电磁场与电磁波第二章课后答案

合集下载

电磁场与电磁波 第2章习题解答

电磁场与电磁波  第2章习题解答

第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。

---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。

(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。

电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案 (2)

电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。

2.使得电体带有不同种类电荷的原子或分子是离子化。

3.在法拉弹规定空气是电介质。

4.电荷量的基本单位是库仑。

5.元电荷是正负电荷的最小电荷量。

6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。

7.电势能是标量。

8.空间中一点产生的电场是该点电荷所受电场的矢量和。

9.电场E的国际单位是NC−1。

10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。

1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。

2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。

3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。

4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。

5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。

1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。

2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。

第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。

2.电磁感应一定要在导电体内才能产生电流是错误的。

√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。

4.电磁感应现象是反过来实现的。

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答

电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。

如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。

解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。

解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。

由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。

解:以球心为坐标原点,转轴(一直径)为$z$轴。

设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案

电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。

利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。

通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。

至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。

讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。

介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。

关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。

介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。

至于电容和部分电容一节可以从简。

重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。

电磁场与电磁波课后习题答案 第二章

电磁场与电磁波课后习题答案 第二章

1-1. (1) 叙述库仑定律,并写出数学表达式。

(2)电荷之间的作用力满足牛顿第三定律吗?请给出证明。

解:(1)库仑定律内容为:真空中两个静止的点电荷之间的相互作用力的大小,与它们的电量q 和'q 的乘积成正比,与它们之间距离R 的平方成反比。

作用力的方向沿两者连线的方向。

两点电荷同号时为斥力,异号时为吸力。

所以:(2)电荷之间的作用力不满足牛顿第三定律,请看下面的例证:1q 以速度1v 运动,q 2以速度2v运动。

如图1-2所示。

此时,2q 在1q 处产生有电场2E和磁场2H 。

而1q 在2q 处也产生电场1E和磁场1H 。

但因2q 在1q 处产生的磁场方向与1v 平行。

故由洛仑兹公式知,q 1所受的力为 )(2120112121N E q H v q E q F=⨯+=μ 只有电场力。

但q 1对q 2的作用力为:10221112H v q E q Fμ⨯+= (N) 既有电场力,又有磁场力,所以两者不相等。

1-2 (1) 洛仑磁力表达式中,哪部分做功,哪部分不做功,为什么? (2) 洛仑兹力满足迭加原理吗?为什么? 解: (1) 洛仑磁力公式为H v q E q F0μ⨯+= (N )洛仑兹力做的功为⎰⋅=csd F W,其中dt v s d = 所以有:⎰⋅=cs d F W=⎰∆⋅tdt v F=⎰∆⨯+tdt v H v q E q)(0μ=⎰⎰∆∆⋅⨯+⋅ttdt v H v q dt v E q)(0μ=⎰∆⋅tdt v E q(J)其中使用了矢量恒等式()()BA C CB A ⨯⋅=⨯⋅所以,洛仑兹力作的功为⎰∆⋅=tdt v E q W=)(J sd E qC⎰⋅所以,洛仑兹力中,因为E q 与电荷的做功无关。

而H v q0μ⨯部分总是与电荷的运动方向垂直,故E q 部分做功,而H v q0μ⨯部分不做功。

(2)因为电荷受力与E 和H间都是线性关系,所以,洛仑兹力满足迭加原理。

电磁场与电磁波第2章课后答案

电磁场与电磁波第2章课后答案

电磁场与电磁波第2章课后答案2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。

解:z y r z x r z y r z xr ??;??;??;??4321+=+=+-=+-=ρρρρ 84?15?6?3)(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。

题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ?2)}??()??{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ?20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。

解:在无限长的半边圆筒上取宽度为?ad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为?ρρad s l =,对?积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ?)?cos ?sin (22?00000??-=--==πππερπερπε?ρρ 题2-3图题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。

解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'?21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(??)'(?yx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2?)2/()2/(ln ?{4),(2222y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知真空中电荷分布为ρ=≤>r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。

电磁场与电磁波课后答案谢处方

电磁场与电磁波课后答案谢处方

第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。

如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。

解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。

解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。

由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。

解 以球心为坐标原点,转轴(一直径)为z 轴。

设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。

电磁场与电池波第二章 习题解答

电磁场与电池波第二章 习题解答


b'
a
G G E1' ⋅d ρ = U 得
ρl b' ln = U 2πε a
所以
ρl =
U .2πε b' ln a
当 ρ = a 时, E1' 最大,
' ∴ E1max =
ρl U = = 4.2 ×106 V/m ' b 2πε a
a ln a
' 由于 E1max 小于介质的击穿场强,所以电介质不会被击穿。
当 ρ = a 时, E1 最大, E1max = 1.26 × 106 V/m 由于 E1max 小于介质的击穿场强,所以电介质不会被击穿。 当 ρ = b ' 时, E2 最大, E2 max = 3.94 × 106 V/m 因为 E2 大于空气的击穿场强,故空气介质被击穿。 空气击穿后,电介质承受全部电压, 由
2.17 一个有两层介质( ε1 , ε 2 )的平行板电容器,两种介质的电导率分别为 σ 1 和 σ 2 ,电
容器极板的面积为 S。当外加压力为 U 时,求: 电容器的电场强度; 两种介质分界面上表面的自由电荷密度; 电容器的漏电导; 当满足参数是 σ 1ε 2 = σ 2ε1 ,问 G/C=?(C 为电容器 电容) 解: (1)由 E1d1 + E 2 d 2 = U , J1n = J 2n 即 J1 = J 2 有 σ 1 E1 = σ 2 E2 得: E1 =
(a z - a x )
E2 =
q2 q2 1 ' R2 = (r - r2 (a z - a y ) )=− 3 3 4πε 0 R2 4πε 0 R2 32 2πε 0 1 32 2πε 0 (-2a x + a y + a z )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因此,
2-12若带电球的内外区域中的电场强度为
考虑到 ,代入上式求得合成电场强度为
2-7已知真空中半径为a的圆环上均匀地分布的线电荷密度为 ,试求通过圆心的轴线上任一点的电位及电场强度。
解建立直角坐标,令圆环位于坐标原点,如习题图2-7所示。那么,点电荷 在z轴上 点产生的电位为
根据叠加原理,圆环线电荷在 点产生的合成电位为
因电场强度 ,则圆环线电荷在 点产生的电场强度为
第二章静电场
重点和难点
电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
,场点P的坐标为(r, ,)。
根据叠加原理,电偶极子在场点P产生的电场为
考虑到r>>l, =er, ,那么上式变为
式中
以 为变量,并将 在零点作泰勒展开。由于 ,略去高阶项后,得
利用球坐标系中的散度计算公式,求出电场强度为
2-4已知真空中两个点电荷的电量均为 C,相距为2cm,如习题图2-4所示。试求:①P点的电位;②将电量为 C的点电荷由无限远处缓慢地移至P点时,外力必须作的功。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。
3,介质与导体的边界条件:

若导体周围是各向同性的线性介质,则
;静电场的能量:来自孤立带电体的能量:离散带电体的能量:
分布电荷的能量:
静电场的能量密度:
对于各向同性的线性介质,则
电场力:
库仑定律:
常电荷系统:
常电位系统:
题 解
2-1若真空中相距为d的两个电荷q1及q2的电量分别为q及4q,当点电荷 位于q1及q2的连线上时,系统处于平衡状态,试求 的大小及位置。
利用点电荷的场强公式 ,其中 为点电荷q指向场点 的单位矢量。那么,
在P点的场强大小为 ,方向为 。
在P点的场强大小为 ,方向为 。
在P点的场强大小为 ,方向为
则 点的合成电场强度为
2-3直接利用式(2-2-14)计算电偶极子的电场强度。
解 令点电荷 位于坐标原点, 为点电荷 至场点P的距离。再令点电荷 位于+ 坐标轴上, 为点电荷 至场点P的距离。两个点电荷相距为
2-10已知电荷密度为 及 的两块无限大面电荷分别位于x= 0及x= 1平面,试求 及 区域中的电场强度。
解无限大平面电荷产生的场强分布一定是均匀的,其电场方向垂直于无限大平面,且分别指向两侧。因此,位于x= 0平面内的无限大面电荷 ,在x< 0区域中产生的电场强度 ,在x> 0区域中产生的电场强度 。位于x=1平面内的无限大面电荷 ,在x< 1区域中产生的电场强度 ,在x> 1区域中产生的电场强度 。
2-8设宽度为W,面密度为 的带状电荷位于真空中,
试求空间任一点的电场强度。
解建立直角坐标,且令带状电荷位于xz平面内,如习题图2-8所示。带状电荷可划分为很多条宽度为 的无限长线电荷,其线密度为 。那么,该无限长线电荷产生的电场强度与坐标变量z无关,即
式中

那么
2-9已知均匀分布的带电圆盘半径为a,面电荷密度
为 ,位于z= 0平面,且盘心与原点重合,试求圆盘
轴线上任一点电场强度 。
解如图 2-9所示,在圆盘上取一半径为 ,宽度为 的圆环,该圆环具有的电荷量为 。由于对称性,该圆环电荷在z轴上任一点P产生的电场强度仅的 有 分量。根据习题2-7结果,获知该圆环电荷在P产生的电场强度的 分量为
那么,整个圆盘电荷在P产生的电场强度为
解根据叠加原理, 点的合成电位为
因此,将电量为 的点电荷由无限远处缓慢地移到 点,外力必须做的功为
2-5通过电位计算有限长线电荷
的电场强度。
解建立圆柱坐标系。 令先电
荷沿z轴放置,由于结构以z轴对称,场强与 无关。为了简单起见,令场点位于yz平面。
设线电荷的长度为 ,密度为
,线电荷的中点位于坐标原
点,场点 的坐标为 。
利用电位叠加原理,求得场点
的电位为
式中 。故
因 ,可知电场强度的z分量为
电场强度的r分量为
式中 ,那么,合成电强为
当L时, ,则合成电场强度为
可见,这些结果与教材2-2节例4完全相同。
2-6已知分布在半径为a的半圆周上的电荷线密度 ,试求圆心处的电场强度。
解建立直角坐标,令线电荷位于
xy平面,且以y轴为对称,如习题图2-6所示。那么,点电荷 在圆心处产生的电场强度具有两个分量Ex和Ey。由于电荷分布以y轴为对称,因此,仅需考虑电场强度的 分量,即
解要使系统处于平衡状态,点电荷 受到点电荷q1及q2的力应该大小相等,方向相反,即 。那么,由 ,同时考虑到 ,求得
可见点电荷 可以任意,但应位于点电荷q1和q2的连线上,且与点电荷
相距 。
2-2已知真空中有三个点电荷,其电量及位置分别为:
试求位于 点的电场强度。
解令 分别为三个电电荷的位置 到 点的距离,则 , , 。
重要公式
真空中静电场方程:
积分形式:
微分形式:
已知电荷分布求解电场强度:
1, ;
2,
3, 高斯定律
介质中静电场方程:
积分形式:
微分形式:
线性均匀各向同性介质中静电场方程:
积分形式:
微分形式:
静电场边界条件:
1, 。对于两种各向同性的线性介质,则
2, 。在两种介质形成的边界上,则
对于两种各向同性的线性介质,则
由电场强度法向边界条件获知,

由此求得
根据叠加定理,各区域中的电场强度应为
2-11若在球坐标系中,电荷分布函数为
试求 及 区域中的电通密度 。
解作一个半径为r的球面为高斯面,由对称性可知
式中q为闭合面S包围的电荷。那么
在 区域中,由于q= 0,因此D= 0。
在 区域中,闭合面S包围的电荷量为
因此,
在 区域中,闭合面S包围的电荷量为
相关文档
最新文档