材料科学基础知识点
最全的大学材料科学基础复习要点

第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
(2)特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(3)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷;b 可有无限多种。
2 晶胞(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(4)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
材料科学基础知识点

重点与难点1.描述原子中电子的空间位置和能量的四个量子数;*2. 核外电子排布遵循的原则;*3. 元素性质、原子结构和该元素在周期表中的位置三者之间的关系;*4. 原子间结合键分类及其特点;5. 高分子链的近程和远程结构。
重要概念与名词主量子数n,轨道角动量量子数l,磁量子数m,自旋角动量量子数s;能量最低原理,Pauli不相容原理,Hund规则;元素,元素周期表,周期,族;结合键,金属键,离子键,共价键,范德华力,氢键;高分子链,近程结构,结构单元,线性、支化、交联和三维网络分子结构;无规、交替、嵌段和接枝共聚物;全同立构、间同立构、无规立构,顺式、反式构型;远程结构、数均、重均相对分子质量,聚合度;热塑性、热固性塑料。
由于高分子材料的相对分子质量可高达几十万甚至上百万,所包含的结构单元可能不止一种,每一种结构单元又具有不同构型,而且结构单元之间可能有不同键接方式与序列,故高分子的结构相当复杂。
高分子结构包括高分子键结构和聚集态结构两方面。
键结构又分近程结构和远程结构。
近程结构属于化学结构,又称一次结构,是指大分子链中原子的类型和排列,结构单元的键接顺序、支化、交联以及取代基在空间的排布规律等。
远程结构又称二次结构,是指高分子的大小与形态,键的柔顺性及分子在各种环境中所采取的构象。
第二章概要重点与难点1. 选取晶胞的原则;2.7个晶系,14种布拉菲空间点阵的特征;3. 晶向指数与晶面指数的标注;4. 晶面间距的确定与计算;5. 晶体的对称元素与32种点阵;6. 极射投影与Wulff网;7. 三种典型金属晶体结构的晶体学特点;8. 晶体中的原子堆垛方式和间隙;9. 固溶体的分类及其结构特点;10. 影响固溶体固溶度的因素;11. 超结构的类型和影响有序化的因素;12. 中间相的分类及其结构特点;13. 离子晶体的结构规则;14. NaCl型、A2B2型和硅酸盐晶体结构特点;15. 金刚石型共价晶体结构特点;16. 聚合物晶态结构模型,晶体形态及其结构特点;17. 非晶态结构及其性能与晶体结构的区别。
材料科学基础知识

材料科学基础知识一、概述材料科学是一门涉及材料的结构、性能、制备和应用的学科。
在现代科学技术发展中,材料科学起着重要的作用。
材料科学的发展涉及多个学科领域,如物理学、化学、工程学等。
本文将介绍材料科学的基础知识,包括材料分类、结构与性能关系、制备方法等。
二、材料分类根据材料的组成和性质,可以将材料分为金属材料、陶瓷材料、聚合物材料和复合材料四大类。
1. 金属材料:金属材料具有良好的导电性和导热性,常见的金属材料有铁、铝、铜等。
金属材料的特点是强度高、可塑性好。
2. 陶瓷材料:陶瓷材料具有较高的熔点和硬度,常见的陶瓷材料有瓷器、玻璃等。
陶瓷材料的特点是脆性大、电绝缘性好。
3. 聚合物材料:聚合物材料是由高分子化合物组成的,常见的聚合物材料有塑料、橡胶等。
聚合物材料的特点是具有良好的可塑性和耐腐蚀性。
4. 复合材料:复合材料是由两种或多种不同种类材料组合而成的材料,常见的复合材料有纤维增强复合材料、金属基复合材料等。
复合材料的特点是综合性能优良。
三、结构与性能关系材料的结构对其性能有着重要的影响。
以下是常见的结构与性能关系。
1. 晶体结构:晶体是由离子、原子或分子按照一定规律排列而成的有序结构。
晶体的结构确定了材料的硬度、导电性等性能。
2. 硬度与强度:材料的硬度和强度与其原子、分子的排列有关。
晶体结构和材料的晶粒大小会影响材料的硬度和强度。
3. 导电性与绝缘性:材料的导电性与其电子的运动有关。
金属材料具有良好的导电性,而陶瓷材料则具有较好的绝缘性。
4. 磁性与非磁性:材料的磁性与其原子或分子的磁矩有关。
铁、镍等金属具有磁性,而大部分非金属材料则是非磁性的。
四、材料制备方法材料的制备方法经过了长期的发展和探索,现在已经有许多成熟的制备方法。
以下是常见的材料制备方法。
1. 熔融法:熔融法是通过加热材料使其熔化,然后再进行浇铸、凝固等操作来制备材料。
熔融法广泛应用于金属和玻璃等材料的制备过程。
2. 沉积法:沉积法利用化学反应、物理吸附等方法,将原料分子沉积到基材上,形成所需的材料。
材料科学基础重点知识

第5章 纯金属的凝固1、金属结晶的必要条件:过冷度-理论结晶温度与实际结晶温度的差;结构起伏-大小不一的近程有序排列的此起彼伏;能量起伏-温度不变时原子的平均能量一定,但原子的热振动能量高低起伏的现象;成分起伏-材料内微区中因原子的热运动引起瞬时偏离熔液的平均成分,出现此起彼伏的现象。
结晶过程:形核和长大过程交替重叠在一起进行2、过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。
从热力学看,没有过冷度结晶就没有趋动力。
根据T R k ∆∝1可知当过冷度T ∆=0时临界晶核半径R *为无穷大,临界形核功(21T G ∆∝∆)也为无穷大,无法形核,所以液态金属不能结晶。
晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。
孕育期:过冷至实际结晶温度,晶核并未立即产生,结晶开始前的这段停留时间3、均匀形核和非均匀形核均匀形核:以液态金属本身具有的能够稳定存在的晶胚为结晶核心直接成核的过程。
非均匀形核:液态金属原子依附于固态杂质颗粒上形核的方式。
临界晶核半径:ΔG 达到最大值时的晶核半径r *=-2γ/ΔGv 物理意义:r<rc 时, ΔGs 占优势,故ΔG>0,晶核不能自动形成。
r>rc 时, ΔGv 占优势,故ΔG<0,晶核可以自动形成,并可以稳定生长。
临界形核功:ΔGv *=16πγ3/3ΔGv 3 形核率:在单位时间单位体积母相中形成的晶核数目。
受形核功因子和原子扩散机率因子控制。
4、正的温度梯度:靠近型壁处温度最低,凝固最早发生,越靠近熔液中心温度越高。
在凝固结晶前沿的过冷度随离界面距离的增加而减小。
纯金属结晶平面生长。
负的温度梯度:过冷度随离界面距离的增加而增加。
纯金属结晶树枝状生长。
5、光滑界面即小平面界面:液固两相截然分开,固相表面为基本完整的原子密排面,微观上看界面光滑,宏观上看由不同位向的小平面组成故呈折线状的界面。
粗糙界面即非小平面界面:固液两相间界面微观上看高低不平,存在很薄的过渡层,故从宏观上看界面反而平直,不出现曲折小平面的界面。
材料科学基础基础知识点总结

材料科学基础基础知识点总结Revised as of 23 November 2020第一章材料中的原子排列第一节原子的结合方式2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5 特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷; b 可有无限多种。
2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
材料科学基础知识点

材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。
核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。
主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。
材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。
按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。
原子之间的键合方式是金属键。
陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。
它可以是晶体、非晶体或混合晶体。
原子之间的键合方式是离子键,共价键。
聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。
它主要是非晶体或晶体与非晶体的混合物。
原子的键合方式通常是共价键。
复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。
其原子间的键合方式是混合键。
密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。
韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。
宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。
以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。
材料科学基础108个重要知识点

材料科学基础108个重要知识点1.晶体--原子按一定方式在三维空间内周期性地规则重复排列,有固定熔点、各向异性。
2.中间相--两组元A 和B 组成合金时,除了形成以A 为基或以B 为基的固溶体外,还可能形成晶体结构与A,B 两组元均不相同的新相。
由于它们在二元相图上的位置总是位于中间,故通常把这些相称为中间相。
3.亚稳相--亚稳相指的是热力学上不能稳定存在,但在快速冷却成加热过程中,由于热力学能垒或动力学的因素造成其未能转变为稳定相而暂时稳定存在的一种相。
4.配位数--晶体结构中任一原子周围最近邻且等距离的原子数。
5.再结晶--冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状态,这个过程称为再结晶。
(指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程)6.伪共晶--非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金得到的共晶组织称为伪共晶。
7.交滑移--当某一螺型位错在原滑移面上运动受阻时,有可能从原滑移面转移到与之相交的另一滑移面上去继续滑移,这一过程称为交滑移。
8.过时效--铝合金经固溶处理后,在加热保温过程中将先后析出GP 区,θ”,θ’,和θ。
在开始保温阶段,随保温时间延长,硬度强度上升,当保温时间过长,将析出θ’,这时材料的硬度强度将下降,这种现象称为过时效。
9.形变强化--金属经冷塑性变形后,其强度和硬度上升,塑性和韧性下降,这种现象称为形变强化。
10.固溶强化--由于合金元素(杂质)的加入,导致的以金属为基体的合金的强度得到加强的现象。
11.弥散强化--许多材料由两相或多相构成,如果其中一相为细小的颗粒并弥散分布在材料内,则这种材料的强度往往会增加,称为弥散强化。
12.不全位错--柏氏矢量不等于点阵矢量整数倍的位错称为不全位错。
13.扩展位错--通常指一个全位错分解为两个不全位错,中间夹着一个堆垛层错的整个位错形态。
材料科学基础常考知识点

材料科学基础第一章1.按化学组成对材料分类。
答:①以某些元素的氧化物、碳化物、氮化物、卤素化合物、硼化物一级硅酸盐、铝酸盐磷酸盐、硼酸盐、等物质组成的无机非金属材料。
②以金属元素或金属元素为主构成的具有金属特性的金属材料。
③以一种材料为基体,另一种材料为增强体的组合成的复合材料。
④以高分子化合物为基础组成的高分子材料。
2.对结合键分类。
答:结合键包含化学键和物理键。
化学键包含离子键、共价键、金属键;物理键包含范德华键和氢键。
3列举一些开设“材料科学与工程”学院的高校并标明优势专业。
答:清华大学——高分子生物医用材料、能源用高分子材料浙江大学——材料物理与化学大连理工大学——材料成型与控制工程合肥工业大学——高聚物设计合成与应用,、光电高分子材料与器件2-10.名词解释(1)点阵能(2)晶体(3)晶胞(4)空间点阵(5)晶带解:(1)点阵能:0K时1mol离子化合物的正负离子由相互远离的气态结合成离子晶体时释放的能量。
(2)晶体:晶体是内部质点在三维空间按周期性重复排列的固体,即晶体是具有格子构造的固体。
(3)晶胞:把组成各种晶体构造的最小体积单位成为晶胞。
(4)空间点阵:把由一系列在三维空间按周期型排列的几何点称为一个空间点阵。
(5)晶带: 所有相交于某一直线或平行于此直线的所有晶面的组合称为晶带。
一.(1)叙述形成置换固溶体的影响因素?(2)形成连续置换固溶体的充要条件?解:(1)形成置换固溶体的影响因素有:①原子或离子尺寸的影响②晶体结构类型的影响③电负性的影响④电子浓度因素(2)只有两两结构相同和%15<∆r 才是形成连续固溶体的充分必要条件。
二.为什么石英不同系列变体之间转化温度比同系列变体之间转换温度高得多?解:这与各种变体结构特点有关。
-∂方英石结构中2个硅氧四面体之间存在一个对称中心的联系,而-∂磷石英结构中2个硅氧四面体之间存在一个对称面的关系。
如果要将-∂磷石英转化成-∂方英石,由于两者的差别较大,转化时必须将-∂磷石英的结构拆散,重新组合成新的骨架,这种转化比较难进行,所以需要能量高,则需要温度就高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。
核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。
主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。
材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。
按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。
原子之间的键合方式是金属键。
陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。
它可以是晶体、非晶体或混合晶体。
原子之间的键合方式是离子键,共价键。
聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。
它主要是非晶体或晶体与非晶体的混合物。
原子的键合方式通常是共价键。
复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。
其原子间的键合方式是混合键。
材料选择:密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。
韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。
宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。
以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。
第一章材料结构的基本知识1.引言材料的组成不同,性质就不同。
同种材料因制备方法不同,其性能也不同。
这是与材料的内部结构有关:原子结构、原子键合、原子排列、显微组织。
原子结构主量子数n角量子数l磁量子数m自旋量子数m s泡利不相容原理能量最低原则洪特规则半充满全充满全空电子排布式:29Cu:1s22s22p63s23p64s13d10 电子层结构式:29Cu:1s22s22p63s23p63d104s1电负性(electronegativity)是衡量原子吸引电子的化学能力。
原子半径减少→电离能增加→电负性增加→原子结构是材料的一级结构决定原子间结合键的形式影响元素的物理性质:如熔点、热膨胀系数、原子半径等。
2.原子键合1结合力强的结合键叫化学键(一次键)。
如离子键、共价键和金属键2结合力弱的结合键叫物理键(二次键)。
如范德华键和氢键,或称为分子键离子键:由正负离子之间的库伦吸引作用产生的结合力。
没有方向性和饱和性离子键的键能强,结合力大材料性能上表现出硬度大、熔点高及热膨胀系数小,变形较困难,故呈脆性。
共价键:相邻原子之间共用其外层电子,形成稳定的电子满壳层结构所产生的结合力。
具有方向性和饱和性不允许原子间相对位置的改变,故结合力大材料性能上表现出硬度高、熔点高、强度大、沸点高、挥发性低、但导电性差、塑性变形差(脆性)。
杂化理论卡宾坚硬强度是金刚石的40倍!金属键:依靠阳离子和自由电子间相互吸引而结合在一起。
不具有方向性和饱和性由于自由电子的存在,具有良好的导热、导电性正离子之间改变相对位置并不会破坏电子与正离子之间的结合力,塑性变形好,强度高。
自由电子很容易被激发,所以它们可以吸收在光电效应截止频率以上的光,并发射各种可见光,因此大多数金属呈银白色,不透光。
金属正离子被另一种金属的正离子取代时,也不会破坏结合键,这种金属间的溶解(称固溶)能力也是金属的重要特性。
二次键范德华力:分子偶极距所产生的静电吸力将两个分子结合在一起的力。
由取向力、诱导力、色散力组成取向力:极性分子间固有的偶极矩作用力与极性和温度有关最大诱导力:分子间固有偶极与诱导偶极间的作用力,与极性和变形有关色散力:分子间瞬时偶极所产生的作用力,大小与分子变形(电子云形状)及分子量有关(成正比)。
最小范德华力是由偶极吸引力所形成的物理键,其键力远小于化学键,故键合力弱,熔点低,硬度低,材料稳定性差,易变性(分子凝聚)氢键:本质与范德华力一样,均依靠分子间的偶极吸引力结合在一起,性质相似,结合力比范德华力大。
由氢原子同时两个电负性很大、原子半径很小的原子(O、F、N)之间的结合所形成的物理键。
具有饱和性和方向性氢键在高分子材料中特别重要(凝聚)混合键:陶瓷中离子键和共价键混合十分正常。
根据化合物AB电负性的大小给出离子键在化合物中的比例。
结合键本质:吸引力:异类电荷之间的静电吸引排斥力:同类电荷之间的相互吸引原子间距r0 是原子之间的平衡距离,斥力和引力相等时的平衡结果。
结合键与材料性能物理性能:1.熔点2.密度3.导电、导热性4.透明性5.其他力学性能:弹性模量原子排列1.晶态和非晶态晶态材料是组成材料的原子沿三维空间呈周期性重复排列。
非晶态材料是内部原子的排列呈无序状态,尽管在微观尺度上有短程有序的排列。
原子排列是材料的三级结构,决定材料的形态并影响材料的物理与力学性能。
单晶体:晶体内各处结晶方位完全一致的晶体。
整个晶体内部原子都是周期性连续排列。
各向异性:在晶体中,由于各个晶面和晶向上原子排列密度不同,使原子间的相互作用力也不相同。
因此在同一单晶体内不同晶面和晶向上的性能也是不同的。
多晶体:由具有不同晶格位向的小单晶体构成的组合体晶粒:晶格位向基本一致,并有边界与邻区分开的区域晶界:晶粒之间界面(原子排列不规则的区域)晶态材料从液态凝固成固体时,熔点确定,体积突变;非晶态材料熔点不确定,体积无明显变化。
物相转变时,晶态材料的原子排列从无序到有序,排列结构发生了转变。
非晶态材料的原子排列基本保持不变,固液态原子排列在结构形态上无明显变化。
显微组织:是材料的四级结构,是随组成和加工工艺方式而变化。
它是影响材料力学性能如强度、韧性、变形等重要的结构因素。
金属是多晶体材料,是由多晶粒所组成。
显微组织是指在显微镜下材料内部所具有的形态特征,即金属中各相的晶粒的组合特征,包括晶粒的成分、形状、大小、分布及相对量等。
相:在材料中,凡化学成分相同、晶体结构相同,并有界面与其他部分分开的,均匀组成部分叫做相。
固相材料的组织可以由单相组成,也可以由多相组成。
宏观组织:用眼睛能看清材料粗大的组织,称为宏观组织(一般40倍以下),如宏观断口形貌。
显微组织:一般需要对试样打磨、磨光、抛光、化学浸蚀,获得金相样品。
然后在显微镜下观察,可以看到金属材料内部的微观形貌。
单相组织:指具有单一相的组织。
其特征是所有晶粒的化学组织和晶体结构相同,但原子排列可以不同,即为多晶体,如纯的Fe、Al等。
显微组织对材料的力学性能影响很大。
总之,材料有四种层次的结构,其特点是:1.原子结构(一级结构)决定原子的结合方式,并决定其化学性质和物理性质。
2.原子键合(二级结构)决定结合力大小,并影响其物理和力学性能。
3.原子排列(三级结构)决定材料的形态,影响其物理和力学性能,并与加工工艺有关。
4.显微组织(四级结构)影响材料力学性能如强度、塑性等,主要由加工工艺来决定。
第二章材料的晶体结构晶体材料的基本特征是组成固体的原子或原子团在三维空间中呈周期性的重复排列。
非晶体材料不呈周期性排列,尽管在局部范围原子排列存在短程有序。
区别晶体结构(crystal structure)质点(原子、离子、分子、原子团等)在三维空间中作周期性重复排列的结构。
空间点阵(space lattice)需要用抽象的几何点来代替实际晶体结构中的原子或原子团,这些点的总体就称为空间点阵。
把晶体结构抽象成空间点阵。
结点(lattice point):构成空间点阵的每一个点叫结点或阵点。
晶格:在假想的空间点阵中,用许多互相平行的直线把结点(几何点)连接起来形成空间骨架,称为晶格。
晶胞:从晶格中取出最具代表性的六面体晶胞。
该晶胞沿空间重复堆积构成完整的空间点阵。
晶胞选取条件(对称性)反映出点阵的最高对称性棱和角相等的数目应最多棱边夹角存在直角时,直角数目应该最多晶胞体积最小简单晶胞:仅在六面体的八个角有阵点复杂晶胞:除每个角上有阵点外,还在体心、面心或底心等位置上也有阵点。
晶胞和原胞的区别晶胞的选取方法是在保证对称性的前提下选取体积小的晶胞。
原胞选取方法只要求晶胞的体积小在固体物理学中常采用原胞。
点阵参数(lattice parameter)为了描述晶胞的形状和大小。
选取晶胞某一角点为坐标原点,三个棱边为晶轴,即a,b,c,晶轴间的夹角为α、β、γ这六个参数。
按照“每个阵点的周围环境相同”的要求,即对称性、唯一性和重复性,所有晶体材料可用7种晶系来描述,并且仅有14种空间点阵,即14种布拉菲点阵。
根据3个棱边是否相等、3个夹角是否相等,及夹角是否为直角的关系,分别称为立方、四方、六方、正交、单斜、三斜、菱方P: primitive 简单晶向指数:空间点阵中,各阵点列的方向代表晶体中原子列的方向,即晶向。
晶向是指晶体中的原子沿空间某一方向的排列。
晶向指数是指晶体中点阵方向的指数,通常用密勒(Miller)晶向指数表示晶向指数。
晶向指数的确定:1.以晶胞的点阵常数a,b,c分别为x,y,z坐标轴上的长度单位,建立右旋坐标系,定出该方向上两个点的坐标。
2.从末点坐标减去始点坐标,得到沿该坐标系各轴方向移动的点阵参数的数目。
3.去掉分数,将相减后的结果约成最小整数。
4.将三个坐标值用方括号括起[u v w],若有负号则在数字上面加一横线,即为该族结点直线的密勒晶向指数。
密勒指数注意问题:1.一个晶向指数代表相互平行、方向一致的所有晶向2.正方向和负方向是不同的3.方向指数与其倍数是同向的4.晶体中原子排列情况相同,但空间位向不同的一组晶向成为晶向族,用<UVW>表示。
5.立方晶系中的[111]、[111]、[111]、[111]、[111]、[111]、[111]、[111]晶向,原子排列方式相同,同属于<111>晶向族。
立方晶系中的[100]、[010]、[001]、[100]、[010]、[001]晶向,原子排列方式相同,同属于 <100>晶向族。
非立方晶系,改变晶向指数顺序,晶向的含义会不同,如正交晶系中的a,b,c互不相等,因此,[100]、 [010]、[001]三个晶向不是等同晶向,他们的原子排列方式不同。
晶面指数:晶面是指穿过晶体中的某一原子平面。