温度控制流程图

合集下载

(完整版)温度控制系统设计

(完整版)温度控制系统设计

温度控制系统设计目录第一章系统方案论证 (3)1.1总体方案设计 (3)1.2温度传感系统 (3)1.3温度控制系统及系统电源 (4)1.4单片机处理系统(包括数字部分)及温控箱设计 (4)1.5PID 算法原理 (5)第二章重要电路设计 (7)2.1温度采集 (7)2.2温度控制 (7)第三章软件流程 (8)3.1基本控制 (8)3.2PID 控制 (9)3.3时间最优的 PID 控制流程图 (10)第四章系统功能及使用方法 (11)4.1温度控制系统的功能 (11)4.2温度控制系统的使用方法 (11)第五章系统测试及结果分析 (11)5.1 硬件测试 (11)5.2软件调试 (12)第六章进一步讨论 (12)参考文献 (13)致谢........................................... 错误 !未定义书签。

摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。

关键词:温度控制系统PID 控制单片机Abstract: This paper introduces a temperature control system that is based on the single-chip microcomputer.The hard ware compositionand software design are descried indetail combined with the projectComtrol System of Temperature.PID control Keywords: Control system of temperatureSingle-chip Microcomputer引言:温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。

过程控制仪表及控制系统课后习题答案

过程控制仪表及控制系统课后习题答案

过程控制仪表及控制系统课后习题答案(林德杰)2(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--lxc第一章思考题与习题1-2 图为温度控制系统,试画出系统的框图,简述其工作原理;指出被控过程、被控参数和控制参数。

解:乙炔发生器中电石与冷水相遇产生乙炔气体并释放出热量。

当电石加入时,内部温度上升,温度检测器检测温度变化与给定值比较,偏差信号送到控制器对偏差信号进行运算,将控制作用于调节阀,调节冷水的流量,使乙炔发生器中的温度到达给定值。

系统框图如下:被控过程:乙炔发生器被控参数:乙炔发生器内温度控制参数:冷水流量1-3 常用过程控制系统可分为哪几类答:过程控制系统主要分为三类:1. 反馈控制系统:反馈控制系统是根据被控参数与给定值的偏差进行控制的,最终达到或消除或减小偏差的目的,偏差值是控制的依据。

它是最常用、最基本的过程控制系统。

2.前馈控制系统:前馈控制系统是根据扰动量的大小进行控制的,扰动是控制的依据。

由于没有被控量的反馈,所以是一种开环控制系统。

由于是开环系统,无法检查控制效果,故不能单独应用。

3. 前馈-反馈控制系统:前馈控制的主要优点是能够迅速及时的克服主要扰动对被控量的影响,而前馈—反馈控制利用反馈控制克服其他扰动,能够是被控量迅速而准确地稳定在给定值上,提高控制系统的控制质量。

3-4 过程控制系统过渡过程的质量指标包括哪些内容它们的定义是什么哪些是静态指标哪些是动态质量指标答:1. 余差(静态偏差)e :余差是指系统过渡过程结束以后,被控参数新的稳定值y(∞)与给定值c 之差。

它是一个静态指标,对定值控制系统。

希望余差越小越好。

2. 衰减比n:衰减比是衡量过渡过程稳定性的一个动态质量指标,它等于振荡过程的第一个波的振幅与第二个波的振幅之比,即:n <1系统是不稳定的,是发散振荡;n=1,系统也是不稳定的,是等幅振荡;n >1,系统是稳定的,若n=4,系统为4:1的衰减振荡,是比较理想的。

管式加热炉温度-流量串级控制系统的设计

管式加热炉温度-流量串级控制系统的设计

管式加热炉温度-流量串级控制系统的设计1方案选定管式加热炉是炼油、化工生产中的重要装置之一,它的任务是把原料油加热到一定温度,以保证下道工序的顺利进行。

因此,常选原料油出口温度1tθ()为被控参数、燃料流量为控制变量,构成如图1-1所示的温度控制系统,控制系统框图如图1-2所示。

影响原料油出口温度1tθ()的干扰有原料油流量1()f t、原料油入口温度2()f t、燃料压力3()f t、燃料压力4()f t等。

该系统根据原料油出口温度1tθ()变化来控制燃料阀门开度,通过改变燃料流量将原油出口温度控制在规定的数值上,是一个简单控制系统。

图1-1 管式加热炉出口单回路温度控制系统图1-2 管式加热炉出口温度单回路控制系统框图由图1-1可知,当燃料压力或燃料热值变化时,先影响炉膛温度,然后通过传热过程逐渐影响原料油的出口温度。

从燃料流量变化经过三个容量后,才引起原料油出口温度变化,这个通道时间常数很大,约有15min ,反应缓慢。

而温度调节器1T C 是根据原料油的出口温度1()t θ与设定值的偏差进行控制。

当燃料部分出现干扰后,图1-1所示的控制系统并不能及时产生控制作用,克服干扰对被控参数1()t θ的影响,控制质量差。

当生产工艺对原料油出口温度1()t θ要求严格时,上述简单控制系统很难满足要求。

燃料在炉膛燃烧后,首先引起炉膛温度2()t θ变化,再通过炉膛与原料油的温差将热量传给原料油,中间还要经过原料油管道管壁。

显然,燃料量变化或燃料热值变化,首先使炉膛温度发生改变。

如果以炉膛温度作为被控参数组成单回路控制系统,会使控制通道容量滞后减少,时间常数约为3min ,对来自燃料的干扰3()f t 、4()f t 的控制作用比较及时,对应的控制系统如图1-3所示。

系统框图如图1-4。

但问题是炉膛温度2()t θ毕竟不能真正代表原料油出口温度1()t θ,即使炉膛温度恒定,原料油本身的流量或入口温度变化仍会影响原料油出口温度,图1-3 管式加热炉炉膛温度控制系统这是因为来自原料油的干扰1()f t 、2()f t 并没有包含在图1-4所示的控制系统(反馈回路)之内,控制系统不能克服1()f t 、2()f t 对原料油出口温度的影响,控制效果仍达不到生产工艺要求。

基于51单片机的温度控制系统设计

基于51单片机的温度控制系统设计

基于 51 单片机的水温自动控制系统引言在现代的各种工业生产中,不少地方都需要用到温度控制系统。

而智能化的控制系统成为一种发展的趋势.本文所阐述的就是一种基于 89C51 单片机的温度控制系统。

本温控系统可应用于温度范围30℃到96℃。

设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。

(1) 利用摹拟温度传感器检测温度,要求检测电路尽可能简单。

(2) 当液位低于某一值时,住手加热。

(3) 用 AD 转换器把采集到的摹拟温度值送入单片机。

(4) 无竞争—冒险,无颤动。

(1) 温度显示误差不超过1℃.(2) 温度显示范围为0℃—99℃。

(3) 程序部份用 PID 算法实现温度自动控制。

(4) 检测信号为电压信号。

根据设计要求和所学的专业知识,采用 AT89C51 为本系统的核心控制器件。

AT89C51 是一种带4K 字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8 位微处理器。

其引脚图如图1 所示。

显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件.在显示驱动电路中拟订了两种设计方案:方案一:采用静态显示的方案采用三片移位寄存器 74LS164 作为显示电路,其优点在于占用主控系统的 I/O 口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。

方案二:采用动态显示的方案由单片机的 I/O 口直接带数码管实现动态显示, 占用资源少,动态控制节省了驱动芯片的成本,节省了电,但编程比较复杂,亮度不如静态的好。

由于对电路的功耗要求不大,因此就在尽量节省 I/O 口线的前提下选用方案一的静态显示.图 1 AT89C51 引脚图1 温度检测:有选用 AD590 和LM35D 两种温度传感器的方案,但考虑到两者价格差距较大,而本系统中对温度要求的精度不很高,于是选用比较便宜 LM35D。

换热器温度控制系统

换热器温度控制系统

1.E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。

为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。

1.1换热器概述换热器工作状态如何,可用几项工作指标加以衡量。

常用的工作指标主要有漏损率、换热效率和温度效率。

它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。

换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。

管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。

在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。

WINCC组态软件温度控

WINCC组态软件温度控
WINCC组态软件在温度控 WINCC组态软件在温度控 制系统中的应用
指导教师: 指导教师: 毛先萍 学生姓名: 学生姓名:钱飞 专 业:过程装备与控制工程
Wincc的简介 Wincc的简介
近代工业中Wincc的应 近代工业中Wincc的应 用以及发展 多功能性 多语言支持,全球通 用 提供通道 不受限制 实例证明 注意事项 分散过程控制的特点 工业生产过程的计算 机控制系统
工业生产过程的计算机控制系统
• 随着计算机的进步、工业生产工艺过程控制要求的提高和生产管理的
完善而不断发展。目前工业计算机控制系统按结构层次基本上划分为: 直接数字控制(DDC)系统、监督控制(SCC)系统、集散型控制系 直接数字控制(DDC)系统、监督控制(SCC)系统、集散型控制系 统(DCS)、递阶控制系统(HCS)和现场总线控制系统(FCS)等 统(DCS)、递阶控制系统(HCS)和现场总线控制系统(FCS)等 几种,其中DCS是融DDC系统、SCC系统及整个工厂的生产管理为一 几种,其中DCS是融DDC系统、SCC系统及整个工厂的生产管理为一 体的高级控制系统,该系统克服了其他控制系统中存在的“危险集中” 问题,具有较高的可靠性和实用性。但是,为了进一步适合现场的需 要,DCS也在不断更新换代,近年来,集计算机、通信、控制三种技 要,DCS也在不断更新换代,近年来,集计算机、通信、控制三种技 术为一体的第5 术为一体的第5代过程控制体系结构,即现场总线控制系统,成为国 内外计算机过程控制系统一个重要的发展方向。本文对各种工业控制 计算机系统的结构层次和特点以及发展方向作一分析研究。
表2-1
表2-1 实验值与实际值对比(单位:摄氏度) 实 际 值 测 量 值 偏 差 0 10 20 30 40 50 60 70 80

温度控制系统(课程设计)

温度控制系统(课程设计)

长安大学《单片机原理及接口技术》课程设计(简易温度控制系统)专业:电气工程及其自动化学号: 2804060132姓名:任晴利指导老师:段晨东时间: 2008.12.22~2009.01.03目录目录。

题目。

摘要。

需求分析。

方案比较。

硬件设计。

硬件电路设计。

总体电路设计。

软件设计。

调试及结果分析。

附录1 电路程序。

附录2 电路总图。

题目:简易温度控制系统一.任务设计并制作一个简易的单片机温度自动控制系统(见图一)。

控制对象为自定。

图一 恒温箱控制系统二.要求设计要求如下(1)温度设定范围为40℃~90℃,最小区分度为1℃(2)用十进制数码显示实际温度。

(3)被控对象温度采用发光二极管以光柱形式和数码形式显示。

(4)温度控制的静态误差≤2℃。

扩充功能:控制温度可以在一定范围内设定,并能实现自动调整,以保持设定的温度基本保持不变(测量温度时只要求在现场任意设置一个检测点)。

恒温箱 执行器 可编程 控制器 显示器 变送器 设置键盘 电源 220V AC 温度传感器摘要本系统以A T89S52单片机芯片为核心,组成温度测量和控制系统,采用DS18B20数字温度传感器对温度进行实时采样,并将测量结果用数码管实显示,可以运用键盘按钮对温度进行设定,并且驱动加热器或制冷器将温度调整到设定温度,其功能完善,人机界面良好,可靠性高,AbstractThe system to single-chip AT89S52 chip as the core, the composition of the control of temperature control system of the adoption of digital temperature sensor DS18B20 temperature sampling, real-time display with digital temperature control, you can use the keyboard for temperature regulation, the use of heater and cooler temperature adjustments to improve its functions, a good man-machine interface, high reliability一、需求分析根据题目的具体要求,经过阅读思考,可对题目的具体任务、功能、技术指标等作如下分析。

热交换器温度控制系统课程设计

热交换器温度控制系统课程设计

热交换器温‎度控制系统‎一.控制系统组‎成由换热器出‎口温度控制‎系统流程图‎1可以看出‎系统包括换‎热器、热水炉、控制冷流体‎的多级离心‎泵,变频器、涡轮流量传‎感器、温度传感器‎等设备。

图1换热器‎出口温度控‎制系统流程‎图控制过程特‎点:换热器温度‎控制系统是‎由温度变送‎器、调节器、执行器和被‎控对象(出口温度)组成闭合回‎路。

被调参数(换热器出口‎温度)经检验元件‎测量并由温‎度变送器转‎换处理获得‎测量信号c‎,测量值c与‎给定值r的‎差值e送入‎调节器,调节器对偏‎差信号e进‎行运算处理‎后输出控制‎作用u。

二、设计控制系‎统选取方案‎根据控制系‎统的复杂程‎度,可以将其分‎为简单控制‎系统和复杂‎控制系统。

其中在换热‎器上常用的‎复杂控制系‎统又包括串‎级控制系统‎和前馈控制‎系统。

对于控制系‎统的选取,应当根据具‎体的控制对‎象、控制要求,经济指标等‎诸多因素,选用合适的‎控制系统。

以下是通过‎对换热器过‎程控制系统‎的分析,确定合适的‎控制系统。

换热器的温‎度控制系统‎工艺流程图‎如图2所示‎,冷流体和热‎流体分别通‎过换热器的‎壳程和管程‎,通过热传导‎,从而使热流‎体的出口温‎度降低。

热流体加热‎炉加热到某‎温度,通过循环泵‎流经换热器‎的管程,出口温度稳‎定在设定值‎附近。

冷流体通过‎多级离心泵‎流经换热器‎的壳程,与热流体交‎换热后流回‎蓄电池,循环使用。

在换热器的‎冷热流体进‎口处均设置‎一个调节阀‎,可以调节冷‎热流体的大‎小。

在冷流体出‎口设置一个‎电功调节阀‎,可以根据输‎入信号自动‎调节冷流体‎流量的大小‎。

多级离心泵‎的转速由便‎频器来控制‎。

换热器过程‎控制系统执‎行器的选择‎考虑到电动‎调节阀控制‎具有传递滞‎后大,反应迟缓等‎缺点,根具离心泵‎模型得到通‎过控制离心‎泵转速调节‎流量具有反‎应灵敏,滞后小等特‎点,而离心泵转‎速是通过变‎频器调节的‎,因此,本系统中采‎用变频器作‎为执行器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档