(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总
高中数学必修2全册课时同步测试卷及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第一章空间几何体§1.1空间几何体的结构第1课时多面体的结构特征一、基础过关1.下列说法中正确的是() A.棱柱的侧面可以是三角形B.由6个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱长都相等D.棱柱的各条棱长都相等2.棱台不具备的特点是() A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点3. 如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体 D.不能确定4.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是() A.1∶2 B.1∶4 C.2∶1 D.4∶15.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm. 6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图________(填序号).7.如图所示为长方体ABCD—A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.8. 如图所示的是一个三棱台ABC—A1B1C1,如何用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.二、能力提升9.下图中不可能围成正方体的是()10.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.11.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其它各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.三、探究与拓展12.正方体的截面可能是什么形状的图形?答案1.C 2.C 3.A 4.B 5.12 6.①②7.解截面BCFE右侧部分是棱柱,因为它满足棱柱的定义.它是三棱柱BEB′—CFC′,其中△BEB′和△CFC′是底面.EF,B′C′,BC是侧棱,截面BCFE左侧部分也是棱柱.它是四棱柱ABEA′—DCFD′.其中四边形ABEA′和四边形DCFD′是底面.A′D′,EF,BC,AD为侧棱.8.解过A1、B、C三点作一个平面,再过A1、B、C1作一个平面,就把三棱台ABC—A1B1C1分成三部分,形成的三个三棱锥分别是A1—ABC,B—A1B1C1,A1—BCC1.9.D10.①③④⑤11.解(1)该几何体有两个面是互相平行且全等的正六边形,其他各面都是矩形,可满足每相邻两个面的公共边都相互平行,故该几何体是六棱柱.(2)该几何体的其中一个面是四边形,其余各面都是三角形,并且这些三角形有一个公共顶点,因此该几何体是四棱锥.12.解本问题可以有如下各种答案:①截面可以是三角形:等边三角形、等腰三角形、一般三角形;②截面三角形是锐角三角形;③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;④截面可以是五边形;⑤截面可以是六边形;⑥截面六边形可以是等角(均为120°)的六边形.特别地,可以是正六边形.截面图形举例【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
最新高中数学:必修2人教A同步练习试题及解析必修2全册同步检测:3-3-3、4

3-3-3、4同步检测一、选择题1.点(0,5)到直线y =2x 的距离是( ) A.52 B. 5 C.32D.522.直线x 4-y 6=1与y =32x +1之间的距离为( ) A.41313 B.141313 C.132D .243.已知点A (3,4),B (6,m )到直线3x +4y -7=0的距离相等,则实数m 等于( )A.74 B .-294 C .1D.74或-2944.点P 为x 轴上一点,点P 到直线3x -4y +6=0的距离为6,则点P 的坐标为( )A .(8,0)B .(-12,0)C .(8,0)或(-12,0)D .(0,0)5.过点(1,2)且与原点距离最大的直线方程为( ) A .x +2y -5=0 B .2x +y -4=0 C .x +3y -7=0D .3x +y -5=06.已知直线l 过点(3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为( )A .2x +3y -18=0B .2x -y -2=0C .3x -2y +18=0或x +2y +2=0D .2x +3y -18=0或2x -y -2=07.已知直线3x +2y -3=0和6x +my +1=0互相平行,则它们之间的距离是( )A .4 B.21313 C.51326D.713268.与一对平行线5x -2y -6=0,10x -4y +3=0等距离的点的轨迹方程是( )A .20x -8y -9=0B .10x -4y -5=0C .5x -2y -3=0D .15x -6y -11=09.P ,Q 分别为3x +4y -12=0与6x +8y +6=0上任一点,则|PQ |的最小值为( )A.95B.185 C .3 D .610.点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( ) A .8 B .22 C.2 D .16 二、填空题11.已知点A (0,4),B (2,5),C (-2,1),则BC 边上的高等于________.12.两平行线3x +4y +5=0与6x +ay +30=0间的距离为d ,则a+d=________.13.直线l1:2x+4y+1=0与直线l2:2x+4y+3=0平行,点P 是平面直角坐标系内任一点,P到直线l1和l2的距离分别为d1,d2,则d1+d2的最小值是________.14.两条平行线分别经过点(1,0)和(0,5),且两条直线的距离为5,它们的方程是____________.三、解答题15.已知正方形的中心为直线2x-y+2=0和x+y+1=0的交点,其一边所在直线的方程为x+3y-5=0,求其它三边的方程.16.在△ABC中,A(3,2),B(-1,5),点C在直线3x-y+3=0上,若△ABC的面积为10,求点C的坐标.17.求经过点P(1,2)的直线,且使A(2,3),B(0,-5)到它的距离相等的直线方程.[分析]解答本题可先设出过点P的点斜式方程,注意斜率不存在的情况,要分情况讨论,然后再利用已知条件求出斜率,进而写出直线方程.另外,本题也可利用平面几何知识,先判断直线l与直线AB的位置关系,再求l方程.事实上,l∥AB或l过AB中点时,都满足题目的要求.详解答案1[答案] B[解析]由y=2x得:2x-y=0,∴由点到直线的距离公式得:d =5=5,故选B.52[答案] B[解析] 两直线方程可化为:3x -2y -12=0, 3x -2y +2=0,则距离d =|-12-2|32+(-2)2=141313.3[答案] D[解析] 由题意得|9+16-7|5=|18+4m -7|5, 解得m =74或m =-294. 4[答案] C[解析] 设P (a,0),则|3a +6|32+42=6,解得a =8或a =-12, ∴点P 的坐标为(8,0)或(-12,0). 5[答案] A[解析] 由已知得,所求直线过(1,2)且垂直于(0,0)与(1,2)两点的连线,∴所求直线的斜率k =-12, ∴y -2=-12(x -1),即x +2y -5=0. 6[答案] D[解析] 设所求直线方程为y -4=k (x -3),即kx -y +4-3k =0.由已知有|-2k -2+4-3k |k 2+1=|4k +2+4-3k |k 2+1,所以k =2或k =-23,所以直线方程为2x -y -2=0或2x +3y -18=0. 7[答案] D[解析] ∵两直线平行,∴63=m2,∴m =4,∴两平行直线6x +4y -6=0和6x +4y +1=0的距离 d =|1+6|62+42=71326.8[答案] A[解析] 5x -2y -6=0即10x -4y -12=0 -12+32=-92∴所求直线方程为20x -8y -9=0.故选A. 9[答案] C[解析] |PQ |的最小值是这两条平行线间的距离.在直线3x +4y -12=0上取点(4,0),然后利用点到直线的距离公式得|PQ |的最小值为3.10[答案] A[解析] x 2+y 2表示直线上的点P (x ,y )到原点距离的平方,∵原点到直线x +y -4=0的距离为|-4|2=22,∴x 2+y 2最小值为8.故选A. 11[答案] 22[解析] 直线BC :x -y +3=0,则点A 到直线BC 的距离d =|0-4+3|2=22,即BC 边上的高等于22. 12[答案] 10[解析] ∵两直线平行,∴a 4=63,∴a =8,∴两直线3x +4y +5=0与3x +4y +15=0的距离为d , ∴d =|5-15|32+42=2,∴a +d =10.13[答案] 55[解析] l 1与l 2的距离d =|3-1|4+16=55, 则d 1+d 2≥d =55, 即d 1+d 2的最小值是55.14[答案] y =5和y =0或者5x -12y +60=0和5x -12y -5=0. [解析] 设l 1:y =kx +5,l 2:x =my +1,在l 1上取点A (0,5).由题意A 到l 2距离为5, ∴|0-5m -1|1+m 2=5,解得m =125,∴l 2:5x -12y -5=0.在l 2上取点B (1,0).则B 到l 1的距离为5, ∴|k -0+5|1+k 2=5,∴k =0或k =512,∴l 1:y =5或5x -12y +60=0,结合l 2斜率不存在的情况知两直线方程分别为: l 1:y =5,l 2:y =0;或l 1:5x -12y +60=0,l 2:5x -12y -5=0.15[解析] 由⎩⎪⎨⎪⎧ 2x -y +2=0,x +y +1=0,解得⎩⎪⎨⎪⎧x =-1,y =0,即该正方形的中心为(-1,0).所求正方形相邻两边方程3x -y +p =0和x +3y +q =0. ∵中心(-1,0)到四边距离相等, ∴|-3+p |10=610,|-1+q |10=610,解得p 1=-3,p 2=9和q 1=-5,q 2=7,∴所求方程为3x -y -3=0,3x -y +9=0,x +3y +7=0. 16[解析] 由题知|AB |=(3+1)2+(2-5)2=5,∵S △ABC =12|AB |·h =10,∴h =4.设点C 的坐标为(x 0,y 0),而AB 的方程为y -2=-34(x -3),即3x +4y -17=0.∴⎩⎪⎨⎪⎧3x 0-y 0+3=0,|3x 0+4y 0-17|5=4,解得⎩⎨⎧x 0=-1,y 0=0或⎩⎪⎨⎪⎧x 0=53,y 0=8.∴点C 的坐标为(-1,0)或(53,8).17[解析] 方法一:当直线斜率不存在时,即x =1,显然符合题意,当直线斜率存在时,设所求直线的斜率为k ,即直线方程为y -2=k (x -1),由条件得|2k -3-k +2|k 2+1=|5-k +2|k 2+1,解得k =4,故所求直线方程为x =1或4x -y -2=0.方法二:由平面几何知识知l ∥AB 或l 过AB 中点. ∵k AB =4,若l ∥AB ,则l 的方程为4x -y -2=0.若l 过AB 中点(1,-1),则直线方程为x =1,∴所求直线方程为x=1或4x-y-2=0.[点评]针对这个类型的题目常用的方法是待定系数法,即先根据题意设出所求方程,然后求出方程中有关的参量.有时也可利用平面几何知识先判断直线l的特征,然后由已知直接求出直线l的方程.。
人教版必修2高中数学全册单元检测卷及答案

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】2019-2020学年必修第二册第八章单元训练金卷立体几何初步(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.以下命题中正确的是( )A .以直角三角形的一直角边为轴旋转所得的旋转体是圆锥B .以直角梯形的一腰为轴旋转所得的旋转体是圆台C .有一个面是多边形,其余各面都是三角形的几何体叫做棱锥D .圆锥的侧面展开图为扇形,这个扇形的半径为圆锥底面圆的半径 2.下列说法正确的是( )只装订不密封准考证号 考场号 座位号A .过三个点有且仅有一个平面B .空间中的两条直线不平行则相交C .圆锥过轴的截面一定是一个等腰三角形D .直角梯形绕它的一条边旋转一周形成的曲面围成的几何体是圆台3.如图,球面上有A 、B 、C 三点,90ABC ∠=︒,3BA BC ==,球心O 到平面ABC 322) A .72πB .36πC .18πD .8π4.已知三棱锥P ABC -的四个顶点都在球O 的球面上,ABC △是边长为3PA ⊥平面ABC ,若三棱锥P ABC -的体积为3球O 的表面积为( ) A .18πB .20πC .24πD .203π5.三棱柱111ABC A B C -底面为正三角形,侧棱与底面垂直,若2AB =,11AA =,则点A 到平面1A BC 的距离为( )A 3B 3C 33D 36.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,15AA =,则V 的最大值是( ) A .4πB .92π C .1256πD .323π7.设直三棱柱111ABC A B C -的体积为V ,点P 、Q 分别在侧棱1AA 、1CC 上,且1PA QC =,则三棱锥1B BPQ -的体积为( )A .16VB .14VC .13VD .12V8.如图,一圆锥形物体的母线长为4,其侧面积为4π,则这个圆锥的体积为( )A .153B .833C .153π D .833π 9.如图,在正四棱柱1111ABCD A B C D -中,1AB =,13AA =E 为AB 上的动点,则1D E CE +的最小值为( )A .22B .10C .51+D .22+10.如图,1111ABCD A B C D -为正方体,下面结论:①BD P 平面11CB D ;②1AC BD ⊥;③1AC ⊥平面11CB D ,其中正确结论的个数是( )A .0B .1C .2D .311.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90︒D .1AP PD +的最小值为22+12.如图,三棱锥S ABC -中,2SA AB AC ===,30ASB BSC CSA ∠=∠=∠=︒,M ,N 分别为SB ,SC 上的点,则AMN △周长的最小值为( )A .4B .3C .3D .22第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.棱长为2的正方体1111ABCD A B C D -中,M 是棱1AA 的中点,过C ,M ,1D 作正方体的截面,则截面的面积是 . 14.已知三棱锥P ABC -,PA ⊥平面ABC ,AC BC ⊥,3BC PA ==,1AC =,则三棱锥P ABC -的侧面积 .15.如图,六面体ABCDEF 中,AB CD P ,AB CD ⊥,且112AB AD CD ===,ADEF 是正方形,平面ADEF ⊥平面ABCD ,则点D 到平面BEC 的距离为 .16.如图,四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将四边形ABCD 沿对角线BD 折成四面体A BCD '-,则四面体A BCD'-体积的最大值为 .三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=︒,点D 是AB 的中点. (1)求证:1AC BC ⊥; (2)求证:1AC P 平面1CDB .18.(12分)如图,在三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB △为等边三角形,AC BC ⊥且2AC BC ==,O ,M 分别为AB ,VA 的中点.(1)求证:VB P 平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V ABC -的体积.19.(12分)如图,边长为2的正方形ABCD与等边三角形ABE所在的平面互相垂直,M,N分别是DE,AB的中点.(1)证明:MN P平面BCE;的体积.(2)求三棱锥B EMN20.(12分)如图(1),ABC △中,90ABC ∠=︒,22AB BC ==M 为AC 中点,现将ABM △沿着BM 边折起,如图(2)所示.(1)求证:平面BCM ⊥平面ACM ;(2)若平面ABM ⊥平面BCM ,求证AM BC ⊥,并求三棱锥B ACM -外接球的直径.21.(12分)如图,三棱柱111ABC A B C -,1AA ⊥底面ABC ,且ABC △为正三角形,16AA AB ==,D 为AC 中点. (1)求三棱锥1C BCD -的体积; (2)求证:平面1BC D ⊥平面11ACC A ; (3)求证:直线1AB P 平面1BC D .22.(12分)如图所示,在正三棱柱111ABC A B C -中,12AB AA ==,由顶点B 沿棱柱侧面(经过侧棱1AA )到达顶点1C ,与1AA 的交点记为M . (1)三棱柱侧面展开图的对角线长;(2)从B 经过M 到1C 的最短路线长及此时1A MAM的值.2019-2020学年必修第二册第八章单元训练金卷立体几何初步(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A对于A ,由圆锥的定义可知A 正确;对于B ,若旋转轴不是直角梯形的直腰,则旋转体不是圆台,故B 错误; 对于C ,若其余各面三角形没有公共顶点,则几何体不是棱锥,故C 错误; 对于D ,圆锥的侧面展开图的半径是圆锥的母线,故D 错误. 2.【答案】C对于A ,当三点共线时,过这三点有无数个平面,故A 不正确;对于B ,空间中的两条直线的位置关系有平行、相交、异面,故B 不正确; 对于C ,由圆锥的结构特征知:圆锥过轴的截面一定是一个等腰三角形,故C 正确; 对于D ,直角梯形绕它垂直于底边的腰旋转一周形成的曲面围成的几何体是圆台,故D 不正确. 3.【答案】B∵AC 是小圆的直径,所以过球心O 作小圆的垂线,垂足O '是AC 的中点.2232323()22OC =-=,32AC =,223='O O , ∴223OC OO O C ''=+=,即球半径为3,所以球体的体积是343363⨯π⨯=π.4.【答案】B∵三棱锥P ABC -的体积为23213(23)2334PA ⨯⨯⨯=, ∴2PA =,将三棱锥补成三棱柱,可得球心在三棱柱的中心,球心到底面的距离d 等于三棱柱的高PA 的一半,∵ABC △是边长为3ABC △外接圆的半径2r =, 5O 的表面积为4520π⋅=π. 5.【答案】B在三棱柱111ABC A B C -中,连接1A B ,1A C ,则11A B AC =, 取BC 的中点D ,连接AD ,1A D ,则有AD BC ⊥,1A D BC ⊥,AD 与1A D 交于D ,且AD 与1A D 都在平面1A AD 中,所以BC ⊥平面1A AD ,过A 作1AO A D ⊥,则AO ⊥面1A BC ,因为2AB =,11AA =,111ABC A B C -底面为正三角形, 所以3AD =,12A D =,11A A BC A ABC V V --=,111133A BC ABC h S AA S ⋅⋅=⋅⋅△△,1111221233232h ⋅⋅⋅⋅=⋅⋅⋅32h =,所以A 到平面1A BC 的距离为32.6.【答案】D如图,由题知,球的体积要尽可能大时,球需与三棱柱内切,先保证截面圆与ABC△内切,记圆O的半径为r,则由等面积法得1111682222ABCS AC r AB r BC r=⋅+⋅+⋅=⨯⨯△,所以()68AC AB BC r++=⨯,又6AB=,8BC=,所以10AC=,所以2r=,由于三棱柱高为5,此时可以保证球在三棱柱内部,若r增大,则无法保证球在三棱柱内,故球的最大半径为2,所以323Vπ=.7.【答案】C设A到BC的距离为h,∵直三棱柱111ABC A B C-的体积为V,点P、Q分别在侧棱1AA、1CC上,且1PA QC=,∴112V BC h AA=⨯⨯⨯,三棱锥1B BPQ-的体积为111111323B BPQ P BB QV V h BC AA V--==⨯⨯⨯=.8.【答案】C一个圆锥的母线长为4,它的侧面积为4π,设圆锥的底面半径是r,母线长为l,则得到4rlπ=π,解得1r=,这个圆锥的底面半径是1,∴圆锥的高为224115-=,所以圆锥的体积为21153r hπ=π.9.【答案】B画出几何体的图形,连接1D A延长至G,使得AG AD=,连接1C B延长至F,使得BF BC=,连接EF,则ABFG为正方形,连接1D F,则1D F为1D E CE+的最小值2222111310D F GF D G=+=+=.10.【答案】D由正方体的性质得,11BD B DP,所以结合线面平行的判定定理可得:BD P平面11CB D,所以①正确;连接AC、11AC,由正方体的性质得AC BD⊥,1AA BD⊥,又1AC AA A=I,所以BD⊥平面11AAC C,因为1AC⊂平面11AAC C,所以1AC BD⊥,所以②正确;由正方体的性质得11BD B DP,由②可得1AC BD⊥,所以111AC B D⊥,同理可得11AC CB⊥,进而结合线面垂直的判定定理得到1AC⊥平面11CB D,所以③正确.11.【答案】C∵111A D DC⊥,11A B DC⊥,∴1DC⊥面11A BCD,1D P⊂面11A BCD,11DC D P⊥,∴A正确;∵平面11D A P即为平面11D A BC,平面1A AP即为平面11A ABB,切11D A⊥平面11A ABB,∴平面11D A BC⊥平面11A ABB,∴平面11D A P⊥平面1A AP,∴B正确;当122A P<<时,1APD∠为钝角,∴C错误;将面1AA B与面11A BCD沿展成平面图形,线段1AD即为1AP PD+的最小值,在11D A A△中,11135D A A∠=︒,利用余弦定理解三角形得122AD=+,即122AP PD+≥+,∴D正确.12.【答案】D将三棱锥的侧面沿SA剪开展成如图所示的平面图形,可知当A,M,N,共线时,AMN△的周长最小,且AA'的长度即为所求的最小值,在SAA'△中,2SA SA'==,30A SB BSC ASC'∠=∠=∠=︒,故90ASA'∠=︒,所以2222AA SA A S''=+=.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】92如图所示,由面面平行的性质知截面与平面11AA B的交线MN是1AA B△的中位线,所以截面是梯形1CD MN,其中2MN=,122CD=,15CN D M==,梯形1CD MN的高为22232(5)()2h=-=,所以1329(222)222S=+⨯=.14.【答案】532如图所示,三棱锥P ABC -中,PA ⊥平面ABC ,∴PA AB ⊥,PA AC ⊥,PA BC ⊥,又AC BC ⊥,PA AC A =I ,∴BC ⊥平面PAC ,∴BC PC ⊥, ∴三棱锥P ABC -的各个面都是直角三角形, 又3BC PA ==,1AC =,∴三棱锥P ABC-的侧面积为PAB PAC PBCS S S S =++△△△2222111533(3)1313(3)12222=⨯⨯++⨯⨯+⨯⨯+=.15.【答案】6易证BC ⊥平面BDE ,∴BC BE ⊥,易求得6BEC S ∆=, 而1BCD S =△,设点D 到平面BEC 的距离是h , 由E BCD D BCE V V --=可得1133BCD BCE S DE S h ⋅=⋅△△, 解得66BCD BCE S DE h S ⋅===△△. 16.【答案】16要使四面体A BCD '-体积的最大,则平面A BD '平面BCD ,由BD CD ⊥,平面A BD '⊥平面BCD ,得CD ⊥平面A BD ',∴CD BD ⊥, ∵四边形ABCD 中,1AB AD CD ===,2BD =,∴A '到底面BCD 的距离为22, ∴四面体A BCD '-体积的最大值为1121213226V =⨯⨯⨯⨯=.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)证明见解析;(2)证明见解析. (1)证明:∵90ACB ∠=︒,所以AC CB ⊥,又在直三棱柱111ABC A B C -中,有1AC BB ⊥, ∴AC ⊥平面11BB C C ,所以1AC BC ⊥.(2)设1BC 与1B C 交于点P ,连DP ,易知P 是1BC 的中点, 又D 是AB 中点,∴1AC DP P ,∵DP ⊂平面1CDB ,1AC 不在平面1CDB 上,∴1AC P 平面1CDB .18.【答案】(1)证明见解析;(2)证明见解析;(3)3. (1)证明:∵O ,M 分别为AB ,VA 的中点,∴OM VB P , ∵VB ⊄平面MOC ,OM ⊂平面MOC ,∴VB P 平面MOC . (2)∵AC BC =,O 为AB 的中点,∴OC AB ⊥,∵平面VAB ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥平面VAB , ∵OC ⊂平面MOC ,∴平面MOC ⊥平面VAB . (3)在等腰直角三角形ACB 中,2AC BC ==,∴2AB =,1OC =,∴3VAB S =△,∵OC ⊥平面VAB ,∴133C VAB VAB V OC S -=⋅=△, ∴3V ABC C VAB V V --==. 19.【答案】(1)证明见解析;(2)3. (1)证明:取AE 中点P ,连接MP ,NP ,由题意可得MP AD BC P P ,∵MP ⊄平面BCE ,BC ⊂平面BCE ,∴MP P 平面BCE , 同理可证NP P 平面BCE ,∵MP NP P =I ,∴平面MNP P 平面BCE , 又MN ⊂平面MNP ,∴MN P 平面BCE .(2)由(1)可得MP DA P ,且12MP DA =, ∵平面ABCD ⊥平面ABE ,平面ABCD I 平面ABE AB =,且DA AB ⊥,∴DA ⊥平面ABE ,∴M 到平面ENB 的距离为112MP DA ==, ∵N 为AB 的中点,∴12EBN ABE S S =△△, ∴111113322132322B EMN M EBN ABE V MP V S --⨯==⨯=⨯⨯⨯⨯=△. 20.【答案】(1)证明见解析;(2)23(1)证明:由图(1)知,BM AM ⊥,BM MC ⊥,AM MC M =I ,所以BM ⊥平面AMC ,又因为BM ⊂平面BMC ,所以平面BCM ⊥平面ACM .(2)因为平面ABM ⊥平面BCM ,平面ABM I 平面BCM BM =,BM AM ⊥,AM ⊂平面ABM ,所以AM ⊥平面BMC ,所以AM MC ⊥,即AM 、MC 、BM 两两垂直,而易知2AM BM MC ===, 所以该三棱锥外接球与以MA 、MB 、MC 为相邻棱组成的长方体的外接球为同一个球,所以三棱锥B ACM -外接球的直径为22222223++=. 21.【答案】(1)93;(2)证明见解析;(3)证明见解析. (1)∵ABC △为正三角形,D 为AC 中点,∴BD AC ⊥, 由6AB =可知,3CD =,33BD =,∴19322BCD S CD BD =⋅⋅=△, 又∵1AA ⊥底面ABC ,且16AA AB ==, ∴1C C ⊥底面ABC ,且16C C =, ∴111933C BCDBCD V S C C -=⋅⋅=△.(2)∵1AA ⊥底面ABC ,BD ⊂平面ABC ,∴1AA BD ⊥, 又BD AC ⊥,1AA AC A =I ,1AA ,AC ⊂平面11ACC A , ∴BD ⊥平面11ACC A ,又BD ⊂平面1BC D ,∴平面1BC D ⊥平面11ACC A . (3)连接1B C 交1BC 于O ,连接OD ,又1AB ⊄平面1BC D ,OD ⊂平面1BC D ,∴1AB P 平面1BC D . 22.【答案】(1)210;(2)25,11A MAM=. 沿侧棱1BB 将正三棱柱的侧面展开,得到一个矩形11BB B B ''(如图所示).(1)矩形11BB B B ''的长326BB '=⨯=,宽12BB =, 所以三棱柱侧面展开图的对角线长为22162210BB '=+=. (2)由侧面展开图可知:当B ,M ,1C 三点共线时, 由B 经M 到点1C 的路线最短, 所以最短路线长为2214225BC =+=显然11ABM AC M ≅Rt Rt △△,所以1A M AM =,即11A MAM=.【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)

最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
最新人教版高中数学必修2全册同步检测:3-1-1

3-1-1同步检测一、选择题1.斜率不存在嘚直线一定是( ) A .过原点嘚直线 B .垂直于x 轴嘚直线 C .垂直于y 轴嘚直线 D .垂直于过原点嘚直线2.如图所示,直线l 嘚倾斜角是( )A .0°B .90°C .∠CABD .∠OAB 3.已知点A(2,1),B(3,-1),则过A ,B 两点嘚直线嘚斜率为( ) A .-2 B .-12 C.12D .24.直线l 嘚倾斜角α=135°,则其斜率k 等于( ) A.22 B.32 C .-1 D .15.过点(-3,0)和点(-4,3)嘚直线嘚倾斜角是( ) A .30° B .150° C .60°D .120°6.过两点A(4,y),B(2,-3)嘚直线嘚倾斜角是45°,则y等于()A.-1B.-5C.1D.57.①直线l嘚倾斜角是α,则l嘚斜率为tanα;②直线l嘚斜率为-1,则其倾斜角为45°;③与坐标轴平行嘚直线没有倾斜角;④任何一条直线都有倾斜角,但不是每一条直线都存在斜率.上述命题中,正确嘚个数为() A.0个B.1个C.2个D.3个8.已知直线l1与l2垂直,l1嘚倾斜角α1=60°,则l2嘚斜率为()A.3B.3 3C.-3D.-3 39.直线l嘚倾斜角是斜率为33嘚直线嘚倾斜角嘚2倍,则l嘚斜率为()A.1 B.3C.233D.-310.如下图,已知直线l1,l2,l3嘚斜率分别为k1,k2,k3,则()A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2二、填空题11.已知两点P(m,2),Q(1+m,2m -1)所在直线嘚倾斜角为45°,则m 嘚值等于________.12.三点A(0,2),B(2,5),C(3,b)能作为三角形嘚三个顶点,则实数b 满足嘚条件是________.13.设P 为x 轴上嘚一点,A(-3,8),B(2,14),若PA 嘚斜率是PB 嘚斜率嘚两倍,则点P 嘚坐标为________.14.若三点A(3,3),B(a,0),C(0,b)(ab ≠0)共线,则1a +1b =________. 三、解答题15.已知三点A(1,3),B(5,11),C(-3,-5),求证:这三点在同一条直线上. 16.求经过下列两点嘚直线嘚斜率,并判断其倾斜角是锐角、直角还是钝角.(1)A(0,-1),B(2,0); (2)P(5,-4),Q(2,3); (3)M(3,-4),N(3,-2).17.设A(m ,-m +3),B(2,m -1),C(-1,4),直线AC 嘚斜率等于直线BC 嘚斜率嘚3倍,求实数m 嘚值.18.(1)当且仅当m 为何值时,经过两点A(-m,6),B(1,3m)嘚直线嘚斜率为12?(2)当且仅当m 为何值时,经过两点A(m,2),B(-m,2m -1)嘚直线嘚倾斜角是60°?[分析] 利用斜率公式列方程求解.详解答案 1[答案] B 2[答案] C 3[答案] A[解析] k AB =-1-13-2=-2.4[答案] C[解析] k =tan α=tan135°=-1. 5[答案] D[解析] 斜率k =3-0-4+3=-3,则倾斜角为120°.6[答案] A[解析] 直线嘚倾斜角为45°,则其斜率为k =tan45°=1.由斜率公式,得-3-y2-4=1,解得y =-1. 7[答案] B[解析] 由倾斜角和斜率嘚定义知,当倾斜角α=90°时,则l 嘚斜率不存在,故①是错误嘚;因为tan135°=tan(180°-45°)=-tan45°=-1,所以当k =-1时,α=135°,故②是错误嘚;与y 轴平行嘚直线倾斜角为90°,故③也是错误嘚;因而只有④是正确嘚,即正确嘚个数为1个,故选B.8[答案] D[解析] ∵直线l 2嘚倾斜角α2=90°+60°=150°, ∴直线l 2嘚斜率k 2=tan150°=tan(180°-30°)=-tan30°=-33. 9[答案] B[解析] ∵tan α=33,0°≤α<180°,∴α=30°, ∴2α=60°,∴k =tan2α=3.故选B. 10[答案] D[解析] 可由直线嘚倾斜程度,结合倾斜角与斜率嘚关系求解.设直线l 1,l 2,l 3嘚倾斜角分别是α1,α2,α3,由图可知α1>90°>α2>α3>0°,所以k 1<0<k 3<k 2. 11[答案] 2[解析] 由题意知k =tan45°=1.由斜率公式得2m -1-21+m -m =1,解得m =2.12[答案] b ≠132[解析] 由题意得k AB ≠k AC , 则5-22-0≠b -23-0,整理得b ≠132.13[答案] (-5,0)[解析] 设P(x,0)为满足题意嘚点,则k PA =8-3-x ,k PB =142-x ,于是8-3-x =2×142-x,解得x =-5.14[答案] 13[解析] 由于点A ,B ,C 共线,则k AB =k AC , 所以0-3a -3=b -30-3.所以ab =3a +3b.即1a +1b =13.15[证明] 由斜率公式,得 k AB =11-35-1=2,k AC =-5-3-3-1=2,∴k AB =k AC ,且AB 与AC 都过点A , ∴直线AB ,AC 斜率相同,且过同一点A , ∴A ,B ,C 这三点在同一条直线上. 16[解析] (1)k AB =-1-00-2=12,∵k AB >0,∴直线AB 嘚倾斜角是锐角. (2)k PQ =-4-35-2=-73,∵k PQ <0,∴直线PQ 嘚倾斜角是钝角. (3)∵x M =x N =3,∴直线MN 嘚斜率不存在,其倾斜角为直角.17[解析] 依题意知直线AC 嘚斜率存在,则m ≠-1,由k AC =3k BC 得-m +3-4m --1=3×m -1-42--1,∴m =4.18[解析] (1)由题意得k AB =3m -61--m=12,解得m =-2.故当且仅当m =-2时,经过两点A(-m,6),B(1,3m)嘚直线嘚斜率为12. (2)由题意得k AB =tan60°=3=2m -1-2-m -m,解得m =-31-34. 故当且仅当m =-31-34时,经过两点A(m,2),B(-m,2m -1)嘚直线嘚倾斜角是60°.。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总

(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
(人教版)高中数学必修二(全册)单元测试卷汇总
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
新教材人教A版高中数学必修第二册全册各章综合测验汇总(共五套,附解析)
高中数学必修第二册全册各章测验汇总章末质量检测(一) 平面向量及其应用 ............................................................................... 1 章末质量检测(二) 复数 ....................................................................................................... 8 章末质量检测(三) 立体几何初步 ..................................................................................... 14 章末质量检测(四) 统计 ..................................................................................................... 23 章末质量检测(五)概率 (32)章末质量检测(一) 平面向量及其应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由图可知OB →,OC →,AO →是模相等的向量,其模均等于圆的半径,故选C. 答案:C2.若A (2,-1),B (4,2),C (1,5),则AB →+2BC →等于( ) A .5 B .(-1,5) C .(6,1) D .(-4,9)解析:AB →=(2,3),BC →=(-3,3),∴AB →+2BC →=(2,3)+2(-3,3)=(-4,9). 答案:D3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角θ为( ) A.π3 B.π2 C.2π3 D.3π4解析:因为|a +b |=1,所以|a |2+2a ·b +|b |2=1,所以cos θ=-12.又θ∈[0,π],所以θ=2π3.答案:C4.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A .-3 B .-1 C .1 D .3解析:AB →∥BC →,(1-x,4)∥(1,2),2(1-x )=4,x =-1,故选B. 答案:B5.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( ) A .(4,0),(-2,6) B .(-2,6),(4,0) C .(2,0),(-1,3) D .(-1,3),(2,0)解析:由题意知,⎩⎪⎨⎪⎧a +b =1,3,a -b =3,-3,解得⎩⎪⎨⎪⎧a =2,0,b =-1,3.答案:C6.若a =(5,x ),|a |=13,则x =( ) A .±5 B.±10 C .±12 D.±13解析:由题意得|a |=52+x 2=13, 所以52+x 2=132,解得x =±12. 答案:C7.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522m解析:由正弦定理得AB =AC ·sin∠ACB sin B=50×2212=502(m).答案:A8.已知平面内四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b+d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 解析:由题意知a -b =d -c , ∴BA →=CD →,∴四边形ABCD 为平行四边形,故选D. 答案:D9.某人在无风条件下骑自行车的速度为v 1,风速为v 2(|v 1|>|v 2|),则逆风行驶的速度的大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2| D.v 1v 2解析:题目要求的是速度的大小,即向量的大小,而不是求速度,速度是向量,速度的大小是实数,故逆风行驶的速度大小为|v 1|-|v 2|.答案:C10.已知O 为坐标原点,点A 的坐标为(2,1),向量AB →=(-1,1),则(OA →+OB →)·(OA→-OB →)等于( )A .-4B .-2C .0D .2解析:因为O 为坐标原点,点A 的坐标为(2,1), 向量AB →=(-1,1), 所以OB →=OA →+AB →=(2,1)+(-1,1)=(1,2), 所以(OA →+OB →)·(OA →-OB →)=OA →2-OB →2=(22+12)-(12+22) =5-5=0.故选C. 答案:C11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b+c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.答案:C12.在△ABC 中,若|AB →|=1,|AC →|=3,|AB →+AC →|=|BC →|,则AB →·BC→|BC →|=( )A .-32 B .-12C.12D.32解析:由向量的平行四边形法则,知当|AB →+AC →|=|BC →|时,∠A =90°.又|AB →|=1,|AC →|=3,故∠B =60°,∠C =30°,|BC →|=2,所以AB →·BC →|BC →|=|AB →||BC →|cos 120°|BC →|=-12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC 是共线向量,则m =________.解析:∵A ,B ,C 不共线,∴AB →与BC →不共线.又m 与AB →,BC →都共线,∴m =0. 答案:014.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 解析:方法一:设OB →=(x ,y ),由|OA →|=|OB →|知x 2+y 2=10,又OA →·OB →=x -3y=0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.故|AB →|=2 5.方法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,又|OA →|=10,所以|AB →|=10×2=2 5.答案:2 515.给出以下命题:①若a ≠0,则对任一非零向量b 都有a·b ≠0; ②若a ·b =0,则a 与b 中至少有一个为0; ③a 与b 是两个单位向量,则a 2=b 2. 其中正确命题的序号是________.解析:上述三个命题中只有③正确,因为|a |=|b |=1,所以a 2=|a |2=1,b 2=|b |2=1,故a 2=b 2.当非零向量a ,b 垂直时,有a·b =0,显然①②错误.答案:③16.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________N.解析:如图,由题意得,∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.答案:10三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:(1)AD →-AB →; (2)AB →+CF →; (3)EF →-CF →.解析:(1)因为OB →=b ,OD →=d , 所以AD →-AB →=BD →=OD →-OB →=d -b . (2)因为OA →=a ,OB →=b ,OC →=c ,OF →=f , 所以AB →+CF →=(OB →-OA →)+(OF →-OC →)=b +f -a -c . (3)EF →-CF →=EF →+FC →=EC →=OC →-OE →=c -e .18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .解析:由题意得a ·b =|a ||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.19.(12分)已知向量a =(1,3),b =(m,2),c =(3,4),且(a -3b )⊥c . (1)求实数m 的值; (2)求向量a 与b 的夹角θ.解析:(1)因为a =(1,3),b =(m,2),c =(3,4), 所以a -3b =(1,3)-(3m,6)=(1-3m ,-3).因为(a -3b )⊥c ,所以(a -3b )·c =(1-3m ,-3)·(3,4) =3(1-3m )+(-3)×4 =-9m -9=0, 解得m =-1.(2)由(1)知a =(1,3),b =(-1,2), 所以a ·b =5,所以cos θ=a ·b |a ||b |=510×5=22.因为θ∈[0,π],所以θ=π4.20.(12分)已知向量a =(1,3),b =(2,-2). (1)设c =2a +b ,求(b -a )·c ; (2)求向量a 在b 方向上的投影.解析:(1)由a =(1,3),b =(2,-2),可得c =(2,6)+(2,-2)=(4,4),b -a=(1,-5),则(b -a )·c =4-20=-16.(2)向量a 在b 方向上的投影为a ·b |b |=-422=- 2. 21.(12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC→+CB →=0,(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解析:(1)因为2AC →+CB →=0, 所以2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, 所以OC →=2OA →-OB →.(2)证明:如图, DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.22.(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C=c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A=3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.章末质量检测(二) 复数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i -i 2的实部为( ) A .0 B .1 C .i D .-2 解析:i -i 2=1+i. 答案:B2.用C ,R 和I 分别表示复数集、实数集和虚数集,那么有( ) A .C =R ∩I B .R ∩I ={0}C .R =C ∩ID .R ∩I =∅解析:由复数的概念可知R ⊂C ,I ⊂C ,R ∩I =∅. 答案:D3.下列说法正确的是( )A .如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B .a i 是纯虚数(a ∈R )C .如果复数x +y i(x ,y ∈R )是实数,那么x =0,y =0D .复数a +b i(a ,b ∈R )不是实数解析:两个复数的实部的差和虚部的差都等于0,则它们的实部、虚部分别相等,所以A 正确;B 中,当a =0时,a i =0是实数,所以B 不正确;要使复数x +y i(x ,y ∈R )是实数,则只需y =0,所以C 不正确;D 中,当b =0时,复数a +b i 是实数,所以D 不正确.答案:A4.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.答案:C5.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z 1-z 2=5-7i. 答案:D6.复数1-7i 1+i 的虚部为( )A .0 B. 2 C .4 D .-4 解析:∵1-7i1+i=1-7i 1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案:D7.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3C .1D .-1或3解析:由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3.故选B.答案:B8.已知z-1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析:由题意知z -=(1+i)(2+i)=2-1+3i =1+3i ,从而z =1-3i ,选B. 答案:B9.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞) D.(-∞,-3)解析:由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),且该点在第四象限,所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1.答案:A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析:依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案:A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( )A .2B .4C .4 2D .16解析:由|z -4i|=|z +2|得x +2y =3. 则2x+4y≥22x +2y=2·23=4 2.12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个 D .无数个 解析:f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________.解析:由已知得2(m -1)-(m +2)=0,∴m =4. 答案:414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案:115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析:∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案:2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析:先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)实数m 为何值时,复数z =m +6m -1+(m 2+5m -6)i 是实数? 解析:复数z 为实数,则虚部为0,由于实部是分式,因此要求分式有意义,则⎩⎪⎨⎪⎧m 2+5m -6=0,m ≠1,解得m =-6.所以当m =-6时,复数z 是实数. 18.(12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析:⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220=[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.19.(12分)复数z =(a 2+1)+a i(a ∈R )对应的点在第几象限?复数z 对应的点的轨迹方程是什么?解析:因为a 2+1≥1>0,复数z =(a 2+1)+a i 对应的点为(a 2+1,a ),所以z 对应的点在第一、四象限或实轴的正半轴上.设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2+1,y =a ,消去a 可得x =y 2+1,所以复数z 对应的点的轨迹方程是y 2=x -1.20.(12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i.(1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解析:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i ,即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4,解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i 或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限,所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.21.(12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解析:设z =x +y i(x ,y ∈R ,y ≠0),∴x 2+y 2=1.则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i =(x 2-y 2+3x )+y (2x +1)i.∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧ 2x +1=0,x 2-y 2+3x <0,①②又x 2+y 2=1.③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.22.(12分)已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解析:(1)|z 1|=|i(1-i)3|=|2-2i|=22+-22=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆的半径)=22+1.章末质量检测(三) 立体几何初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B3.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS解析:由题意知圆柱的母线长为底面圆的直径2R , 则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS . 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( ) A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2解析:设正四面体的棱长为a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2).答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16π B.32π C .36π D.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π.答案:A6.若平面α∥平面β,直线a ∥平面α,点B 在平面β内,则在平面β内且过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:当直线a ⊂平面β,且点B 在直线a 上时,在平面β内且过点B 的所有直线中不存在与a 平行的直线.故选A.答案:A7.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10解析:如图,作AM ⊥β,CN ⊥β,垂足分别为M 、N ,设AB =x ,则CD =28-x ,BM =9,ND =5,∴x 2-81=(28-x )2-25, ∴x =15,28-x =13. 答案:B 8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案:B9.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30° B.45° C .60° D.90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角(或其补角).由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.答案:C10.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BCP⊥平面PAC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B11.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为( )A.30° B.60°C.90° D.120°解析:如图所示,由AB=BC=1,∠A′BC=90°,得A′C= 2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC =1,MC =AM =22,∴∠CMA =90°. 答案:C12.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135C.175D.1195 解析:如图,过点A 作AE ⊥BD 于E ,连接PE . ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE ,∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是________. 解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体14.若某空间几何体的直观图如图所示,则该几何体的表面积是________. 解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6.答案:2+22+ 615.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点.故EF =12AC = 2.答案: 216.矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD所成的角是________.解析:tan∠PCA =PA AC=13=33,∴∠PCA =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解析:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.19.(12分)如图,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)设DF 与GN 交于点O ,连接AE ,则AE 必过点O ,且O 为AE 的中点,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为AD,EF的中点,四边形ADEF为平行四边形,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.20.(12分)S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,∴DE∥BC,∴DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.21.(12分)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,点E是AB的中点.(1)求证:OE∥平面BCC1B1;(2)若AC1⊥A1B,求证:AC1⊥BC.证明:(1)连接BC1,因为侧面AA1C1C是菱形,AC1与A1C交于点O,所以O为AC1的中点,又因为E是AB的中点,所以OE∥BC1,因为OE⊄平面BCC1B1,BC1⊂平面BCC1B1,所以OE∥平面BCC1B1.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.22.(12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.解析:(1)证明:在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,且交线为DC,所以EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,又OE=1,所以tan∠EFO= 5.章末质量检测(四) 统计一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:A×总体应为500名学生的体重B×样本应为每个被抽查的学生的体重C√抽取的60名学生的体重构成了总体的一个样本D×样本容量为60,不能带有单位2.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .07B .44C .15D .51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论: ①这组数据的众数是3.②这组数据的众数与中位数的数值不等. ③这组数据的中位数与平均数的数值相等. ④这组数据的平均数与众数的数值相等. 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个解析:由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案:A4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x+x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8.答案:A5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:设中间一组的频数为x ,则其他8组的频数和为52x ,所以x +52x =140,解得x =40.答案:B6.某校共有学生2 000名,各年级男、女生人数如表所示:一年级二年级三年级女生373380y男生377370z现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B.18C.16 D.12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.故选C.答案:C7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高 D.甲的中位数是24解析:甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.答案:D8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析:由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x 50=0.36,解得x =12. 答案:C9.一组数据的方差为s 2,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )A.12s 2,12x B .2s 2,2x C .4s 2,2x D .s 2,x解析:将一组数据的每一个数都乘以a ,则新数据组的方差为原来数据组方差的a 2倍,平均数为原来数据组的a 倍.故答案选C.答案:C10.某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )A .甲城市销售额多,乙城市销售额不够稳定B .甲城市销售额多,乙城市销售额稳定C .乙城市销售额多,甲城市销售额稳定D .乙城市销售额多,甲城市销售额不够稳定解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.答案:D11.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加上2所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:设A 样本数据为x i ,根据题意可知B 样本数据为x i +2,则依据统计知识可知A ,B 两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.答案:D12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =________.解析:由题意知第一组的频率为 1-(0.15+0.45)=0.4, 所以8m=0.4,所以m =20.答案:2014.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为________.解析:由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).答案:9,5,615.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析:由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,所以x=720.答案:72016.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2017的方差为________.解析:本题考查数据的方差.由题意得D (y i )=D (2x i -1)=D (2x i )=4D (x i )=4×4=16.答案:16三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某总体共有60个个体,并且编号为00,01,…,59.现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),求抽取样本的号码.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60解析:由随机数表法可得依次的读数为:18,24,54,38,08,22,23,0118.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解析:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60;抽取的中年人数为200×34×50%=75;抽取的老年人数为200×34×10%=15.19.(12分)已知一组数据按从小到大的顺序排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析:由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x -,方差为s 2,由题意得 x -=16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 20.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解析:(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5, 所以x =50.即参加这次测试的学生有50人. (3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.21.(12分)市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测跳过1.65 m就很可能获得冠军,该校为了获得冠军,可能选哪名运动员参赛?若预测跳过1.70 m才能得冠军呢?解析:(1)甲的平均成绩为:(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)÷8=1.69 m,乙的平均成绩为:(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)÷8=1.68 m;(2)根据方差公式可得:甲的方差为0.0006,乙的方差为0.00315∵0.0006<0.00315∴甲的成绩更为稳定;(3)若跳过1.65 m就很可能获得冠军,甲成绩均过1.65米,乙3次未过1.65米,因此选甲;若预测跳过1.70 m才能得冠军,甲成绩过1.70米3次,乙过1.70米5次,因此选乙.22.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]范围内的有多少人?解析:(1)由题意得M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,。
人教版高中数学(必修2)全套训练习题含答案
高中数学必修二训练集锦目录:数学2(必修)数学2(必修)第一章:空间几何体[ 基础训练A组] 数学2(必修)第一章:空间几何体[ 综合训练B 组] 数学2(必修)第一章:空间几何体[ 提高训练C 组] 数学2(必修)第二章:点直线平面[ 基础训练A组] 数学2(必修)第二章:点直线平面[ 综合训练B 组] 数学2(必修)第二章:点直线平面[ 提高训练C 组] 数学2(必修)第三章:直线和方程[ 基础训练A组] 数学2(必修)第三章:直线和方程[ 综合训练B 组] 数学2(必修)第三章:直线和方程[ 提高训练C 组] 数学2(必修)第四章:圆和方程[ 基础训练A组] 数学2(必修)第四章:圆和方程[ 综合训练 B 组] 数学 2(必修)第四章:圆和方程 [ 提高训练 C 组]33 3 ( 数 学 2 必 修 ) 第 一 章 空 间 几 何 体[ 基础训练 A 组] 一、选择题1 . 有 一 个 几 何 体 的 三 视 图 如 下 图 所 示 , 这 个 几 何 体 应 是 一 个 ()A . 棱 台B . 棱 锥C . 棱 柱 D. 都 不 对主 视 图左 视 图俯 视 图2 . 棱 长 都 是 1 的 三 棱 锥 的 表 面 积 为 ()A .B .2 C .3 D.43 . 长 方 体 的 一 个 顶 点 上 三 条 棱 长 分 别 是 3,4 ,5 , 且 它 的 8 个 顶 点 都 在同 一 球 面 上 , 则 这 个 球 的 表 面 积 是 ( )A . 2 5B . 5 0C . 1 2 5D . 都 不 对4 . 正 方 体 的 内 切 球 和 外 接 球 的 半 径 之 比 为 ()A .: 1 B . : 2C . 2 :D . 35 . 在 △ A B C 中 , AB 2 , B C 1 . 5 , AB C1 2 0 ,若 使 绕 直 线 B C 旋 转 一 周 ,则 所 形 成 的 几 何 体 的 体 积 是 ( )9 7 5 3 A .B .C .D.22226 . 底 面 是 菱 形 的 棱 柱 其 侧 棱 垂 直 于 底 面 , 且 侧 棱 长 为 5 , 它 的 对 角 线 的 长分 别 是 9 和 1 5 , 则 这 个 棱 柱 的 侧 面 积 是 ( ) A . 1 3 0B . 1 4 0C . 1 5 0D . 1 6 0二、填空题1 . 一 个 棱 柱 至 少 有 _____ 个 面 , 面 数 最 少 的 一 个 棱 锥 有 ________个 顶 点 ,顶 点 最 少 的 一 个 棱 台 有________条 侧 棱 。
数学:必修2人教A同步训练试题及解析必修2全册同步检测:1-3-1-2
1-3-1-2同步检测一、选择题1.长方体三个面的面积分别为2、6和9,则长方体的体积是( )A .63B .36C .11D .122.已知正六棱台的上、下底面边长分别为2和4,高为2,则体积为( )A .32 3B .28 3C .24 3D .20 33.(11~12学年枣庄模拟)一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,直角边长为1,则这个几何体的体积为( )A .1B.12C.13D.164.体积为52cm 3的圆台,一个底面面积是另一个底面面积的9倍,那么截得这个圆台的圆锥的体积为( )A .54cm 3B .54πcm 3C .58cm 3D .58πcm 35.圆锥的过高的中点且与底面平行的截面把圆锥分成两部分的体积之比是( )A .1:1B .1:6C .1:7D .1:86.(2012·江西(文科))若一个几何体的三视图如图所示,则此几何体的体积为( )A.112B .5C .4 D.927.(2009·陕西高考)若正方体的棱长为2,则以该正方体各个面的中心为顶点的凸多面体的体积为( ) A.26 B.23C.33D.238.如图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )9.在△ABC中,AB=2,BC=3,∠ABC=120°,若使△ABC绕直线BC旋转一周,则所形成的几何体的体积是()A.6π B.5πC.4π D.3π10.如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm和半径为3cm的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm,当这个几何体如图(3)水平放置时,液面高度为28cm,则这个简单几何体的总高度为()A.29cm B.30cmC.32cm D.48cm二、填空题11.已知圆锥SO的高为4,体积为4π,则底面半径r=________.12.(2010·天津理)一个几何体的三视图如下图所示,则这个几何体的体积为____.13.如图所示,三棱柱ABC-A′B′C′中,若E、F分别为AC、AB的中点,平面EC′B′F将三棱柱分成体积为V1(棱台AEF-A′C′B′的体积),V2的两部分,那么V1:V2=________.14.如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是________.三、解答题15.把长和宽分别为6和3的矩形卷成一个圆柱的侧面,求这个圆柱的体积.16.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.17.如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出多面体的俯视图.(2)按照给出的尺寸,求该多面体的体积.18.(2011·浙江高考)若某几何体的三视图(单位:cm)如图所示,求此几何体的体积.详解答案1[答案] A[解析] 设长方体长、宽、高分别为a 、b 、c ,则ab =2,ac =6,bc =9,相乘得(abc )2=108,∴V =abc =6 3.2[答案] B[解析] 上底面积S 1=6×34×22=63,下底面积S 2=6×34×42=243,体积V =13(S 1+S 2+S 1S 2)·h =13(63+243+63·243)×2=28 3.3[答案] D[解析] 由三视图知,该几何体是三棱锥.体积V =13×12×1×1×1=16.4[答案] A [解析] 由底面积之比为1:9知,体积之比为1:27,截得小圆锥与圆台体积比为1:26,∴ 小圆锥体积为2cm 3,故原来圆锥的体积为54cm 3,故选A.5[答案] C[解析] 如图,设圆锥底半径OB =R ,高PO =h ,∵O ′为PO 中点,∴PO ′=h 2,∵O ′A OB =PO ′PO =12,∴O ′A =R 2,∴V 圆锥PO ′=13π·⎝ ⎛⎭⎪⎫R 22·h 2=124πR 2h .V 圆台O ′O =π3·⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫R 22+R 2+R 2·R ·h 2=724πR 2h . ∴V 圆锥PO ′V 圆台O ′O =17,故选C. [点评] 由圆锥的平行于底面的截面性质,截得小圆锥与原来圆锥的高的比为1:2,故体积比为1:8,因而上、下两部分体积比为1:7.6[答案] C[解析] 本题的几何体是一个六棱柱,由三视图可得底面为边长为1的正六边形,高为1,则直接代公式可求.7[答案] B[解析] 由题意知,以正方体各个面的中心为顶点的凸多面体是正八面体(即由两个同底等高的正四棱锥组成),所有的棱长均为23,其中每个正四棱锥的高均为22,故正八面体的体积V =2V 正四棱锥=2×13×12×22=23.故选B.8[答案] C[解析] 若该几何体的俯视图是选项A ,则该几何体是正方体,其体积V =13=1≠12,所以A 选项不是;若该几何体的俯视图是选项B ,则该几何体是圆柱,其体积V =π×(12)2×1=π4≠12,所以B 选项不是;若该几何体的俯视是选项D ,则该几何体是圆柱的四分之一,其体积V =14(π×12×1)=π4≠12,所以D 选项不是;若该几何体的俯视图是选项C ,则该几何体是三棱柱,其体积V =12×1×1×1=12,所以C 选项符合题意,故选C.9[答案] D[解析] 如图所示,所形成的几何体是一个大圆锥挖去一个小圆锥剩下的部分,这两个圆锥的底面半径r =AD =AB sin60°=2×32=3,小圆锥的高是BD =AB cos60°=2×12=1,大圆锥的高是CD =BD+BC =1+3=4,则所形成的几何体的体积是13×π×(3)2×4-13×π×(3)2×1=3π.10[答案] A[解析] 图(2)和图(3)中,瓶子上部没有液体的部分容积相等,设这个简单几何体的总高度为h ,则有π×12(h -20)=π×32(h -28),解得h =29(cm).11[答案]3[解析] 设底面半径为r ,则13πr 2×4=4π,解得r =3,即底面半径为 3.12[答案] 103[解析] 由三视图知,该几何体由一个高为1,底面边长为2的正四棱锥和一个高为2,底面边长为1的正四棱柱组成,则体积为2×2×1×13+1×1×2=103.13[答案] 7:5[解析] 设三棱柱的高为h ,底面面积为S ,体积为V ,则V =V 1+V 2=Sh .因为E 、F 分别为AC 、AB 的中点,所以S △AEF =14S ,所以V 1=13h (S +14S +S ·S 4)=712Sh ,V 2=V -V 1=512Sh .所以V 1:V 2=7:5.14[答案] πr 2(a +b )2[解析] 两个同样的该几何体能拼接成一个高为a +b 的圆柱,则拼接成的圆柱的体积V =πr 2(a +b ),所以所求几何体的体积为πr 2(a +b )2. 15[答案] 272π或27π[解析] 如图所示,当BC 为底面周长时,半径r 1=32π,则体积V =πr 21·AB =π(32π)2×6=272π;当AB 的底面周长时,半径r 2=62π=3π,则体积V =πr 22·BC =π(3π)2×3=27π. 16[解] 由三视图可知该几何体是一个底面边长分别为6和8的矩形,高为4的四棱锥.设底面矩形为ABCD .如图所示.AB =8,BC =6,高VO =4.(1)V =13×(8×6)×4=64.(2)四棱锥中侧面VAD ,VBC 是全等的等腰三角形,侧面VAB ,VCD 也是全等的等腰三角形.在△VBC 中,BC 边上的高h =VO 2+(AB 2)2=42+(82)2=4 2.在△VAB 中,AB 边上的高11 h 2=VO 2+(BC 2)2=42+(62)2=5.所以此几何体的侧面积 S =2×(12×6×42+12×8×5)=40+242. 17[解] (1)俯视图如图所示.(2)所求多面体体积V =V 长方体-V 正三棱锥=4×4×6-13×(12×2×2)×2=2843(cm 3).18[答案] 144[解析] 该空间几何体的上部分是底面边长为4,高为2的正四棱柱,体积为16×2=32;下部分是上底面边长为4,下底面边长为8,高为3的正四棱台,体积为13×(16+4×8+64)×3=112.故该空间几何体的体积为144.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课后提升作业二圆柱、圆锥、圆台、球、简单组合体的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.正方形绕其一条对角线所在直线旋转一周,所得几何体是( )A.圆柱B.圆锥C.圆台D.两个共底的圆锥【解析】选D.连BD交AC于O,则AC⊥BD.BC,AB绕直线AC旋转各得一圆锥.【补偿训练】将图①所示的三角形绕直线l旋转一周,可以得到如图②所示的几何体的是( )【解析】选 B.由旋转体的结构特征知,几何体由上、下两个同底的圆锥组成,因此只有B符合题意.2.如图所示,是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的平面轴对称图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是( )A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点【解析】选A.该组合体中有一个球和一个半球,故A错误.3.(2016·银川高一检测)圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是( )A.等边三角形B.等腰直角三角形C.顶角为30°的等腰三角形D.其他等腰三角形【解析】选A.设圆锥底面圆的半径为r,依题意可知2πr=π·,则r=,故轴截面是边长为的等边三角形.4.如图所示的简单组合体,其结构特征是( )A.两个圆锥B.两个圆柱C.一个棱锥和一个棱柱D.一个圆锥和一个圆柱【解析】选D.上面是圆锥,下接一个同底的圆柱.5.如图所示的几何体是由下面哪一个平面图形旋转而形成的( )【解析】选 A.该几何体自上向下是由一个圆锥,两个圆台和一个圆柱构成,是由A中的平面图形旋转而形成的.6.过球面上任意两点A,B作大圆,可能的个数是( )A.有且只有一个B.一个或无穷多个C.无数个D.以上均不正确【解析】选B.当过AB的直线经过球心时,经过A,B的截面所得的圆都是球的大圆,这时可作无数个;当直线AB不过球心时,经过A,B,O的截面就是一个大圆,这时只能作一个大圆.【补偿训练】正三棱锥内有一个内切球,经过棱锥的一条侧棱和高作截面,正确的图是( )【解析】选 C.正三棱锥的内切球与各个面的切点为正三棱锥各面的中心,所以过一条侧棱和高的截面必过该棱所对面的高线,故C正确.7.如图所示的平面结构,绕中间轴旋转一周,形成的几何体形状为( )A.一个球体B.一个球体中间挖去一个圆柱C.一个圆柱D.一个球体中间挖去一个棱柱【解析】选 B.外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.8.如图,各棱长都相等的三棱锥内接于一个球,则经过球心的一个截面图形可能是( )A.①③B.①②C.②④D.②③【解析】选A.①正确,截面过三棱锥底面的一边;②错误,截面圆内三角形的一条边不可能过圆心;③正确,为截面平行于三棱锥底面;④错误,截面圆不可能过三棱锥的底面.二、填空题(每小题5分,共10分)9.(2016·济宁高一检测)一个半径为5cm的球,被一平面所截,球心到截面圆心的距离为4cm,则截面圆面积为________cm2.【解析】设截面圆半径为rcm.则r2+42=52,所以r=3.所以截面圆面积为9πcm2.答案:9π10.圆台的上底面面积为π,下底面面积为16π,用一个平行于底面的平面去截圆台,该平面自上而下分圆台的高的比为2∶1,则这个截面的面积为________.【解析】如图,把圆台还原为圆锥,设截面☉O1的半径为r,因为圆台的上底面面积为π,下底面面积为16π,所以上底面的半径为1,下底面的半径为4,所以=,设SO=x,SO2=4x,则OO2=3x,又OO1∶O1O2=2∶1,所以OO1=2x,在△SBO1中,=,所以r=3.因此截面面积为9π.答案:9π三、解答题(每小题10分,共20分)11.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.【解析】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.12.已知圆锥的底面半径为r,高为h,正方体ABCD-A1B1C1D1内接于圆锥,求这个正方体的棱长.【解题指南】过正方体的一组对棱作圆锥的轴截面,将有关量放在平面图形中,建立正方体的棱长与圆锥有关量的关系即可求解.【解析】过内接正方体的一组对棱作圆锥的轴截面,如图所示.设圆锥内接正方体的棱长为x,则在轴截面中,正方体的对角面A1ACC1的一组邻边的长分别为x和x.因为△VA1C1∽△VMN,所以=.所以hx=2rh-2rx,所以x==.即圆锥内接正方体的棱长为.【能力挑战题】如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA 上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.求:(1)绳子的最短长度的平方f(x).(2)绳子最短时,顶点到绳子的最短距离.(3)f(x)的最大值.【解析】将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L就是圆O的周长,所以L=2πr=2π.所以∠ASM=×360°=×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM,其值为AM=(0≤x≤4).所以f (x)=AM2=x2+16(0≤x≤4).(2)绳子最短时,在展开图中作SR⊥AM,垂足为R,则SR的长度为顶点S到绳子的最短距离,在△SAM中,因为S△SAM=SA·SM=AM·SR,所以SR==(0≤x≤4),即绳子最短时,顶点到绳子的最短距离为(0≤x≤4).(3)因为f(x)=x2+16(0≤x≤4)是增函数,所以f(x)的最大值为f(4)=32.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。