2020年高中数学新教材同步必修第二册 第6章 6.2.1 向量的加法运算

合集下载

2020-2021人教版数学第二册教师用书:第6章 6.26.2.1向量的加法运算含解析

2020-2021人教版数学第二册教师用书:第6章 6.26.2.1向量的加法运算含解析

2020-2021学年新教材人教A版数学必修第二册教师用书:第6章6.2 6.2.1向量的加法运算含解析6.2平面向量的运算6.2.1向量的加法运算学习目标核心素养1.理解并掌握向量加法的概念,了解向量加法的几何意义及运算律.(难点)2.掌握向量加法运算法则,能熟练地进行向量加法运算.(重点)3.能区分数的加法与向量的加法的联系与区别.(易混点)1。

教材从几何角度给出向量加法的三角形法则和平行四边形法则,结合了对应的物理模型,提升直观想象和数学建模的核心素养.2.对比数的加法,给出了向量的加法运算律,培养数学运算的核心素养。

有一名台湾商人想去拉萨游玩,但是由于台湾没有直达拉萨的航班,因此他选择了这样一个出行方案:乘飞机要先从台北到香港,再从香港到拉萨.问题:这两次位移之和是什么?1.向量加法的定义(1)定义:求两个向量和的运算,叫做向量的加法.(2)对于零向量与任意向量a,规定0+a=a +0=a.2.向量求和的法则三角形法则已知非零向量a,b,在平面内任取一点A,作错误!=a,错误!=b,则向量错误!叫做a与b的和,记作a+b,即a+b=错误!+错误!=错误!.平行四边形法则已知两个不共线向量a,b,作错误!=a,错误!=b,以错误!,错误!为邻边作▱ABCD,则对角线上的向量错误!=a+b.[提示]不是,向量相加要考虑大小及方向,而模相加是数量的加法.3.|a+b|与|a|、|b|之间的关系一般地,我们有|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.4.向量加法的运算律(1)交换律:a+b=b+a。

(2)结合律:(a+b)+c=a+(b+c).1.思考辨析(正确的画“√”,错误的画“×”)(1)任意两个向量的和仍然是一个向量.()(2)两个向量相加实际上就是两个向量的模相加.()(3)任意两个向量的和向量不可能与这两个向量共线.()(4)|a|+|b|>|a+b|. ()[答案](1)√(2)×(3)×(4)×2。

新人教版高中数学必修2课件:6.2.1 向量的加法运算

新人教版高中数学必修2课件:6.2.1 向量的加法运算

形的位置不变,其和向量也没有改变,由此判断和向量为0.
(2)零向量的方向是任意的,且零向量的模为0.
当堂检测
1.若向量a表示向东北方向走5 km,向量b表示向西北方向走5 km,则向量
a+b表示(
)
A.向正北方向走5 km
B.向正北方向走5√2 km
C.向正南方向走5 km
D.向正南方向走5√2 km
要点笔记当a与b不共线时,|a+b|<|a|+|b|的几何意义为三角形两边之和大
于第三边.
微练习
如果| |=8,| |=5,那么| |的最大值为
答案 13
解析根据公式|a+b|≤|a|+|b|直接计算可得.
.
课堂篇 探究学习
探究一
已知向量作和向量
例1如图,已知向量a,b,c不共线,作向量a+b+c.
答案 B
解析 由向量加法的平行四边形法则可知,向量a+b表示向正北方向走5 √2
km.
2.若A,B,C,M,N,P是不重合的点,则下列等式错误的是(
)
A.a+0=0+a=a
B. + + =0
C. + =0
D. + = + +
答案 B
解析 + + = + 不是零向量,故选项 B 错误.
=( + )+( + )+
= + = + =0.
探究三
利用向量加法法则解决实际问题
例3在某地抗震救灾中,一架飞机从A地按北偏东35°的方向飞行800 km到

6.2.1向量的加法运算(教案)-【新教材】2020-2021学年人教A版(2019)高中必修第二册

6.2.1向量的加法运算(教案)-【新教材】2020-2021学年人教A版(2019)高中必修第二册

第六章 平面向量及其应用6.2.1向量的加法一、教学目标1.理解向量加法的概念及向量加法的几何意义;2.熟练掌握向量加法的三角形法则和平行四边形法则,会作已知两向量的和向量;3.理解向量加法运算律,并能熟练地运用它们进行向量计算。

4.通过对向量加法的学习,培养学生数学抽象、逻辑推理、直观想象等数学素养。

二、教学重难点1.两个向量的和的概念及其几何意义;2.向量加法的运算律。

三、教学过程:1、情景引入在大型生产车间里,一重物被天车从A 处搬运到B 处,如图所示.它的实际位移AB ,可以看作水平运动的分位移AC 与竖直运动的分位移AD 的合位移.问题1:根据物理中位移的合成与分解,你认为AB ,AD ,AC 之间有什么关系?【答案】AB =AC +AD .问题2:向量AB ,AC ,CB 之间有什么关系?【答案】AB =AC +CB .2、探索新知(1)向量的加法:求两个向量和的运算叫做向量的加法。

表示:AB BC AC +=. 规定:零向量与任一向量a ,都有00a a a +=+=.说明:①共线向量的加法: a b a b +②不共线向量的加法:如图(1),已知向量a ,b ,求作向量a b +. 作法:在平面内任取一点O (如图(2)),作OA a =,AB b =,则OB a b =+ .(1) (2) b aO BA AB C(2).向量加法的法则:三角形法则:根据向量加法定义得到的求向量和的方法,称为向量加法的三角形法则。

表示:OB AB OA =+.【口诀】尾首相接首尾相连。

平行四边形法则:以同一点A 为起点的两个已知向量a ,b 为邻边作ABCD ,则 则以A 为起点的对角线AC 就是a与b 的和,这种求向量和的方法称为向量加法的平行 四边形法则。

【口诀】共起点,和为对角线。

小组合作探究: 问题1:若向量a 和b 共线,它们的加法与数的加法有什么关系?你能否做出向量b a +吗?【答案】(1)当a 和b 同向时,AC BC AB b a =+=+;(2)当a 和b 反向时,AC BC AB b a =+=+。

6.2.1向量的加法运算-【新教材】人教A版高中数学必修第二册课件

6.2.1向量的加法运算-【新教材】人教A版高中数学必修第二册课件

4. 有一条东西向的小河,一艘小船从河南岸的渡口出
发渡河.小船航行速度的大小为15km/h,方向为北偏
西30O,河水的速度为向东7.5km/h,求小船实际航行
速度的大小与方向.
课堂小结
你学到了什么?
你认为易错点是哪些?
作业布置
作业1:书本P10
作业2:小试卷
作业3:预习向量的减法
A
C
ab
a
D
b
B
abc
A
bc
c
C
ab
a
b
B
ab ba
a (b c ) (a b) c
探求新知
①如果向量 a, b 共线,它们的加法与数的加法有
什么关系? 你能做出向量 a b 吗?
②探索 | a b |,| a |,| b | 之间的关系
| a b || a | | b |
C
B
探求新知
定义
已知向量a和(如图)在平面内任取一点O,
b
,
作OA a, AB b,则向量OB叫做a与b的和,记作a +b.

a +b = OA AB OB
求两个向量和的运算叫做向量的加法.B
O

A
根据向量加法的定义求向量和的方法,叫做向量加法
的三角形法则.
探求新知
向量加法的平行四边形法则
第六章 平面向量及其应用
6.2.1向量的加法运算
使用教材:人教A版必修第二册
新课引入
北京
老师讲蔡锷将军绕道日本来到
云南抵抗袁世凯的故事。
日本
云南
新课引入
思考1:我们知道,数量能进行运算,因为有了运算而

2019-2020学年人教A版必修 第二册 6.2.1 向量的加法运算课件

2019-2020学年人教A版必修 第二册 6.2.1 向量的加法运算课件

【发散·拓】 向量求和的多边形法则 (1)已知n个向量,依次首尾相接,则由起始向量的起 点指向末尾向量的终点的向量即为这n个向量的和,这 称为向量求和的多边形法则.即 A0A1 A1A2 A2A3
An-2An-1 An-1An A0An .
(2)首尾顺次相接的若干向量求和,若构成一个封闭图 形,则它们的和为0.
(1)a+0=a. ( )
(2) AB BA=2AB.
()
(3) AB BD DC AC. ( )
(4)a+(b+c)=c+(a+b). ( )
提示:(1)×.两个向量的和仍然是一个向量,所以 a+0=a. (2)×.由向量加法的三角形法则知,AB BA =0. (3)√. AB BD DC=AD DC=AC. (4)√.由向量加法的交换律、结合律知,a+(b+c)= (a+b)+c=c+(a+b).
AB AD CD AC CD AD.
④0
AC BA DA DA AC BA DC BA AB BA
AC
AO
AD
类型三 利用向量加法解决几何问题 【典例】用向量方法证明对角线互相平分的四边形是 平行四边形. 世纪金榜导学号
【思维·引】将互相平分利用向量表示,以此为条件 推证使四边形为平行四边形的向量等式成立.
【延伸·练】化简
的结果等于
OP+PQ+QS SO
()
A.0
B.
C.
D.
OQ
SP
SQ
【解析】选A.
=0.
OP+PQ+QS SO
【习练·破】

人教版高中数学新教材必修第二册课件6.2.1 向量的加法

人教版高中数学新教材必修第二册课件6.2.1 向量的加法

b
a
(3) a b b
a
b
2、(1)
b
ab




邢 启 强
ba
(2)
b
a ab b
(4) a b
b
a
b
(2) b
a
ab
a
9
尝试练习
练一练
如图,已知 a, b 用向量加法的三角形
法则作出
ab
(1)
ab a b
b
(3)
讲 课 人 : 邢 启 强
ab b
a
b
(2)
b ab b
a
(4)
C
b
a
B
ab
O
这讲课人 种求向量和的方法,称为向量加法的平行四边形法则。


启 强
7
学习新知
探究:求和时用三角形法则与平行四边形法则 一样吗?比较一下两种法则
C
Da C
a+b
b
A
B
a
特点:(通过平移)
首尾相接
b a+b
b
B Aa
特点:(通过平移)
起点相同
不同法则,效果相同





启 强
8
练习答案
1、(1)
ab
6.2.1向量的加法
复习引入
1.向量、平行向量、相等向量的含义分 别是什么?
2.用有向线段表示向量,向量的大小和 方向是如何反映的?什么叫零向量和单 位向量?





启 强
2
由于大陆和台湾没有直航,因此2006 年春节探亲,乘飞机要先从台北到香港,再 从香港到上海,则飞机的位移是多少?

人教A版高中数学必修第二册6.2.1向量的加法运算

人教A版高中数学必修第二册6.2.1向量的加法运算

A
B
答:船实际航行速度的大小约为16.2km/h,方向与水 的流速间的夹角约为68°.
一、知识必备 1.三角形法则和平行四边形法则都是求向量和的基本方法,两 个法则是统一的,当两个向量首尾相连时,常选用三角形法则;当 两个向量共起点时,常选用平行四边形法则. 2.向量的加法满足交换律,因此在进行多个向量的加法运算时, 可以按照任意的次序和任意的组合去进行.
6.2.1向量的加法运算
我们知道,数能进行运算。因为有了运算而使数的威力 无穷。那么,向量是否也能像数一样进行运算呢?人们 从向量的物理背景和数的运算中得到启示,引进向量的 运算,本节我们就来研究平面向量的运算,探究其运算 性质,体会向量运算的作用。
。 今天我们先学习向量的加法
我们知道,位移、力是向量,它们可以合成。能否从位 移、力的合成中得到启示,引进向量的加法呢?
DC
A
B
【解析】(1)如图所示, A表D 示船速, 表AB示水速,以AD,AB 为邻边作平行四边形ABCD,则 A表C 示船实际航行的速度.
(2)在Rt△ABC中,AB 6, BC 15.
所以 AC
2
2
AB BC
62 152
261 16.2.
DC
因为tan CAB 5 , 2
由计算器得CAB 68 .
A
B
C
如图,已知非零向量 a , b ,在平面内任取一点A,
作 AB a, BC b ,则向量 AC 叫做a 与 b 的和,
记作 a b ,即 a b AB BC AC
a
求两个向量和的运算,叫向量的
b
加法。这种求向量和的方法,称
为向量加法的三角形法则。
A

(新教材)2020-2021学年高中人教A版数学必修第二册课件:6.2.1 向量的加法运算

(新教材)2020-2021学年高中人教A版数学必修第二册课件:6.2.1 向量的加法运算

【解析】方法一:可先作a+c,再作(a+c)+b,即a+b+c.如图,首先在平面内任取一 点O,作向量OA=a,接着作向量 AB=c,则得向量 OB=a+c,然后作向量 BC=b,则向 量 OC=a+b+c为所求.
方法二:三个向量不共线,用平行四边形法则来作. 如图,(1)在平面内任取一点O,作 O=Aa, =OBb. (2)作平行四边形AOBC,则OC =a+b. (3)再作向量 O=Dc. (4)作平行四边形CODE, 则OE= O+Cc=a+b+c. OE即为所求.
【类题通法】 应用三角形法则和平行四边形法则应注意的问题 (1)三角形法则可以推广到n个向量求和,作图时要求“首尾相连”,即n个首尾 相连的向量的和对应的向量是第一个向量的起点指向第n个向量的终点的向量. (2)平行四边形法则只适用于不共线的向量求和,作图时要求两个向量的起点重 合. (3)求作三个或三个以上的向量的和时,用三角形法则更简单.
向量的加法运算满足交换律:a+b=b+a 向量加法的三角形法则和平行四边形法则实际上就是向量加法的几何意义.
核心互动探究
探究点一 向量加法运算法则的应用 【典例1】如图,已知向量a,b,c,求作和向量a+b+c.
【思维导引】有两种方法作图: 方法一:让两个向量首尾相接,作出和向量再和第三个向量首尾相接. 方法二:让两个向量有共同起点相加,再和第三个向量相加.
当a,b不共线时,这种求向量和的方法,称为向量加 法的_三__角__形__法则. 对于零向量与任一向量a的和有_a_+_0_=_0_+_a_=_a_._
向量求 和的法 则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.2平面向量的运算6.2.1向量的加法运算学习目标1.理解并掌握向量加法的概念.2.掌握向量加法的三角形法则和平行四边形法则,并能熟练地运用这两个法则作两个向量的加法运算.3.了解向量加法的交换律和结合律,并能作图解释向量加法运算律的合理性.知识点一向量加法的定义及其运算法则1.向量加法的定义求两个向量和的运算,叫做向量的加法.2.向量求和的法则向量和的方法叫做向量加法的平行四边形法则位移的合成可以看作向量加法的三角形法则的物理模型,力的合成可以看作向量加法的平行四边形法则的物理模型.思考 |a +b |与|a |,|b |有什么关系?答案 (1)当向量a 与b 不共线时,a +b 的方向与a ,b 不同,且|a +b |<|a |+|b |.(2)当a 与b 同向时,a +b ,a ,b 同向,且|a +b |=|a |+|b |.(3)当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b |=|b |-|a |. 知识点二 向量加法的运算律 向量加法的运算律交换律 a +b =b +a 结合律(a +b )+c =a +(b +c )1.0+a =a +0=a .( √ )2.AB →+BC →=AC →.( √ ) 3.AB →+BA →=0.( √ ) 4.AB →+BC →>AC →.( × ) 5.|AB →|+|BC →|=|AC →|.( × )一、向量加法法则例1(1)如图①所示,求作向量a+b.(2)如图②所示,求作向量a+b+c.→=a,然后作向量AB→=b,则向量OB→=a+b.如图③所示. 解(1)首先作向量OA(2)方法一(三角形法则)如图④所示,首先在平面内任取一点O,作向量OA→=a,再作向量AB→=b,则得向量OB→=a+b,然后作向量BC→=c,则向量OC→=(a+b)+c=a+b+c即为所求.方法二(平行四边形法则)如图⑤所示,首先在平面内任取一点O,作向量OA→=a,OB→=b,OC→=c,以OA,OB为邻边作▱OADB,连接OD,则OD→=OA→+OB→=a+b.再以OD,OC为邻边作▱ODEC,连接OE,则OE→=OD→+OC→=a+b+c即为所求.反思感悟向量加法的平行四边形法则和三角形法则的区别和联系跟踪训练1如图所示,O为正六边形ABCDEF的中心,化简下列向量.(1)OA →+OC →=________;(2)BC →+FE →=________;(3)OA →+FE →=________. 答案 (1)OB → (2)AD →(3)0解析 (1)因为四边形OABC 是以OA ,OC 为邻边的平行四边形,OB 是其对角线,故OA →+OC →=OB →.(2)因为BC →=FE →,故BC →+FE →与BC →方向相同,长度为BC →的长度的2倍,故BC →+FE →=AD →. (3)因为OD →=FE →,故OA →+FE →=OA →+OD →=0. 二、向量加法运算律的应用 例2 化简:(1)BC →+AB →;(2)DB →+CD →+BC →;(3)AB →+DF →+CD →+BC →+F A →. 解 (1)BC →+AB →=AB →+BC →=AC →. (2)DB →+CD →+BC →=BC →+CD →+DB → =(BC →+CD →)+DB →=BD →+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.反思感悟 向量加法运算律的意义和应用原则(1)意义:向量加法的运算律为向量加法提供了变形的依据,实现恰当利用向量加法法则运算的目的.实际上,由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行.(2)应用原则:通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序.跟踪训练2 已知正方形ABCD 的边长等于1,则|AB →+AD →+BC →+DC →|=________. 答案 2 2解析 |AB →+AD →+BC →+DC →|=|AB →+BC →+AD →+DC →|=|AC →+AC →|=2|AC →|=2 2. 三、向量加法的实际应用例3 河水自西向东流动的速度为10 km/h ,小船自南岸沿正北方向航行,小船在静水中的速度为10 3 km/h ,求小船的实际航行速度.解 设a ,b 分别表示水流的速度和小船在静水中的速度,过平面内一点O 作OA →=a ,OB →=b ,以OA →,OB →为邻边作矩形OACB ,连接OC →,如图,则OC →=a +b ,并且OC →即为小船的实际航行速度.∴|OC →|=|a +b |2=|a |2+|b |2=20(km/h),tan ∠AOC =10310=3,∴∠AOC =60°,∴小船的实际航行速度为20 km/h ,沿北偏东30°的方向航行. 反思感悟 应用向量解决实际问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题.(2)运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.跟踪训练3 如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受力的大小.(绳子的重量忽略不计)解 如图所示,设CE →,CF →分别表示A ,B 所受的力,10 N 的重力用CG →表示,则CE →+CF →=CG →.由题意可得∠ECG =180°-150°=30°,∠FCG =180°-120°=60°. ∴|CE →|=|CG →|cos 30° =10×32=53(N), |CF →|=|CG →|cos 60° =10×12=5(N).∴A 处所受的力为5 3 N ,B 处所受的力为5 N.1.化简CB →+AD →+BA →等于( ) A.DB → B.CA → C.CD → D.DC → 答案 C解析 根据平面向量的加法运算,得CB →+AD →+BA →=(CB →+BA →)+AD →=CA →+AD →=CD →. 2.下列等式不正确的是( ) ①a +(b +c )=(a +c )+b ; ②AB →+BA →=0; ③AC →=DC →+AB →+BD →. A.②③ B.② C.① D.③ 答案 B解析 ②错误,AB →+BA →=0,①③正确. 3.在四边形ABCD 中,AC →=AB →+AD →,则( ) A.四边形ABCD 一定是矩形 B.四边形ABCD 一定是菱形 C.四边形ABCD 一定是正方形 D.四边形ABCD 一定是平行四边形 答案 D解析 由AC →=AB →+AD →知,A ,B ,C ,D 构成的四边形一定是平行四边形.4.如图,四边形ABCD 是梯形,AD ∥BC ,对角线AC 与BD 相交于点O ,则OA →+BC →+AB →+DO →等于( )A.CD →B.DC →C.DA →D.DO → 答案 B→+BC→+AB→+DO→=DO→+OA→+AB→+BC→=DA→+AB→+BC→=DB→+BC→=DC→.解析OA5.已知向量a表示“向东航行3 km”,b表示“向南航行3 km”,则a+b表示_________. 答案向东南航行3 2 km解析根据题意由于向量a表示“向东航行3 km”,向量b表示“向南航行3 km”,那么可知a+b表示向东南航行3 2 km.1.知识清单:(1)向量加法的三角形法则.(2)向量加法的平行四边形法则.(3)向量加法的运算律.2.方法归纳:数形结合.3.常见误区:向量加法的三角形法则要注意向量首尾相接,平行四边形法则要注意把向量移到共同起点.1.化简AE →+EB →+BC →等于( ) A.AB → B.BA → C.0 D.AC → 答案 D解析 AE →+EB →+BC →=AB →+BC →=AC →.2.如图,在正六边形ABCDEF 中,BA →+CD →+EF →等于( )A.0B.BE →C.AD →D.CF →答案 D解析 BA →+CD →+EF →=DE →+CD →+EF →=CE →+EF →=CF →. 3.若正方形ABCD 的边长为1,则|AB →+AD →|等于( )A.1B. 2C.3D.2 2答案 B解析 在正方形ABCD 中,AB =1,可知AC =2, 所以|AB →+AD →|=|AC →|=AC = 2.4.已知四边形ABCD 为菱形,则下列等式中成立的是( ) A.AB →+BC →=CA → B.AB →+AC →=BC →C.AC →+BA →=AD →D.AC →+AD →=DC →答案 C5.(多选)下列说法错误的有( )A.如果非零向量a 与b 的方向相同或相反,那么a +b 的方向必与a 或b 的方向相同B.在△ABC 中,必有AB →+BC →+CA →=0C.若AB →+BC →+CA →=0,则A ,B ,C 一定为一个三角形的三个顶点 D.若a ,b 均为非零向量,则|a +b |=|a |+|b | 答案 ACD解析 A 错,若a +b =0,则a +b 的方向是任意的;B 正确;C 错,当A ,B ,C 三点共线时,也满足AB →+BC →+CA →=0;D 错,|a +b |≤|a |+|b |. 6.已知AB →=a ,BC →=b ,CD →=c ,DE →=d ,AE →=e ,则a +b +c +d =________. 答案 e解析 a +b +c +d =AB →+BC →+CD →+DE →=AE →=e .7.在菱形ABCD 中,∠BAD =60°,|AB →|=1,则|BC →+CD →|=________. 答案 1解析 如图,由题意知△ABD 为等边三角形,所以|BC →+CD →|=|BD →|=|AB →|=1.8.如图,在平行四边形ABCD 中,O 是AC 和BD 的交点.(1)AB →+AD →+CD →=________; (2)AC →+BA →+DA →=________. 答案 (1)AD →(2)09.如图,已知在▱ABCD 中,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO →+AC →;(2)DE →+BA →.解 (1)延长AC ,在延长线上截取CF =AO ,则向量AF →即为所求.(2)在AB 上取点G ,使AG =13AB ,则向量BG →即为所求.10.在静水中船的速度为20 m /min ,水流的速度为10 m/min ,如果船从岸边出发沿垂直于水流的航线到达对岸,求船行进的方向. 解 作出图形,如图所示.设船速v 船与岸的方向成α角, 由图可知v 水+v 船=v 实际,结合已知条件,四边形ABCD 为平行四边形, 在Rt △ACD 中,|CD →|=|AB →|=|v 水|=10 m/min , |AD →|=|v 船|=20 m/min , ∴cos α=|CD →||AD →|=1020=12,∴α=60°,从而船行进的方向与水流方向成120°角. ∴船是沿与水流方向成120°角的方向行进.11.在矩形ABCD 中,|AB →|=4,|BC →|=2,则向量AB →+AD →+AC →的长度为( ) A.2 5 B.4 5 C.12 D.6 答案 B解析 因为AB →+AD →=AC →,所以AB →+AD →+AC →的长度为AC →的模的2倍. 又|AC →|=42+22=25,所以向量AB →+AD →+AC →的长度为4 5.12.若在△ABC 中,AB =AC =1,|AB →+AC →|=2,则△ABC 的形状是( ) A.正三角形 B.锐角三角形 C.斜三角形 D.等腰直角三角形答案 D解析 以AB ,AC 为邻边作平行四边形ABDC ,∵AB =AC =1,AD =2,∴∠ABD 为直角,该四边形为正方形,∴∠BAC =90°,△ABC 为等腰直角三角形. 13.已知点G 是△ABC 的重心,则GA →+GB →+GC →=______. 答案 0解析 如图所示,连接AG 并延长交BC 于点E ,点E 为BC 的中点,延长AE 到点D ,使GE =ED ,则GB →+GC →=GD →,GD →+GA →=0,∴GA →+GB →+GC →=0.14.如图所示,已知电线AO 与天花板的夹角为60°,电线AO 所受拉力|F 1|=24 N ,绳BO 与墙壁垂直,所受拉力|F 2|=12 N.则F 1和F 2的合力为________ N.答案 12 3解析 如图,根据向量加法的平行四边形法则,得到合力F =F 1+F 2=OC →.在△OCA 中,|OA →|=24, |AC →|=12,∠OAC =60°, ∴∠OCA =90°,∴|OC →|=12 3.∴F 1与F 2的合力大小为12 3 N ,方向为与F 2成90°角,竖直向上.15.如图所示,P ,Q 是△ABC 的边BC 上两点,且BP =QC .求证:AB →+AC →=AP →+AQ →.证明 AB →=AP →+PB →,AC →=AQ →+QC →,∴AB →+AC →=AP →+PB →+AQ →+QC →.∵PB →与QC →大小相等,方向相反,∴PB →+QC →=0,故AB →+AC →=AP →+AQ →+0=AP →+AQ →.16.如图,已知D ,E ,F 分别为△ABC 的三边BC ,AC ,AB 的中点,求证:AD →+BE →+CF →=0.证明 由题意知,AD →=AC →+CD →,BE →=BC →+CE →,CF →=CB →+BF →.由平面几何知识可知,EF→=CD→,BF→=F A→,所以AD→+BE→+CF→=(AC→+CD→)+(BC→+CE→)+(CB→+BF→) =(AC→+CD→+CE→+BF→)+(BC→+CB→)=(AE→+EC→+CD→+CE→+BF→)+0=AE→+CD→+BF→=AE→+EF→+F A→=0.。

相关文档
最新文档