: 应用:①确定两相交平面的交线位置;②判定点在直线上。 例1.如图,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面 α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线. 解:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB I α=E ,AB ?β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点. 同理可证F ,G ,H 均为平面α与β的公共点. ∵两个平面有公共点,它们有且只有一条通过公共点的公共直线, ∴E ,F ,G ,H 四点必定共线. 说明:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论. 例2.如图,已知平面α,β,且αI β=l .设梯形ABCD 中,AD ∥BC ,且AB ?α,CD ?β,求证:AB ,CD ,l 共点(相交于一点). 证明 ∵梯形ABCD 中,AD ∥BC , ∴AB ,CD 是梯形ABCD 的两条腰. ∴ AB ,CD 必定相交于一点, 设AB I CD =M . 又∵AB ?α,CD ?β,∴M ∈α,且M ∈β.∴M ∈αI β. 又∵αI β=l ,∴M ∈l , 即AB ,CD ,l 共点. 说明:证明多条直线共点时,一般要应用公理2,这与证明多点共线是一样的. 公理3: 经过不在同一条直线上的三点,有且只有一个平面。 推理模式:,, A B C 不共线?存在唯一的平面α,使得,,A B C α∈。 应用:①确定平面;②证明两个平面重合 。 例3.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面. 证明 1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A , α D C B A E F H G α D C B A l 例2 β M

相关文档
最新文档